LISP-OAM (Operations, Administration and Management): Use cases and requirements
draft-rodrigueznatal-lisp-oam-06

Document Type Active Internet-Draft (individual)
Last updated 2017-06-09
Stream (None)
Intended RFC status (None)
Formats plain text pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
LISP Working Group                                    A. Rodriguez-Natal
Internet-Draft                                             Cisco Systems
Intended status: Informational                      A. Cabellos-Aparicio
Expires: December 11, 2017             Technical University of Catalonia
                                                     M. Portoles-Comeras
                                                                M. Kowal
                                                                D. Lewis
                                                                F. Maino
                                                           Cisco Systems
                                                            June 9, 2017

  LISP-OAM (Operations, Administration and Management): Use cases and
                              requirements
                    draft-rodrigueznatal-lisp-oam-06

Abstract

   This document describes Operations Administration and Management
   (OAM) use-cases and the requirements that they have towards the LISP
   architecture.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 11, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Rodriguez-Natal, et al. Expires December 11, 2017               [Page 1]
Internet-Draft                  LISP-OAM                       June 2017

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Definition of terms . . . . . . . . . . . . . . . . . . . . .   3
   3.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  General LISP operation  . . . . . . . . . . . . . . . . .   3
     3.2.  MPTCP . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     3.3.  Multicast . . . . . . . . . . . . . . . . . . . . . . . .   6
     3.4.  NFV/SFC . . . . . . . . . . . . . . . . . . . . . . . . .   7
   4.  Requirements  . . . . . . . . . . . . . . . . . . . . . . . .   8
   5.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  10
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
   8.  Informative References  . . . . . . . . . . . . . . . . . . .  10
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   LISP with its location/ID split in place creates two separated
   namespaces, the RLOC space where the transit network elements are
   deployed and the EID space that applies to the end-hosts.  This
   inherently splits the network in an underlay, represented by the RLOC
   space, and an overlay, represented by the EID space.

   However, LISP introduces some drawbacks since relevant details of the
   underlay network are hidden to the overlay nodes (e.g, xTR).  With
   LISP, an overlay node can learn about the reachability of a path
   towards a locator and its liveness.  In terms of control, it can -by
   means of priorities and weights- load-balance traffic across
   different locators and, taking advantage of LISP-TE
   [I-D.ietf-lisp-te] and LISP-SR [I-D.brockners-lisp-sr], control how
   the traffic flows through the underlay topology.  However, overlay
   nodes lack of appropriate knowledge about the characteristics of the
   paths, such as loss, latency, delay, length in IP/AS hops, etc.
   Furthermore, LISP nodes have little knowledge about the topological
   location of the RTRs as well as the characteristics of the underlay
   paths interconnecting them.
Show full document text