Skip to main content

Multipath RTP (MPRTP)
draft-singh-avtcore-mprtp-03

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Replaced".
Authors Varun Singh , Teemu Karkkainen , Joerg Ott , Saba Ahsan , Lars Eggert
Last updated 2011-10-31 (Latest revision 2011-07-08)
Replaces draft-singh-avt-mprtp
Replaced by draft-ietf-avtcore-mprtp
RFC stream (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-singh-avtcore-mprtp-03
AVT Core Working Group                                          V. Singh
Internet-Draft                                             T. Karkkainen
Intended status: Experimental                                     J. Ott
Expires: May 3, 2012                                            S. Ahsan
                                                        Aalto University
                                                               L. Eggert
                                                                   Nokia
                                                        October 31, 2011

                         Multipath RTP (MPRTP)
                      draft-singh-avtcore-mprtp-03

Abstract

   The Real-time Transport Protocol (RTP) is used to deliver real-time
   content and, along with the RTP Control Protocol (RTCP), forms the
   control channel between the sender and receiver.  However, RTP and
   RTCP assume a single delivery path between the sender and receiver
   and make decisions based on the measured characteristics of this
   single path.  Increasingly, endpoints are becoming multi-homed, which
   means that they are connected via multiple Internet paths.  Network
   utilization can be improved when endpoints use multiple parallel
   paths for communication.  The resulting increase in reliability and
   throughput can also enhance the user experience.  This document
   extends the Real-time Transport Protocol (RTP) so that a single
   session can take advantage of the availability of multiple paths
   between two endpoints.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 3, 2012.

Copyright Notice

Singh, et al.              Expires May 3, 2012                  [Page 1]
Internet-Draft                Multipath RTP                 October 2011

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
     1.1.  Requirements Language  . . . . . . . . . . . . . . . . . .  4
     1.2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . .  4
     1.3.  Use-cases  . . . . . . . . . . . . . . . . . . . . . . . .  5
   2.  Goals  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
     2.1.  Functional goals . . . . . . . . . . . . . . . . . . . . .  5
     2.2.  Compatibility goals  . . . . . . . . . . . . . . . . . . .  6
   3.  RTP Topologies . . . . . . . . . . . . . . . . . . . . . . . .  6
   4.  MPRTP Architecture . . . . . . . . . . . . . . . . . . . . . .  6
   5.  Example Media Flow Diagrams  . . . . . . . . . . . . . . . . .  8
     5.1.  Streaming use-case . . . . . . . . . . . . . . . . . . . .  8
     5.2.  Conversational use-case  . . . . . . . . . . . . . . . . .  9
   6.  MPRTP Functional Blocks  . . . . . . . . . . . . . . . . . . . 10
   7.  Available Mechanisms within the Functional Blocks  . . . . . . 11
     7.1.  Session Setup  . . . . . . . . . . . . . . . . . . . . . . 11
       7.1.1.  Connectivity Checks  . . . . . . . . . . . . . . . . . 11
       7.1.2.  Adding New or Updating Interfaces  . . . . . . . . . . 11
       7.1.3.  In-band vs. Out-of-band Signaling  . . . . . . . . . . 11
     7.2.  Expanding RTP  . . . . . . . . . . . . . . . . . . . . . . 13
     7.3.  Expanding RTCP . . . . . . . . . . . . . . . . . . . . . . 13
     7.4.  Failure Handling and Teardown  . . . . . . . . . . . . . . 13
   8.  MPRTP Protocol . . . . . . . . . . . . . . . . . . . . . . . . 14
     8.1.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . 14
       8.1.1.  Gather or Discovering Candidates . . . . . . . . . . . 15
       8.1.2.  RTCP Subflow or Interface advertisement  . . . . . . . 15
       8.1.3.  Connectivity Checks  . . . . . . . . . . . . . . . . . 15
       8.1.4.  Active and Passive Subflows  . . . . . . . . . . . . . 16
       8.1.5.  Middlebox Considerations . . . . . . . . . . . . . . . 16
     8.2.  RTP Transmission . . . . . . . . . . . . . . . . . . . . . 16
     8.3.  Playout Considerations at the Receiver . . . . . . . . . . 17
     8.4.  Subflow-specific RTCP Statistics and RTCP Aggregation  . . 17
     8.5.  RTCP Transmission  . . . . . . . . . . . . . . . . . . . . 17

Singh, et al.              Expires May 3, 2012                  [Page 2]
Internet-Draft                Multipath RTP                 October 2011

   9.  Packet Formats . . . . . . . . . . . . . . . . . . . . . . . . 18
     9.1.  RTP Header Extension for MPRTP . . . . . . . . . . . . . . 18
       9.1.1.  MPRTP RTP Extension for a Subflow  . . . . . . . . . . 19
       9.1.2.  MPRTP RTP Extension for Connectivity Checks  . . . . . 20
       9.1.3.  MPRTP RTP Extension for Keep-alive Packets . . . . . . 20
     9.2.  RTCP Extension for MPRTP (MPRTCP)  . . . . . . . . . . . . 20
       9.2.1.  MPRTCP Extension for Subflow Reporting . . . . . . . . 22
         9.2.1.1.  MPRTCP for Subflow-specific SR, RR and XR  . . . . 23
     9.3.  MPRTCP Extension for Interface advertisement . . . . . . . 25
       9.3.1.  Interface Advertisement block  . . . . . . . . . . . . 26
   10. RTCP Timing reconsiderations for MPRTCP  . . . . . . . . . . . 27
   11. SDP Considerations . . . . . . . . . . . . . . . . . . . . . . 27
     11.1. Signaling MPRTP Header Extension in SDP  . . . . . . . . . 27
     11.2. Signaling MPRTP capability in SDP  . . . . . . . . . . . . 28
     11.3. MPRTP Interface Advertisement in SDP (out-of-band
           signaling) . . . . . . . . . . . . . . . . . . . . . . . . 28
       11.3.1. "interface" attribute  . . . . . . . . . . . . . . . . 28
       11.3.2. Example  . . . . . . . . . . . . . . . . . . . . . . . 29
     11.4. MPRTP with ICE . . . . . . . . . . . . . . . . . . . . . . 29
     11.5. Increased Throughput . . . . . . . . . . . . . . . . . . . 30
     11.6. Offer/Answer Examples  . . . . . . . . . . . . . . . . . . 30
       11.6.1. In-band signaling  . . . . . . . . . . . . . . . . . . 30
       11.6.2. Out-of-band signaling  . . . . . . . . . . . . . . . . 31
         11.6.2.1. Without ICE  . . . . . . . . . . . . . . . . . . . 31
         11.6.2.2. With ICE . . . . . . . . . . . . . . . . . . . . . 32
   12. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 33
     12.1. MPRTP Header Extension . . . . . . . . . . . . . . . . . . 33
     12.2. MPRTCP Packet Type . . . . . . . . . . . . . . . . . . . . 34
     12.3. SDP Attributes . . . . . . . . . . . . . . . . . . . . . . 34
   13. Security Considerations  . . . . . . . . . . . . . . . . . . . 34
   14. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 34
   15. References . . . . . . . . . . . . . . . . . . . . . . . . . . 35
     15.1. Normative References . . . . . . . . . . . . . . . . . . . 35
     15.2. Informative References . . . . . . . . . . . . . . . . . . 35
   Appendix A.  Interoperating with Legacy Applications . . . . . . . 36
   Appendix B.  Change Log  . . . . . . . . . . . . . . . . . . . . . 36
     B.1.  changes in draft-singh-avtcore-mprtp-03  . . . . . . . . . 36
     B.2.  changes in draft-singh-avtcore-mprtp-02  . . . . . . . . . 37
     B.3.  changes in draft-singh-avtcore-mprtp-01  . . . . . . . . . 37
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 37

Singh, et al.              Expires May 3, 2012                  [Page 3]
Internet-Draft                Multipath RTP                 October 2011

1.  Introduction

   Multi-homed endpoints are becoming common in today's Internet, e.g.,
   devices that support multiple wireless access technologies such as 3G
   and Wireless LAN.  This means that there is often more than one
   network path available between two endpoints.  Transport protocols,
   such as RTP, have not been designed to take advantage of the
   availability of multiple concurrent paths and therefore cannot
   benefit from the increased capacity and reliability that can be
   achieved by pooling their respective capacities.

   Multipath RTP (MPRTP) is an OPTIONAL extension to RTP [1] that allows
   splitting a single RTP stream into multiple subflows that are
   transmitted over different paths.  In effect, this pools the resource
   capacity of multiple paths.  Multipath RTCP (MPRTCP) is an extension
   to RTCP, it is used along with MPRTP to report per-path sender and
   receiver characteristics.

   Other IETF transport protocols that are capable of using multiple
   paths include SCTP [10], MPTCP [11] and SHIM6 [12].  However, these
   protocols are not suitable for realtime communications.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [2].

1.2.  Terminology

   o  Endpoint: host either initiating or terminating an RTP flow.

   o  Interface: logical or physical component that is capable of
      acquiring a unique IP address.

   o  Path: sequence of links between a sender and a receiver.
      Typically, defined by a set of source and destination addresses.

   o  Subflow: flow of RTP packets along a specific path, i.e., a subset
      of the packets belonging to an RTP stream.  The combination of all
      RTP subflows forms the complete RTP stream.  Typically, a subflow
      would map to a unique path, i.e., each combination of IP addresses
      and port pairs (5-tuple, including protocol) is a unique subflow.

Singh, et al.              Expires May 3, 2012                  [Page 4]
Internet-Draft                Multipath RTP                 October 2011

1.3.  Use-cases

   The primary use-case for MPRTP is transporting high bit-rate
   streaming multimedia content between endpoints, where at least one is
   multi-homed.  Such endpoints could be residential IPTV devices that
   connect to the Internet through two different Internet service
   providers (ISPs), or mobile devices that connect to the Internet
   through 3G and WLAN interfaces.  By allowing RTP to use multiple
   paths for transmission, the following gains can be achieved:

   o  Higher quality: Pooling the resource capacity of multiple Internet
      paths allows higher bit-rate and higher quality codecs to be used.
      From the application perspective, the available bandwidth between
      the two endpoints increases.

   o  Load balancing: Transmitting an RTP stream over multiple paths
      reduces the bandwidth usage on a single path, which in turn
      reduces the impact of the media stream on other traffic on that
      path.

   o  Fault tolerance: When multiple paths are used in conjunction with
      redundancy mechanisms (FEC, re-transmissions, etc.), outages on
      one path have less impact on the overall perceived quality of the
      stream.

   A secondary use-case for MPRTP is transporting Voice over IP (VoIP)
   calls to a device with multiple interfaces.  Again, such an endpoint
   could be a mobile device with multiple wireless interfaces.  In this
   case, little is to be gained from resource pooling, i.e., higher
   capacity or load balancing, because a single path should be easily
   capable of handling the required load.  However, using multiple
   concurrent subflows can improve fault tolerance, because traffic can
   shift between the subflows when path outages occur.  This results in
   very fast transport-layer handovers that do not require support from
   signaling.

2.  Goals

   This section outlines the basic goals that multipath RTP aims to
   meet.  These are broadly classified as Functional goals and
   Compatibility goals.

2.1.  Functional goals

   Allow unicast RTP session to be split into multiple subflows in order
   to be carried over multiple paths.  This may prove beneficial in case
   of video streaming.

Singh, et al.              Expires May 3, 2012                  [Page 5]
Internet-Draft                Multipath RTP                 October 2011

   o  Increased Throughput: Cumulative capacity of the two paths may
      meet the requirements of the multimedia session.  Therefore, MPRTP
      MUST support concurrent use of the multiple paths.

   o  Improved Reliability: MPRTP SHOULD be able to send redundant
      packets or re-transmit packets along any available path to
      increase reliability.

   The protocol SHOULD be able to open new subflows for an existing
   session when new paths appear and MUST be able to close subflows when
   paths disappear.

2.2.  Compatibility goals

   MPRTP MUST be backwards compatible; an MPRTP stream needs to fall
   back to be compatible with legacy RTP stacks if MPRTP support is not
   successfully negotiated.

   o  Application Compatibility: MPRTP service model MUST be backwards
      compatible with existing RTP applications, i.e., an MPRTP stack
      MUST be able to work with legacy RTP applications and not require
      changes to them.  Therefore, the basic RTP APIs MUST remain
      unchanged, but an MPRTP stack MAY provide extended APIs so that
      the application can configure any additional features provided by
      the MPRTP stack.

   o  Network Compatibility: individual RTP subflows MUST themselves be
      well-formed RTP flows, so that they are able to traverse NATs and
      firewalls.  This MUST be the case even when interfaces appear
      after session initiation.  Interactive Connectivity Establishment
      (ICE) [3] MAY be used for discovering new interfaces or performing
      connectivity checks.

3.  RTP Topologies

   RFC 5117 [13] describes a number of scenarios using mixers and
   translators in single-party (point-to-point), and multi-party (point-
   to-multipoint) scenarios.  RFC 3550 [1] (Section 2.3 and 7.x) discuss
   in detail the impact of mixers and translators on RTP and RTCP
   packets.  MPRTP assumes that if a mixer or translator exists in the
   network, then either all of the multiple paths or none of the
   multiple paths go via this component.

4.  MPRTP Architecture

   In a typical scenario, an RTP session uses a single path.  In an

Singh, et al.              Expires May 3, 2012                  [Page 6]
Internet-Draft                Multipath RTP                 October 2011

   MPRTP scenario, an RTP session uses multiple subflows that each use a
   different path.  Figure 1 shows the difference.

   +--------------+                Signaling            +--------------+
   |              |------------------------------------>|              |
   |    Client    |<------------------------------------|    Server    |
   |              |           Single RTP flow           |              |
   +--------------+                                     +--------------+

   +--------------+              Signaling              +--------------+
   |              |------------------------------------>|              |
   |    Client    |<------------------------------------|    Server    |
   |              |<------------------------------------|              |
   +--------------+            MPRTP subflows           +--------------+

     Figure 1: Comparison between traditional RTP streaming and MPRTP

   +-----------------------+         +-------------------------------+
   |      Application      |         |          Application          |
   +-----------------------+         +-------------------------------+
   |                       |         |             MPRTP             |
   +          RTP          +         +- - - - - - - -+- - - - - - - -+
   |                       |         |  RTP subflow  |  RTP subflow  |
   +-----------------------+         +---------------+---------------+
   |          UDP          |         |      UDP      |      UDP      |
   +-----------------------+         +---------------+---------------+
   |           IP          |         |       IP      |       IP      |
   +-----------------------+         +---------------+---------------+

                       Figure 2: MPRTP Architecture

   Figure 2 illustrates the differences between the standard RTP stack
   and the MPRTP stack.  MPRTP receives a normal RTP session from the
   application and splits it into multiple RTP subflows.  Each subflow
   is then sent along a different path to the receiver.  To the network,
   each subflow appears as an independent, well-formed RTP flow.  At the
   receiver, the subflows are combined to recreate the original RTP
   session.  The MPRTP layer performs the following functions:

   o  Path Management: The layer is aware of alternate paths to the
      other host, which may, for example, be the peer's multiple
      interfaces.  So that it is able to send differently marked packets
      along separate paths.  MPRTP also selects interfaces to send and
      receive data.  Furthermore, it manages the port and IP address
      pair bindings for each subflow.

Singh, et al.              Expires May 3, 2012                  [Page 7]
Internet-Draft                Multipath RTP                 October 2011

   o  Packet Scheduling: the layer splits a single RTP flow into
      multiple subflows and sends them across multiple interfaces
      (paths).  The splitting MAY BE done using different path
      characteristics.

   o  Subflow recombination: the layer creates the original stream by
      recombining the independent subflows.  Therefore, the multipath
      subflows appear as a single RTP stream to applications.

5.  Example Media Flow Diagrams

   There may be many complex technical scenarios for MPRTP, however,
   this memo only considers the following two scenarios: 1) a
   unidirectional media flow that represents the streaming use-case, and
   2) a bidirectional media flow that represents a conversational use-
   case.

5.1.  Streaming use-case

   In the unidirectional scenario, the receiver (client) initiates a
   multimedia session with the sender (server).  The receiver or the
   sender may have multiple interfaces and both endpoints are MPRTP-
   capable.  Figure 3 shows this scenario.  In this case, host A has
   multiple interfaces.  Host B performs connectivity checks on host A's
   multiple interfaces.  If the interfaces are reachable, then host B
   streams multimedia data along multiple paths to host A. Moreover,
   host B also sends RTCP Sender Reports (SR) for each subflow and host
   A responds with a normal RTCP Receiver Report (RR) for the overall
   session and receiver statistics for each subflow.  Host B distributes
   the packets across the subflows based on the individually measured
   path characteristics.

   Alternatively, to reduce media startup time, host B may start
   streaming multimedia data to host A's initiating interface and then
   perform connectivity checks for the other interfaces.  This method of
   updating a single path session to a multipath session is called
   "multipath session upgrade".

Singh, et al.              Expires May 3, 2012                  [Page 8]
Internet-Draft                Multipath RTP                 October 2011

           Host A                           Host B
   -----------------------                ----------
   Interface A1   Interface A2                Interface B1
   -----------------------                ----------
       |                                      |
       |------------------------------------->| Session setup with
       |<-------------------------------------| multiple interfaces
       |            |                         |
       |            |                         |
       |       (RTP data B1->A1, B1->A2)      |
       |<=====================================|
       |            |<========================|
       |            |                         |
       Note: there may be more scenarios.

                    Figure 3: Unidirectional media flow

5.2.  Conversational use-case

   In the bidirectional scenario, multimedia data flows in both
   directions.  The two hosts exchange their lists of interfaces with
   each other and perform connectivity checks.  Communication begins
   after each host finds suitable address, port pairs.  Interfaces that
   receive data send back RTCP receiver statistics for that path (based
   on the 5-tuple).  The hosts balance their multimedia stream across
   multiple paths based on the per path reception statistics and its own
   volume of traffic.  Figure 4 describes an example of a bidirectional
   flow.

        Host A                               Host B
---------------------------        ---------------------------
Interface A1   Interface A2        Interface B1   Interface B2
---------------------------        ---------------------------
  |            |                       |            |
  |            |                       |            |
  |----------------------------------->|            |Session setup with
  |<-----------------------------------|            |multiple interfaces
  |            |                       |            |
  |            |                       |            |
  |    (RTP data B1<->A1, B2<->A2)     |            |
  |<===================================|            |
  |            |<===================================|
  |===================================>|            |
  |            |===================================>|
  |            |                       |            |
    Note: the address pairs may have other permutations,
    and they may be symmetric or asymmetric combinations.

Singh, et al.              Expires May 3, 2012                  [Page 9]
Internet-Draft                Multipath RTP                 October 2011

                       Figure 4: Bidirectional flow

6.  MPRTP Functional Blocks

   This section describes some of the functional blocks needed for
   MPRTP.  We then investigate each block and consider available
   mechanisms in the next section.

   1.  Session Setup: Interfaces may appear or disappear at anytime
       during the session.  To preserve backward compatibility with
       legacy applications, a multipath session MUST look like a bundle
       of individual RTP sessions.  Multipath session may be upgraded
       from a typical single path session, as and when new interfaces
       appear or disappear.  However, it should be possible to setup a
       multipath session from the beginning if the interfaces are
       available at the start of the multimedia session.

   2.  Expanding RTP: For a multipath session, each subflow MUST look
       like an independent RTP flow, so that individual RTCP messages
       can be generated per subflow.  Furthermore, MPRTP splits the
       single multimedia stream into multiple subflows based on path
       characteristics (e.g.  RTT, loss-rate, receiver rate, bandwidth-
       delay product etc.) and dynamically adjusts the load on each
       link.

   3.  Adding Interfaces: Interfaces on the host need to be regularly
       discovered and advertised.  This can be done at session setup
       and/or during the session.  Discovering interfaces is outside the
       scope of this document.

   4.  Expanding RTCP: MPRTP MUST provide per path RTCP reports for
       monitoring the quality of the path, for load balancing, or for
       congestion control, etc.  To maintain backward compatibility with
       legacy applications, the receiver MUST also send aggregate RTCP
       reports along with the per-path reports.

   5.  Maintenance and Failure Handling: In a multi-homed endpoint
       interfaces may appear and disappear.  If this occurs at the
       sender, it has to re-adjust the load on the available links.  On
       the other hand, if this occurs at the receiver, then the
       multimedia data transmitted by the sender to those interfaces is
       lost.  This data may be re-transmitted along a different path
       i.e., to a different interface on the receiver.  Furthermore, the
       endpoint has to either explicitly signal the disappearance of an
       interface, or the other endpoint has to detect it (by lack of
       media packets, RTCP feedback, or keep-alive packets).

Singh, et al.              Expires May 3, 2012                 [Page 10]
Internet-Draft                Multipath RTP                 October 2011

   6.  Teardown: The MPRTP layer releases the occupied ports on the
       interfaces.

7.  Available Mechanisms within the Functional Blocks

   This section discusses some of the possible alternatives for each
   functional block mentioned in the previous section.

7.1.  Session Setup

   MPRTP session can be set up in many possible ways e.g., during
   handshake, or upgraded mid-session.  The capability exchange may be
   done using out-of-band signaling (e.g., SDP [14] in SIP [15], RTSP
   [16]) or in-band signaling (e.g., RTP/RTCP header extension, STUN
   messages).

   [[Comment.1: Using SIP over SCTP, MPTCP instead of UDP/TCP are out of
   scope of the document. --MMUSIC Review]]

7.1.1.  Connectivity Checks

   The endpoint SHOULD be capable of performing connectivity checks
   (e.g., using ICE [3]).  If the IP addresses of the endpoints are
   reachable (e.g., globally addressable, same network etc) then
   connectivity checks are not needed.

7.1.2.  Adding New or Updating Interfaces

   Interfaces can appear and disappear during a session, the endpoint
   MUST be capable of advertising the changes in its set of usable
   interfaces.  Additionally, the application or OS may define a policy
   on when and/or what interfaces are usable.  However, MPRTP requires a
   method to advertise the updated set of usable interfaces.

7.1.3.  In-band vs. Out-of-band Signaling

   MTRTP nodes will generally use a signaling protocol to establish
   their MPRTP session.  With the existence of such a signaling
   relationship, two alternatives become available to exchange
   information about the available interfaces on each side for extending
   RTP sessions to MPRTP and for modifying MPRTP sessions: in-band and
   out-of-band signaling.

   In-band signaling refers to using mechanisms of RTP/RTCP itself to
   communicate interface addresses, e.g., a dedicated RTCP extensions
   along the lines of the one defined to communicate information about
   the feedback target for RTP over SSM [RFC5760].  In-band signaling

Singh, et al.              Expires May 3, 2012                 [Page 11]
Internet-Draft                Multipath RTP                 October 2011

   does not rely on the availability of a separate signaling connection
   and the information flows along the same path as the media streams,
   thus minimizing dependencies.  Moreover, if the media channel is
   secured (e.g., by means of SRTP), the signaling is implicitly
   protected as well if SRTCP encryption and authentication are chosen.
   In-band signaling is also expected to take a direct path to the peer,
   avoiding any signaling overlay-induced indirections and associated
   processing overheads in signaling elements -- avoiding such may be
   especially worthwhile if frequent updates may occur as in the case of
   mobile users.  Finally, RTCP is usually sent sufficiently frequently
   (in point-to-point settings) to provide enough opportunities for
   transmission and (in case of loss) retransmission of the
   corresponding RTCP packets.

   Examples for in-band signaling include RTCP extensions as noted above
   or suitable extensions to STUN.

   Out-of-band signaling refers to using a separate signaling connection
   (via SIP, RTSP, or HTTP) to exchange interface information, e.g.,
   expressed in SDP.  Clear benefits are that signaling occurs at setup
   time anyway and that experience and SDP syntax (and procedures) are
   available that can be re-used or easily adapted to provide the
   necessary capabilities.  In contrast to RTCP, SDP offers a reliable
   communication channel so that no separate retransmissions logic is
   necessary.  In SDP, especially when combined with ICE, connectivity
   check mechanisms including sophisticated rules are readily available.
   While SDP is not inherently protected, suitable security may need to
   be applied anyway to the basic session setup.

   Examples for out-of-band signaling are dedicated extensions to SDP;
   those may be combined with ICE.

   Both types of mechanisms have their pros and cons for middleboxes.
   With in-band signaling, control packets take the same path as the
   media packets and they can be directly inspected by middleboxes so
   that the elements operating on the signaling channel do not need to
   understand new SDP.  With out-of-band signaling, only the middleboxes
   processing the signaling need to be modified and those on the data
   forwarding path can remain untouched.

   Overall, it may appear sensible to provide a combination of both
   mechanisms: out-of-band signaling for session setup and initial
   interface negotiation and in-band signaling to deal with frequent
   changes in interface state (and for the potential case, albeit rather
   theoretical case of MPRTP communication without a signaling channel).

   In its present version, this document explores both options to
   provide a broad understanding of how the corresponding mechanisms

Singh, et al.              Expires May 3, 2012                 [Page 12]
Internet-Draft                Multipath RTP                 October 2011

   would look like.

   [[Comment.2: Some have suggested STUN may be suitable for doing in-
   band interface advertisement.  This is still under consideration, but
   depends on implementation challenges as many legacy systems don't
   implement STUN and many RTP systems ignore STUN messages. --Editor]]

7.2.  Expanding RTP

   RTCP [1] is generated per media session.  However, with MPRTP, the
   media sender spreads the RTP load across several interfaces.  The
   media sender SHOULD make the path selection, load balancing and fault
   tolerance decisions based on the characteristics of each path.
   Therefore, apart from normal RTP sequence numbers defined in [1], the
   MPRTP sender MUST add subflow-specific sequence numbers to help
   calculate fractional losses, jitter, RTT, playout time, etc., for
   each path and a subflow identifier to associate the characteristics
   with a path.  The RTP header extension for MPRTP is shown in
   Section 9.1.

7.3.  Expanding RTCP

   To provide accurate per path information an MPRTP endpoint MUST send
   (SR/RR) report for each unique subflow along with the overall session
   RTCP report.  Therefore, the additional subflow reporting affects the
   RTCP bandwidth and the RTCP reporting interval.  RTCP report
   scheduling for each subflow may cause a problem for RTCP
   recombination and reconstruction in cases when 1) RTCP for a subflow
   is lost, and 2) RTCP for a subflow arrives later than the other
   subflows.  (There may be other cases as well.)

   The sender distributes the media across different paths using the per
   path RTCP reports.  However, this document doesn't cover algorithms
   for congestion control or load balancing.

7.4.  Failure Handling and Teardown

   An MPRTP endpoint MUST keep alive subflows that have been negotiated
   but no media is sent on them.  Moreover, using the information in the
   subflow reports, a sender can monitor the subflows for failure
   (errors, unreachability, congestion) and decide not to use the under-
   performing subflows.

   If an interface disappears, the endpoint MUST send an updated
   interface advertisement without the interface and release the the
   associated subflows.

Singh, et al.              Expires May 3, 2012                 [Page 13]
Internet-Draft                Multipath RTP                 October 2011

8.  MPRTP Protocol

        Host A                                   Host B
-----------------------                  -----------------------
Interface A1   Interface A2                  Interface B1   Interface B2
-----------------------                  -----------------------
    |            |                           |             |
    |            |      (1)                  |             |
    |--------------------------------------->|             |
    |<---------------------------------------|             |
    |            |      (2)                  |             |
    |<=======================================|             |
    |<=======================================|     (3)     |
    |            |      (4)                  |             |
    |<- - - - - - - - - - - - - - - - - - - -|             |
    |<- - - - - - - - - - - - - - - - - - - -|             |
    |<- - - - - - - - - - - - - - - - - - - -|             |
    |            |      (5)                  |             |
    |- - - - - - - - - - - - - - - - - - - ->|             |
    |<=======================================|     (6)     |
    |<=======================================|             |
    |            |<========================================|
    |<=======================================|             |
    |            |<========================================|

Key:
|  Interface
---> Signaling Protocol
<=== RTP Packets
- -> RTCP Packet

                       Figure 5: MPRTP New Interface

8.1.  Overview

   The bullet points explain the different steps shown in Figure 5 for
   upgrading a single path multimedia session to multipath session.

      (1) The first two interactions between the hosts represents the
      establishment of a normal RTP session.  This may performed e.g.
      using SIP or RTSP.

      (2) When the RTP session has been established, host B streams
      media using its interface B1 to host A at interface A1.

      (3) Host B supports sending media using MPRTP and becomes aware of
      an additional interface B2.

Singh, et al.              Expires May 3, 2012                 [Page 14]
Internet-Draft                Multipath RTP                 October 2011

      (4) Host B advertises the multiple interface addresses.

      (5) Host A supports receiving media using MPRTP and becomes aware
      of an additional interface A2.

      Side note, even if an MPRTP-capable host has only one interface,
      it MUST respond to the advertisement with its single interface.

      (6) Each host receives information about the additional interfaces
      and the appropriate endpoints starts to stream the multimedia
      content using the additional paths.

      If needed, each endpoint will need to independently perform
      connectivity checks (not shown in figure) and ascertain
      reachability before using the paths.

8.1.1.  Gather or Discovering Candidates

   The endpoint periodically polls the operating system or is notified
   when an additional interface appears.  If the endpoint wants to use
   the additional interface it MUST advertise it to the other peers.
   The endpoint may also use ICE [3] to gather additional candidates.

8.1.2.  RTCP Subflow or Interface advertisement

   To advertise the multiple interfaces, an MPRTP-capable endpoint MUST
   add the MPRTP Interface Advertisement defined in Figure 13 with the
   RTCP Sender Report (SR).  Each unique address is encapsulated in an
   Interface Advertisement block and contains the IP address, RTP and
   RTCP port addresses.  The Interface Advertisement blocks are ordered
   based on a decreasing priority level.  On receiving the MPRTP
   Interface Advertisement, an MPRTP-capable receiver MUST respond with
   the set of interfaces (subset or all available) it wants to use.

   If the sender and receiver have only one interface, then the
   endpoints MUST indicate the negotiated single path IP, RTP port and
   RTCP port addresses.

8.1.3.  Connectivity Checks

   After MPRTP support has been negotiated and interface advertisements
   have been exchanged, the endpoint MAY initiate connectivity checks to
   determine which pairs of interfaces offer valid paths between the
   sender and the receiver.  Each combination of sender and receiver IP
   addresses and port pairs (5-tuple) is a unique subflow.  An endpoint
   MUST associate a Subflow ID to each unique subflow.

   To initiate a connectivity check, the endpoints send an RTP packet

Singh, et al.              Expires May 3, 2012                 [Page 15]
Internet-Draft                Multipath RTP                 October 2011

   using the appropriate MPRTP extension header (See Figure 7),
   associated Subflow ID and no RTP payload.  The receiving endpoint
   replies to the connectivity check with an RTCP packet with the
   appropriate packet type (See Figure 10) and Subflow ID.  After the
   endpoint receives the reply, the path is considered a valid candidate
   for sending data.  An endpoint MAY choose to do any number of
   connectivity checks for any interface pairs at any point in a
   session.

   [[Comment.3: Open Issue: How should the endpoint adjust the RTCP
   Reporting interval/schedule the RTCP packet on receiving a
   connectivity check containing a new Subflow ID?  One option is send
   immediately as defined in RFC4585.  Another option is the RTCP timing
   defined in RFC6263. --Editor]]

8.1.4.  Active and Passive Subflows

   To send and receive data an endpoint MAY use any number of subflows
   from the set of available subflows.  The subflows that carry media
   data are called active subflows, while those subflows that don't send
   any media packet are called passive subflows.

   An endpoint should send MPRTP keep alive packets (see Section 9.1.3)
   on the subflows where no media is sent to keep the NAT bindings
   alive.

   [[Comment.4: Open Issue: How to differentiate between Passive and
   Active connections?  Editor: Active paths get "regular flow" of media
   packets while passive paths are for failover of active paths.
   --Editor]]

   [[Comment.5: Open Issue: How to keep a passive connection alive, if
   not actively used?  Alternatively, what is the maximum timeout? keep-
   alive for ICE/NAT bindings should not be less than 15 seconds
   [RFC5245]. --Editor]]

8.1.5.  Middlebox Considerations

   TBD.

8.2.  RTP Transmission

   If both endpoints are MPRTP-capable and if they want to use their
   multiple interfaces for sending the media stream then they MUST use
   the MPRTP header extensions.  They MAY use normal RTP with legacy
   endpoints (see Appendix A).

   An MPRTP endpoint sends RTP packets with an MPRTP extension that maps

Singh, et al.              Expires May 3, 2012                 [Page 16]
Internet-Draft                Multipath RTP                 October 2011

   the media packet to a specific subflow (see Figure 8).  The MPRTP
   layer SHOULD associate an RTP packet with a subflow based on a
   scheduling strategy.  The scheduling strategy may either choose to
   augment the paths to create higher throughput or use the alternate
   paths for enhancing resilience or error-repair.  Due to the changes
   in path characteristics, the endpoint should be able change its
   scheduling strategy during an ongoing session.  The MPRTP sender MUST
   also populate the subflow specific fields described in the MPRTP
   extension header (see Section 9.1.1).

8.3.  Playout Considerations at the Receiver

   A media receiver, irrespective of MPRTP support or not, should be
   able to playback the media stream because the received RTP packets
   are compliant to [1], i.e., a non-MPRTP receiver will ignore the
   MPRTP header and still be able to playback the RTP packets.  However,
   the variation of jitter and loss per path may affect proper playout.
   The receiver can compensate for the jitter by modifying the playout
   delay (i.e., by calculating skew across all paths) of the received
   RTP packets.

8.4.  Subflow-specific RTCP Statistics and RTCP Aggregation

   Aggregate RTCP provides the overall media statistics and follows the
   normal RTCP defined in RFC3550 [1].  However, subflow specific RTCP
   provides the per path media statistics because the aggregate RTCP
   report may not provide sufficient per path information to an MPRTP
   scheduler.  Specifically, the scheduler should be aware of each
   path's RTT and loss-rate, which an aggregate RTCP cannot provide.
   The sender/receiver MUST use non-compound RTCP reports defined in
   RFC5506 [4] to transmit the aggregate and subflow-specific RTCP
   reports.  Also, each subflow and the aggregate RTCP report MUST
   follow the timing rules defined in [5].

   The RTCP reporting interval is locally implemented and the scheduling
   of the RTCP reports may depend on the the behavior of each path.  For
   instance, the RTCP interval may be different for a passive path than
   an active path to keep port bindings alive.  Additionally, an
   endpoint may decide to share the RTCP reporting bit rate equally
   across all its paths or schedule based on the receiver rate on each
   path.

8.5.  RTCP Transmission

   The sender sends an RTCP SR on each active path.  For each SR the
   receiver gets, it echoes one back to the same IP address-port pair
   that sent the SR.  The receiver tries to choose the symmetric path
   and if the routing is symmetric then the per-path RTT calculations

Singh, et al.              Expires May 3, 2012                 [Page 17]
Internet-Draft                Multipath RTP                 October 2011

   will work out correctly.  However, even if the paths are not
   symmetric, the sender would at maximum, under-estimate the RTT of the
   path by a factor of half of the actual path RTT.

9.  Packet Formats

   In this section we define the protocol structures described in the
   previous sections.

9.1.  RTP Header Extension for MPRTP

   The MPRTP header extension is used to 1) distribute a single RTP
   stream over multiple subflows, 2) perform connectivity checks on the
   advertised interfaces, and 3) keep-alive passive interfaces (paths).

   The header conforms to the one-byte RTP header extension defined in
   [6].  The header extension contains a 16-bit length field that counts
   the number of 32-bit words in the extension, excluding the four-octet
   extension header (therefore zero is a valid length, see Section 5.3.1
   of [1] for details).

   The RTP header for each subflow is defined below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |V=2|P|1|  CC   |M|     PT      |       sequence number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           timestamp                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           synchronization source (SSRC) identifier            |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
      |   ID  |  LEN  |  MPID |LENGTH |          MPRTP header data    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
      |                             ....                              |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
      |                         RTP payload                           |
      |                             ....                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 6: Generic MPRTP header extension

      MPID:

         The MPID field corresponds to the type of MPRTP packet.
         Namely:

Singh, et al.              Expires May 3, 2012                 [Page 18]
Internet-Draft                Multipath RTP                 October 2011

    +---------------+--------------------------------------------------+
    |    MPID ID    | Use                                              |
    |     Value     |                                                  |
    +---------------+--------------------------------------------------+
    |      0x00     | Subflow RTP Header. For this case the Length is  |
    |               | set to 6                                         |
    |      0x01     | Connectivity Check. For this case the length is  |
    |               | set to 0                                         |
    |      TBD      | Keep Alive Packet.                               |
    +---------------+--------------------------------------------------+

           Figure 7: RTP header extension values for MPRTP (H-Ext ID)

      length

         The 4-bit length field is the length of extension data in bytes
         not including the H-Ext ID and length fields.  The value zero
         indicates there is no data following.

      MPRTP header data

         Carries the MPID specific data as described in the following
         sub-sections.

9.1.1.  MPRTP RTP Extension for a Subflow

   The RTP header for each subflow is defined below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |V=2|P|1|  CC   |M|     PT      |       sequence number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           timestamp                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           synchronization source (SSRC) identifier            |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
      |   ID  | LEN=4 |  0x00 | LEN=4 |          Subflow ID           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Subflow-specific Seq Number  |    Pad (0)    |   Pad (0)     |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
      |                         RTP payload                           |
      |                             ....                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 8: MPRTP header for subflow

Singh, et al.              Expires May 3, 2012                 [Page 19]
Internet-Draft                Multipath RTP                 October 2011

      MP ID = 0x00

         Indicates that the MPRTP header extension carries subflow
         specific information.

      length = 4

      Subflow ID: Identifier of the subflow.  Every RTP packet belonging
      to the same subflow carries the same unique subflow identifier.

      Flow-Specific Sequence Number (FSSN): Sequence of the packet in
      the subflow.  Each subflow has its own strictly monotonically
      increasing sequence number space.

9.1.2.  MPRTP RTP Extension for Connectivity Checks

   [[Comment.6: Open Issue: What sequence number to use for the RTP
   session?  Alternative 1: An MPRTP receiver MUST NOT give the packet
   with MPID=0x01 to the decoder and ignore these packets from RTCP
   calculation.  Alternative 2: Instead of sending an RTP packet the
   sender transmits a modified STUN packet. --Editor]]

9.1.3.  MPRTP RTP Extension for Keep-alive Packets

   [[Comment.7: RTCP guidelines for keep alive packet [RFC6263]
   recommends multiplexing RTP and RTCP.  If so, we can do the same and
   remove the keep alive from the list.  Alternatively, the endpoint can
   send zero payload RTP packet with the correct RTP sequence number,
   RTP timestamp and monotonically increasing the subflow specific
   sequence number each time [RFC6263 Sec 4.6].] --Editor]]

9.2.  RTCP Extension for MPRTP (MPRTCP)

   The MPRTP RTCP header extension is used to 1) provide RTCP feedback
   per subflow to determine the characteristics of each path, 2)
   advertise each interface and perform connectivity check on the other
   endpoint's interfaces, and 3) to keep alive a passive connection.

Singh, et al.              Expires May 3, 2012                 [Page 20]
Internet-Draft                Multipath RTP                 October 2011

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|reserved | PT=MPRTCP=211 |             length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     SSRC of packet sender                     |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |                 SSRC_1 (SSRC of first source)                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          MPRTCP_Type          |          block length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        MPRTCP Reports                         |
   |                             ...                               |
   |                             ...                               |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

     Figure 9: Generic RTCP Extension for MPRTP (MPRTCP) [appended to
                               normal SR/RR]

      MPRTCP: 8 bits

         Contains the constant 211 to identify this as an Multipath RTCP
         packet.

      length: 16 bits

         As described for the RTCP packet (see Section 6.4.1 of the RTP
         specification [1]), the length of this is in 32-bit words minus
         one, including the header and any padding.

      MPRTCP_Type: 16-bits

         The MPRTCP_Type field corresponds to the type of MPRTP RTCP
         packet.  Namely:

    +---------------+--------------------------------------------------+
    |  MPRTCP_Type  | Use                                              |
    |     Value     |                                                  |
    +---------------+--------------------------------------------------+
    |      0x00     | Subflow Specific Report                          |
    |      0x01     | Connectivity Check. For this case the length is  |
    |               | set to 0                                         |
    |      0x02     | Interface Advertisement                          |
    |      TBD      | Keep Alive Packet.                               |
    +---------------+--------------------------------------------------+

         Figure 10: RTP header extension values for MPRTP (MPRTCP_Type)

Singh, et al.              Expires May 3, 2012                 [Page 21]
Internet-Draft                Multipath RTP                 October 2011

      block length: 16-bits

         The 16-bit length field is the length of the encapsulated
         MPRTCP reports in 32-bit word length not including the
         MPRTCP_Type and length fields.  The value zero indicates there
         is no data following.

      MPRTCP Reports: variable size

         Defined later in 9.2.1 and 9.3.1.

9.2.1.  MPRTCP Extension for Subflow Reporting

   When sending a report for a specific subflow the sender or receiver
   MUST add only the reports associated with that 5-tuple.  Each subflow
   is reported independently using the following MPRTCP Feedback header.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|reserved | PT=MPRTCP=211 |             length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     SSRC of packet sender                     |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |                 SSRC_1 (SSRC of first source)                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       MPRTCP_Type=0x02        |          block length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Subflow ID #1         |            reserved           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Subflow-specific reports                   |
   |                             ....                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       MPRTCP_Type=0x02        |          block length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Subflow ID #2         |            reserved           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Subflow-specific reports                   |
   |                             ....                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 11: MPRTCP Subflow Reporting Header

   MPRTCP_Type: 0x02

   block length: 16-bits

Singh, et al.              Expires May 3, 2012                 [Page 22]
Internet-Draft                Multipath RTP                 October 2011

      The 16-bit length field is the length of the encapsulated subflow-
      specific reports in 32-bit word length not including the
      MPRTCP_Type and length fields.

   Subflow ID: 16 bits

      Subflow identifier is the value associated with the subflow the
      endpoint is reporting about.  If it is a sender it MUST use the
      Subflow ID associated with the 5-tuple.  If it is a receiver it
      MUST use the Subflow ID received in the Subflow-specific Sender
      Report.

   Subflow-specific reports: variable

      Subflow-specific report contains all the reports associated with
      the Subflow ID.  For a sender, it MUST include the Subflow-
      specific Sender Report (SSR).  For a receiver, it MUST include
      Subflow-specific Receiver Report (SRR).  Additionally, if the
      receiver supports subflow-specific extension reports then it MUST
      append them to the SRR.

9.2.1.1.  MPRTCP for Subflow-specific SR, RR and XR

   [[Comment.8: inside the context of subflow specific reports can we
   reuse the payload type code for Sender Report (PT=200), Receiver
   Report (PT=201), Extension Report (PT=207).Transport and Payload
   specific RTCP messages are session specific and SHOULD be used as
   before. --Editor]]

   Example:

Singh, et al.              Expires May 3, 2012                 [Page 23]
Internet-Draft                Multipath RTP                 October 2011

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|reserved | PT=MPRTCP=211 |             length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     SSRC of packet sender                     |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |                 SSRC_1 (SSRC of first source)                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       MPRTCP_Type=0x02        |          block length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Subflow ID #1         |            reserved           |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |V=2|P|    RC   |   PT=SR=200   |             length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         SSRC of sender                        |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |              NTP timestamp, most significant word             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             NTP timestamp, least significant word             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         RTP timestamp                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    subflow's packet count                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     subflow's octet count                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       MPRTCP_Type=0x02        |          block length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Subflow ID #2         |            reserved           |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |V=2|P|    RC   |   PT=RR=201   |             length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     SSRC of packet sender                     |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   | fraction lost |       cumulative number of packets lost       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           extended highest sequence number received           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     inter-arrival jitter                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         last SR (LSR)                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   delay since last SR (DLSR)                  |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |               Subflow specific extension reports              |
   |                             ....                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Singh, et al.              Expires May 3, 2012                 [Page 24]
Internet-Draft                Multipath RTP                 October 2011

   Figure 12: Example of reusing RTCP SR and RR inside an MPRTCP header
   (Bi-directional use-case, in case of uni-directional flow the subflow
                       will only send an SR or RR).

9.3.  MPRTCP Extension for Interface advertisement

   This sub-section defines the RTCP header extension for in-band
   interface advertisement by the receiver.  The interface advertisement
   SHOULD immediately follow the Receiver Report.  If the Receiver
   Report is not present, then it MUST be appended to the Sender Report.

   The endpoint MUST advertise the interfaces it wants to use whenever
   an interface appears or disappears and also when it receives an
   Interface Advertisement.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |V=2|P|reserved | PT=MPRTCP=211 |             length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     SSRC of packet sender                     |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   |                 SSRC_1 (SSRC of first source)                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       MPRTCP_Type=0x02        |          block length         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Interface #1 Advertisement block               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Interface #2 Advertisement block               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Interface #... Advertisement block              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                Interface #m Advertisement block               |
   +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

       Figure 13: MPRTP Interface Advertisement. (appended to SR/RR)

      MPRTCP_Type: 0x00

      block length: 16-bits

         The 16-bit length field is the length of the encapsulated
         interface advertisement blocks in 32-bit word length not
         including the MPRTCP_Type and length fields.

      Interface Advertisement block: variable size

Singh, et al.              Expires May 3, 2012                 [Page 25]
Internet-Draft                Multipath RTP                 October 2011

         Defined later in 9.3.1.

9.3.1.  Interface Advertisement block

   This block describes a method to represent IPv4, IPv6 and generic
   DNS-type addresses in a block format.  It is based on the sub-
   reporting block in [7].

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Type={0,1,2}  |     Length    |          Subflow ID           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           RTCP Port           |           RTCP Port           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Address                            |
   +                                                               +
   :                                                               :
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 14: Interface Advertisement block during path discovery

      Type: 8 bits

         The Type corresponds to the type of address.  Namely:

            0: IPv4 address

            1: IPv6 address

            2: DNS name

      Length: 8 bits

         The length of the Interface Advertisement block in bytes.

            For an IPv4 address, this should be 9 (i.e., 5 octets for
            the header and 4 octets for IPv4 address).

            For an IPv6 address, this should be 21.

            For a DNS name, the length field indicates the number of
            octets making up the string plus the 5 byte header.

      RTP Port: 2 octets

Singh, et al.              Expires May 3, 2012                 [Page 26]
Internet-Draft                Multipath RTP                 October 2011

         The port number to which the sender sends RTP data.  A port
         number of 0 is invalid and MUST NOT be used.

      RTCP Port: 2 octets

         The port number to which receivers send feedback reports.  A
         port number of 0 is invalid and MUST NOT be used.

      Address: 4 octets (IPv4), 16 octets (IPv6), or n octets (DNS name)

         The address to which receivers send feedback reports.  For IPv4
         and IPv6, fixed-length address fields are used.  A DNS name is
         an arbitrary-length string.  The string MAY contain
         Internationalizing Domain Names in Applications (IDNA) domain
         names and MUST be UTF-8 [8] encoded.

10.  RTCP Timing reconsiderations for MPRTCP

   MPRTP endpoints MUST conform to the timing rule imposed in [5], i.e.,
   the total RTCP rate between the participants MUST NOT exceed 5% of
   the media rate.  For each endpoint, a subflow MUST send the aggregate
   and subflow-specific report.  The endpoint SHOULD schedule the RTCP
   reports for the active subflows based on the share of the transmitted
   or received bit rate to the average media bit rate, this method
   ensures fair sharing of the RTCP bandwidth.  Alternatively, the
   endpoint MAY schedule the reports in round-robin.

11.  SDP Considerations

11.1.  Signaling MPRTP Header Extension in SDP

   To indicate the use of the MPRTP header extensions (see Section 9) in
   SDP, the sender MUST use the following URI:
   urn:ietf:params:rtp-hdrext:mprtp.  This is a media level parameter.
   Legacy RTP (non-MPRTP) clients will ignore this header extension, but
   can continue to parse and decode the packet (see Appendix A).

   Example:

   m=video 49170 RTP/AVP 98
   a=extmap:1 urn:ietf:params:rtp-hdrext:mprtp

Singh, et al.              Expires May 3, 2012                 [Page 27]
Internet-Draft                Multipath RTP                 October 2011

11.2.  Signaling MPRTP capability in SDP

   A participant of a media session MUST use SDP to indicate that it
   supports MPRTP.  Not providing this information will make the other
   endpoint ignore the RTCP extensions.

       mprtp-attrib = "a=" "mprtp" [
               SP mprtp-optional-parameter]
               CRLF   ; flag to enable MPRTP

   The endpoint MUST use 'a=mprtp', if it is able to send and receive
   MPRTP packets.  Generally, senders and receivers MUST indicate this
   capability if they support MPRTP and would like to use it in the
   specific media session being signaled.  To exchange the additional
   interfaces, the endpoint SHOULD use the in-band signaling
   (Section 9.3).  Alternatively, advertise in SDP (Section 11.3).

11.3.  MPRTP Interface Advertisement in SDP (out-of-band signaling)

   If the endpoint is aware of its multiple interfaces and wants to use
   them for MPRTP then it MAY use SDP to advertise these interfaces.
   Alternatively, it MAY use in-band signaling to advertise its
   interfaces, as defined in Section 9.3 (MPRTCP_Type=0x02).  The
   receiving endpoint MUST use the same mechanism to respond to an
   interface advertisement.  In particular, if an endpoint receives an
   SDP offer, then it MUST respond to the offer in SDP.

11.3.1.  "interface" attribute

   The interface attribute is an optional media-level attribute and is
   used to advertise an endpoint's interface address.

   The syntax of the interface attribute is defined using the following
   Augmented BNF, as defined in [9].  The definitions of unicast-
   address, port, token, SP, and CRLF are according to RFC4566 [17].

       mprtp-optional-parameter = mprtp-interface
                      ; other optional parameters may be added later

       mprtp-interface = "interface" ":" counter SP unicast-address
                           ":" rtp_port "/" rtcp_port
                            *(SP interface-description-extension)

       counter = 1*DIGIT
       rtp_port = port    ;port from RFC4566
       rtcp_port = port   ;port from RFC4566

Singh, et al.              Expires May 3, 2012                 [Page 28]
Internet-Draft                Multipath RTP                 October 2011

   <mprtp-interface>: specifies one of the unicast IP address, the RTP
   and RTCP port numbers of the endpoint.  The unicast address with
   lowest counter value MUST match the connection address ('c=' line).
   Similarly, the RTP and RTCP ports MUST match with the RTP and RTCP
   ports in the associated 'm=' line.  The counter should start at 1 and
   increment with each additional interface.  Multiple interface lines
   MUST be ordered in a decreasing priority level as is the case with
   the Interface Advertisement blocks in in-band signaling (See
   Figure 13).

   <unicast-address>: is taken from RFC4566 [17].  It is one of the IP
   addresses of the endpoint allows the use of IPv4 addresses, IPv6
   addresses and Fully Qualified Domain Names (FQDN).  An endpoint MUST
   only include the IP address for which the connectivity checks have
   succeeded.

   <port>: is from RFC4566 [17].  It is the RTP or RTCP port associated
   the unicast address.

   <counter>: is a monotonically increasing positive integer starting at
   1.  The counter MUST reset for each media line.  The counter value
   for an interface, port should remain the same for the session.

   The 'mprtp-interface' can be extended using the 'interface-
   description-extension' parameter.  An endpoint MUST ignore any
   extensions it does not understand.

11.3.2.  Example

   The ABNF grammar is illustrated by means of an example:

   v=0
   o=alice 2890844526 2890844527 IN IP4 192.0.2.1
   s=
   c=IN IP4 192.0.2.1
   t=0 0
   m=video 49170 RTP/AVP 98
   a=rtpmap:98 H264/90000
   a=fmtp:98 profile-level-id=42A01E;
   a=extmap:1 urn:ietf:params:rtp-hdrext:mprtp
   a=mprtp interface:1 192.0.2.1:49170/49171    ;primary interface
   a=mprtp interface:2 192.1.2.1:51372/51373    ;additional interface

11.4.  MPRTP with ICE

   If the endpoints intend to use ICE [3] for discovering interfaces and
   running connectivity checks then the following two step procedure
   MUST be followed:

Singh, et al.              Expires May 3, 2012                 [Page 29]
Internet-Draft                Multipath RTP                 October 2011

   1.  Advertise ICE candidates: in the initial OFFER the endpoints
       exchange candidates, as defined in ICE [3].  Thereafter the
       endpoints run connectivity checks

   2.  Advertise MPRTP interfaces: When a sufficient number of
       connectivity checks succeed the endpoint MUST send an updated
       offer containing the interfaces that they want to use for MPRTP.

   Typically when a sufficient number of connectivity checks succeed the
   endpoint choose the best ICE candidate as the default path.  Since
   more than one candidate may have succeeded the connectivity checks,
   an MPRTP endpoint MAY advertise (some of) these as "mprtp-
   interfaces".

11.5.  Increased Throughput

   The MPRTP layer MAY choose to augment paths to increase throughput.
   If the desired media rate exceeds the current media rate, the
   endpoints MUST renegotiate the application specific ("b=AS:xxx") [17]
   bandwidth.

11.6.  Offer/Answer Examples

   This section shows examples of SDP offer and answer for in-band and
   out-of-band signaling.

11.6.1.  In-band signaling

   The following offer/answer shows that both the endpoints are MPRTP
   capable and SHOULD use in-band signaling for interfaces
   advertisements.

   Offer:
     v=0
     o=alice 2890844526 2890844527 IN IP4 192.0.2.1
     s=
     c=IN IP4 192.0.2.1
     t=0 0
     m=video 49170 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=mprtp

Singh, et al.              Expires May 3, 2012                 [Page 30]
Internet-Draft                Multipath RTP                 October 2011

   Answer:
     v=0
     o=bob 2890844528 2890844529 IN IP4 192.0.2.2
     s=
     c=IN IP4 192.0.2.2
     t=0 0
     m=video 4000 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=mprtp

   The endpoint MAY now use in-band RTCP signaling to advertise its
   multiple interfaces.  Alternatively, it MAY make another offer with
   the interfaces in SDP (out-of-band signaling).

11.6.2.  Out-of-band signaling

   If the multiple interfaces are included in an SDP offer then the
   receiver MUST respond to the request with an SDP answer.

11.6.2.1.  Without ICE

   In this example, the offerer advertises two interfaces and the
   answerer responds with a single interface description.  The endpoint
   MAY use one or both paths depending on the end-to-end characteristics
   of each path.

   Offer:
     v=0
     o=alice 2890844526 2890844527 IN IP4 192.0.2.1
     s=
     c=IN IP4 192.0.2.1
     t=0 0
     m=video 49170 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=mprtp interface:1 192.0.2.1:49170/49171
     a=mprtp interface:2 192.1.2.1:51372/51373

Singh, et al.              Expires May 3, 2012                 [Page 31]
Internet-Draft                Multipath RTP                 October 2011

   Answer:
     v=0
     o=bob 2890844528 2890844529 IN IP4 192.0.2.2
     s=
     c=IN IP4 192.0.2.2
     t=0 0
     m=video 4000 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=mprtp interface:1 192.0.2.2:4000/4001

11.6.2.2.  With ICE

   In this example, the endpoint first sends its ICE candidates in the
   initial offer and the other endpoint answers with its ICE candidates.

   Initial offer (with ICE candidates):

   Offer:
     v=0
     o=alice 2890844526 2890844527 IN IP4 192.0.2.1
     s=
     c=IN IP4 192.0.2.1
     t=0 0
     a=ice-pwd:asd88fgpdd777uzjYhagZg
     a=ice-ufrag:8hhY
     m=video 49170 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=candidate:1 1 UDP 2130706431 192.0.2.1 49170 typ host
     a=candidate:2 1 UDP 1694498815 192.1.2.1 51372 typ host

   Answer:
     v=0
     o=bob 2890844528 2890844529 IN IP4 192.0.2.2
     s=
     c=IN IP4 192.0.2.2
     t=0 0
     a=ice-pwd:YH75Fviy6338Vbrhrlp8Yh
     a=ice-ufrag:9uB6
     m=video 4000 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=candidate:1 1 UDP 2130706431 192.0.2.2 4000 typ host

   Thereafter, each endpoint conducts ICE connectivity checks and when
   sufficient number of connectivity checks succeed, the endpoint sends

Singh, et al.              Expires May 3, 2012                 [Page 32]
Internet-Draft                Multipath RTP                 October 2011

   an updated offer.  In the updated offer, the endpoint advertises its
   multiple interfaces for MPRTP.

   Updated offer (with MPRTP interfaces):

   Offer:
     v=0
     o=alice 2890844526 2890844527 IN IP4 192.0.2.1
     s=
     c=IN IP4 192.0.2.1
     t=0 0
     m=video 49170 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=mprtp interface:1 192.0.2.1:49170/49171
     a=mprtp interface:2 192.1.2.1:51372/51373

   Answer:
     v=0
     o=bob 2890844528 2890844529 IN IP4 192.0.2.2
     s=
     c=IN IP4 192.0.2.2
     t=0 0
     m=video 4000 RTP/AVP 98
     a=rtpmap:98 H264/90000
     a=fmtp:98 profile-level-id=42A01E;
     a=mprtp interface:1 192.0.2.2:4000/4001

12.  IANA Considerations

   The following contact information shall be used for all registrations
   in this document:

       Contact:    Varun Singh
                   mailto:varun.singh@iki.fi
                   tel:+358-9-470-24785

12.1.  MPRTP Header Extension

   This document defines a new extension URI to the RTP Compact Header
   Extensions sub-registry of the Real-Time Transport Protocol (RTP)
   Parameters registry, according to the following data:

       Extension URI:  urn:ietf:params:rtp-hdrext:mprtp
       Description:  Multipath RTP
       Reference:  RFC XXXX

Singh, et al.              Expires May 3, 2012                 [Page 33]
Internet-Draft                Multipath RTP                 October 2011

12.2.  MPRTCP Packet Type

   A new RTCP packet format has been registered with the RTCP Control
   Packet type (PT) Registry:

        Name:           MPRTCP
        Long name:      Multipath RTCP
        Value:          211
        Reference:      RFC XXXX.

12.3.  SDP Attributes

   This document defines a new SDP attribute, "mprtp", within the
   existing IANA registry of SDP Parameters.

   TBD.

13.  Security Considerations

   TBD

   All drafts are required to have a security considerations section.
   See RFC 3552 [18] for a guide.

14.  Acknowledgements

   Varun Singh, Saba Ahsan, and Teemu Karkkainen are supported by
   Trilogy (http://www.trilogy-project.org), a research project (ICT-
   216372) partially funded by the European Community under its Seventh
   Framework Program.  The views expressed here are those of the
   author(s) only.  The European Commission is not liable for any use
   that may be made of the information in this document.

   The authors would also like acknowledge the contribution of Ralf
   Globisch and Thomas Schierl for providing the input and text for the
   MPRTP interface advertisement in SDP.

   Thanks to Christer Holmberg, Miguel A. Garcia, and Roni Even for
   providing valuable feedback on earlier versions of this draft

15.  References

Singh, et al.              Expires May 3, 2012                 [Page 34]
Internet-Draft                Multipath RTP                 October 2011

15.1.  Normative References

   [1]   Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
         "RTP: A Transport Protocol for Real-Time Applications", STD 64,
         RFC 3550, July 2003.

   [2]   Bradner, S., "Key words for use in RFCs to Indicate Requirement
         Levels", BCP 14, RFC 2119, March 1997.

   [3]   Rosenberg, J., "Interactive Connectivity Establishment (ICE): A
         Protocol for Network Address Translator (NAT) Traversal for
         Offer/Answer Protocols", RFC 5245, April 2010.

   [4]   Johansson, I. and M. Westerlund, "Support for Reduced-Size
         Real-Time Transport Control Protocol (RTCP): Opportunities and
         Consequences", RFC 5506, April 2009.

   [5]   Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
         "Extended RTP Profile for Real-time Transport Control Protocol
         (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, July 2006.

   [6]   Singer, D. and H. Desineni, "A General Mechanism for RTP Header
         Extensions", RFC 5285, July 2008.

   [7]   Ott, J., Chesterfield, J., and E. Schooler, "RTP Control
         Protocol (RTCP) Extensions for Single-Source Multicast Sessions
         with Unicast Feedback", RFC 5760, February 2010.

   [8]   Yergeau, F., "UTF-8, a transformation format of ISO 10646",
         STD 63, RFC 3629, November 2003.

   [9]   Crocker, D. and P. Overell, "Augmented BNF for Syntax
         Specifications: ABNF", STD 68, RFC 5234, January 2008.

15.2.  Informative References

   [10]  Stewart, R., "Stream Control Transmission Protocol", RFC 4960,
         September 2007.

   [11]  Ford, A., Raiciu, C., Handley, M., Barre, S., and J. Iyengar,
         "Architectural Guidelines for Multipath TCP Development",
         RFC 6182, March 2011.

   [12]  Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming Shim
         Protocol for IPv6", RFC 5533, June 2009.

   [13]  Westerlund, M. and S. Wenger, "RTP Topologies", RFC 5117,
         January 2008.

Singh, et al.              Expires May 3, 2012                 [Page 35]
Internet-Draft                Multipath RTP                 October 2011

   [14]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
         Session Description Protocol (SDP)", RFC 3264, June 2002.

   [15]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
         Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
         Session Initiation Protocol", RFC 3261, June 2002.

   [16]  Schulzrinne, H., Rao, A., Lanphier, R., Westerlund, M., and M.
         Stiemerling, "Real Time Streaming Protocol 2.0 (RTSP)",
         draft-ietf-mmusic-rfc2326bis-28 (work in progress),
         October 2011.

   [17]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
         Description Protocol", RFC 4566, July 2006.

   [18]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on
         Security Considerations", BCP 72, RFC 3552, July 2003.

   [19]  Marjou, X. and A. Sollaud, "Application Mechanism for Keeping
         Alive the NAT Mappings Associated with RTP / RTP Control
         Protocol (RTCP) Flows", RFC 6263, June 2011.

Appendix A.  Interoperating with Legacy Applications

   An MPRTP sender can use its multiple interfaces to send media to a
   legacy RTP client.  The legacy receiver will ignore the subflow RTP
   header and the receiver's de-jitter buffer will try to compensate for
   the mismatch in per-path delay.  However, the receiver can only send
   the overall or aggregate RTCP report which may be insufficient for an
   MPRTP sender to adequately schedule packets or detect if a path
   disappeared.

   An MPRTP receiver can only use one of its interface when
   communicating with a legacy sender.

Appendix B.  Change Log

   Note to the RFC-Editor: please remove this section prior to
   publication as an RFC.

B.1.  changes in draft-singh-avtcore-mprtp-03

   o  Added this change log.

   o  Updated section 6, 7 and 8 based on comments from MMUSIC.

Singh, et al.              Expires May 3, 2012                 [Page 36]
Internet-Draft                Multipath RTP                 October 2011

   o  Updated section 11 (SDP) based on comments of MMUSIC.

   o  Updated SDP examples with ICE and non-ICE in out-of-band signaling
      scenario.

   o  Added Appendix A on interop with legacy.

   o  Updated IANA considerations section

B.2.  changes in draft-singh-avtcore-mprtp-02

   o  MPRTCP protocol extensions use only one PT=210, instead of 210 and
      211.

   o  RTP header uses 1-byte extension instead of 2-byte.

   o  Added section on RTCP Interval Calculations.

   o  Added "mprtp-interface" attribute in SDP considerations.

B.3.  changes in draft-singh-avtcore-mprtp-01

   o  Added MPRTP and MPRTCP protocol extensions and examples.

   o  WG changed from -avt to -avtcore.

Authors' Addresses

   Varun Singh
   Aalto University
   School of Science and Technology
   Otakaari 5 A
   Espoo, FIN  02150
   Finland

   Email: varun@comnet.tkk.fi
   URI:   http://www.netlab.tkk.fi/~varun/

Singh, et al.              Expires May 3, 2012                 [Page 37]
Internet-Draft                Multipath RTP                 October 2011

   Teemu Karkkainen
   Aalto University
   School of Science and Technology
   Otakaari 5 A
   Espoo, FIN  02150
   Finland

   Email: teemuk@comnet.tkk.fi

   Joerg Ott
   Aalto University
   School of Science and Technology
   Otakaari 5 A
   Espoo, FIN  02150
   Finland

   Email: jo@comnet.tkk.fi

   Saba Ahsan
   Aalto University
   School of Science and Technology
   Otakaari 5 A
   Espoo, FIN  02150
   Finland

   Email: sahsan@cc.hut.fi

   Lars Eggert
   Nokia Research Center
   P.O. Box 407
   Nokia Group  00045
   Finland

   Phone: +358 50 48 24461
   Email: lars.eggert@nokia.com
   URI:   http://research.nokia.com/people/lars_eggert

Singh, et al.              Expires May 3, 2012                 [Page 38]