RPL DAG Metric Container (MC) Node State and Attribute (NSA) object type extension
draft-pkm-roll-nsa-extension-00

Document Type Active Internet-Draft (individual)
Last updated 2017-10-27
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
ROLL                                                R. Koutsiamanis, Ed.
Internet-Draft                                           G. Papadopoulos
Intended status: Standards Track                            N. Montavont
Expires: April 29, 2018                                   IMT Atlantique
                                                              P. Thubert
                                                                   Cisco
                                                        October 26, 2017

RPL DAG Metric Container (MC) Node State and Attribute (NSA) object type
                               extension
                    draft-pkm-roll-nsa-extension-00

Abstract

   Implementing 6TiSCH Packet Replication and Elimination from / to the
   RPL root requires the ability to forward copies of packets over
   different paths via different RPL parents.  Selecting the appropriate
   parents to achieve ultra-low latency and jitter requires information
   about a node's parents.  This document details what information needs
   to be transmitted and how it is encoded within a packet to enable
   this functionality.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 29, 2018.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of

Koutsiamanis, et al.     Expires April 29, 2018                 [Page 1]
Internet-Draft      RPL MC NSA object type extension        October 2017

   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Tracks  . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Tracks Overview . . . . . . . . . . . . . . . . . . . . .   3
     3.2.  Complex Tracks  . . . . . . . . . . . . . . . . . . . . .   4
   4.  Packet Replication and Elimination principles . . . . . . . .   4
   5.  Alternative Parent Selection Issue  . . . . . . . . . . . . .   5
   6.  Node State and Attribute (NSA) object type extension  . . . .   5
     6.1.  Compression . . . . . . . . . . . . . . . . . . . . . . .   7
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     9.1.  Informative references  . . . . . . . . . . . . . . . . .   8
     9.2.  Other Informative References  . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   Industrial network applications have stringent requirements on
   reliability and predictability, and typically leverage 1+1
   redundancy, aka Packet Replication and Elimination (PRE)
   [I-D.papadopoulos-6tisch-pre-reqs] to achieve their goal.  In order
   for wireless networks to be able to be used in such applications, the
   principles of Deterministic Networking [I-D.ietf-detnet-architecture]
   lead to designs that aim at maximizing packet delivery rate and
   minimizing latency and jitter.  Additionally, given that the network
   nodes often do not have an unlimited power supply, energy consumption
   needs to be minimized as well.

   To meet this goal, IEEE Std. 802.15.4 [IEEE802154-2015] provides
   Time-Slotted Channel Hopping (TSCH), a mode of operation which uses a
   fixed communication schedule to allow deterministic medium access as
   well as channel hopping to work around radio interference.  However,
   since TSCH uses retransmissions in the event of a failed
Show full document text