Generic Fault-avoidance Routing Protocol for Data Center Networks
draft-sl-rtgwg-far-dcn-08

Document Type Active Internet-Draft (individual)
Last updated 2017-05-16
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Routing Area Working Group                                       Bin Liu
Internet-Draft                                       ZTE Inc., ZTE Plaza
Intended status: Informational                                Yantao Sun
Expires: November 16, 2017                                    Jing Cheng
                                                            Yichen Zhang
                                             Beijing Jiaotong University
                                                       Bhumip Khasnabish
                                                             ZTE TX Inc.
                                                            May 15, 2017

   Generic Fault-avoidance Routing Protocol for Data Center Networks
                       draft-sl-rtgwg-far-dcn-08

Abstract

   This draft proposes a generic routing method and protocol for a
   regular data center network, named as fault-avoidance routing (FAR)
   protocol.  FAR protocol provides a generic routing method for all
   types of network architectures that are proposed for large-scale
   cloud-based data centers over the past few years.  FAR protocol is
   well designed to fully leverage the regularity in the topology and
   compute its routing table in a simplistic manner.  Fat-tree is taken
   as an example architecture to illustrate how FAR protocol can be
   applied in real operational scenarios.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 16, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Bin Liu, et al.         Expires November 16, 2017               [Page 1]
Internet-Draft                 FAR for DCN                      May 2017

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Acronyms & Definitions  . . . . . . . . . . . . . . . . .   4
   2.  Conventions used in this document . . . . . . . . . . . . . .   5
   3.  Problem Statement . . . . . . . . . . . . . . . . . . . . . .   5
     3.1.  The Impact of Large-scale Networks on Route Calculation .   5
     3.2.  Dilemma of conventional routing methods in a large-scale
           network with giant number nodes of routers  . . . . . . .   6
     3.3.  Network Addressing Issues . . . . . . . . . . . . . . . .   8
     3.4.  Big Routing Table Issues  . . . . . . . . . . . . . . . .   8
     3.5.  Adaptivity Issues for Routing Algorithms  . . . . . . . .   8
     3.6.  Virtual Machine Migration Issues  . . . . . . . . . . . .   9
   4.  The FAR Framework . . . . . . . . . . . . . . . . . . . . . .   9
   5.  Data Format . . . . . . . . . . . . . . . . . . . . . . . . .  10
     5.1.  Data Tables . . . . . . . . . . . . . . . . . . . . . . .  10
     5.2.  Messages  . . . . . . . . . . . . . . . . . . . . . . . .  13
   6.  FAR Modules . . . . . . . . . . . . . . . . . . . . . . . . .  17
     6.1.  Neighbor and Link Detection Module(M1)  . . . . . . . . .  17
     6.2.  Device Learning Module(M2)  . . . . . . . . . . . . . . .  17
     6.3.  Invisible Neighbor and Link Failure Inferring Module(M3)   18
     6.4.  Link Failure Learning Module(M4)  . . . . . . . . . . . .  18
     6.5.  BRT Building Module(M5) . . . . . . . . . . . . . . . . .  18
     6.6.  NRT Building Module(M6) . . . . . . . . . . . . . . . . .  19
     6.7.  Routing Table Lookup(M7)  . . . . . . . . . . . . . . . .  19
   7.  How a FAR Router Works  . . . . . . . . . . . . . . . . . . .  19
   8.  Compatible Architecture . . . . . . . . . . . . . . . . . . .  22
   9.  Application Example . . . . . . . . . . . . . . . . . . . . .  22
Show full document text