Skip to main content

YANG data model for Flexi-Grid Optical Networks
draft-vergara-ccamp-flexigrid-yang-02

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Replaced".
Authors Universidad Autonoma de Madrid , Victor Lopez , Oscar Gonzalez de Dios , Daniel King , Young Lee , Zafar Ali
Last updated 2016-03-02
Replaces draft-vergara-flexigrid-yang
Replaced by draft-ietf-ccamp-flexigrid-yang, draft-ietf-ccamp-flexigrid-yang
RFC stream (None)
Formats
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-vergara-ccamp-flexigrid-yang-02
CCAMP Working Group                              J.E. Lopez de Vergara
Internet Draft                          Universidad Autonoma de Madrid
Intended status: Standards Track                              V. Lopez
Expires: August 28, 2016                           O. Gonzalez de Dios
                                                   Telefonica I+D/GCTO
                                                               D. King
                                                  Lancaster University
                                                                Y. Lee
                                                                Huawei
                                                                Z. Ali
                                                         Cisco Systems
                                                         March 1, 2016

              YANG data model for Flexi-Grid Optical Networks
                 draft-vergara-ccamp-flexigrid-yang-02.txt

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79. This document may not be modified,
   and derivative works of it may not be created, except to publish it
   as an RFC and to translate it into languages other than English.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet-Drafts as
   reference material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

   This Internet-Draft will expire on August 28, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 1]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

   carefully, as they describe your rights and restrictions with
   respect to this document. Code Components extracted from this
   document must include Simplified BSD License text as described in
   Section 4.e of the Trust Legal Provisions and are provided without
   warranty as described in the Simplified BSD License.

Abstract

   This document defines a YANG model for managing flexi-grid optical 
   Networks. The model described in this document is composed of two
   submodels: one to define a flexi-grid traffic engineering database,
   and other one to describe the flexi-grid paths or media channels.

Table of Contents

   1. Introduction ..............................................  2
   2. Conventions used in this document .........................  3
   3. Flexi-grid network topology model overview ................  3
   4. Main building blocks.......................................  4
      4.1. flexi-grid TED .......................................  4
      4.2. Media-channel/network-media-channel ..................  7
   5. Example of use ............................................  9
   6. Formal Syntax ............................................. 11
   7. Security Considerations ................................... 11
   8. IANA Considerations ....................................... 11
   9. References ................................................ 11
      9.1. Normative References ................................. 11
      9.2. Informative References ............................... 12
   10. Contributors ............................................. 12
   11. Acknowledgments .......................................... 12
   Appendix A. YANG models....................................... 12
      A.1. Flexi-grid TED YANG Model ............................ 13
      A.1.1. YANG Model - Tree .................................. 13
      A.1.2. YANG MOdel - Code .................................. 14
      A.2. Media Channel YANG Model ............................. 23
      A.2.1. YANG Model - Tree .................................. 23
      A.2.2. YANG Model - Code .................................. 24
      A.3. License .............................................. 29
   Authors' Addresses ........................................... 30

1. Introduction

   Internet-based traffic is dramatically increasing every year.
   Moreover, such traffic is also becoming more dynamic. Thus,
   transport networks need to evolve from current DWDM systems towards
   elastic optical networks, based on flexi-grid transmission and
   switching technologies. This technology aims at increasing both
   transport network scalability and flexibility, allowing the
   optimization of bandwidth usage.

   This document presents a YANG model for flexi-grid objects in the 

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 2]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

   dynamic optical network, including the nodes, transponders and links 
   between them, as well as how such links interconnect nodes and 
   transponders.
   
   The YANG model for flexi-grid [RFC7698] networks allows the 
   representation of the flexi-grid optical layer of a network, combined 
   with the underlying physical layer. The model is defined in two YANG 
   modules:

   o Flexi-grid-TED (Traffic Engineering Database): This module defines
      all the information needed to represent the flexi-grid optical 
      node, transponder and link.

   o Media-channel: This module defines the whole path from a source
      transponder to the destination through a number of intermediate
      nodes in the flexi-grid optical network.

   This document identifies the flexi-grid components, parameters and 
   their values, characterizes the features and the performances of the
   flexi-grid elements. An application example is provided towards the
   end of the document to better understand their utility.

2. Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   In this document, these words will appear with that interpretation
   only when in ALL CAPS. Lower case uses of these words are not to be
   interpreted as carrying RFC-2119 significance.

   In this document, the characters ">>" preceding an indented line(s)
   indicates a compliance requirement statement using the key words
   listed above. This convention aids reviewers in quickly identifying
   or finding the explicit compliance requirements of this RFC.

3. Flexi-grid network topology model overview

   YANG is a data modeling language used to model configuration data
   manipulated by the NETCONF protocol. Several YANG models have already
   been specified for network configurations. For instance, the work in 
   [I-D.draft-ietf-i2rs-yang-network-topo] has proposed a YANG model of
   a TED, but only covering the IP layer. A YANG model has also been 
   proposed in [I-D.draft-dharini-netmod-g-698-2-yang] to configure
   flexi-grid DWDM parameters. 

   As stated before, we propose a model to describe an flexi-grid 
   topology that is split in two YANG sub-modules:

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 3]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

   o Flexi-grid-TED: In order to be compatible with existing 
     proposals, we augment the definitions contained in 
     [I-D.draft-ietf-i2rs-yang-network-topo], by defining the
     different elements we find in an flexi-grid network: a node, a
     transponder and a link. For that, each of those elements is
     defined as a container that includes a group of attributes.
     References to the elements are provided to be later used in the
     definition of a media channel. It also includes the data types for
     the type of modulation, the flexi-grid technology, the FEC, etc.
   o Media-channel: This module defines the whole path from a source
     transponder to the destination through a number of intermediate
     nodes and links. For this, it takes the information defined before
     in the flexi-grid TED. 
     
     The following section provides a detailed view of each module.

4. Main building blocks

   Subsections below detail each of the defined YANG modules. They are
   listed in Appendix A.

4.1.  Flexi-grid TED

   The description of the three main components, flexi-grid-node, 
   flexi-grid-transponder and flexi-grid-link is provided below. 
   flexi-grid-sliceable-transponders are also defined.

   <flexi-grid-node> ::= <flexi-grid-node-attributes>

     <flexi-grid-node>: This element designates a node in the network

     <flexi-grid-node-attributes> ::= <node-id> <list-interface>
     <connectivity_matrix>

          <flexi-grid-node-attributes>: Contains all the attributes
          related to the node, such as its unique id, its interfaces or
          its management addresses.

          <node-id>: An unique numeric identifier for the node. It is
          also used as a reference in order to point to it in the
          media-channel module.

          <list-interface> ::= <name> <port-number> <input-port> 
          <output-port> <description> <interface-type> 
          [<numbered-interface> / <unnumbered-interface>]

               <list-interface>: The list containing all the
               information of the interfaces

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 4]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

               <name>: Determines the interface name.

               <port-number>: Port number of the interface.

               <input-port>: Boolean value that defines whether the
               interface is input or not.

               <output-port>: Boolean value that defines whether the
               interface is output or not.

               <description>: Description of the usage of the interface.

               <interface-type>: Determines if the interface is numbered
               or unnumbered.

               <numbered-interface> ::= <n-i-ip-address>

                    <numbered-interface>: A interface with its own IP
                    address

                    <n-i-ip-address>: Only available if <interface-type>
                    is "numbered-interface". Determines the IP address
                    of the interface.

               <unnumbered-interface> ::= <u-i-ip-address> <label>

                    <unnumbered-interface>: A interface that needs a
                    label to be unique

                    <u-i-ip-address>: Only available if <interface-type>
                    is "numbered-interface". Determines the node IP 
                    address, which with the label defines the interface.

                    <label>: Label that determines the interface, joint
                    with the node IP address.

          <connectivity-matrix> ::= <connections>

               <connectivity-matrix>: Determines whether a connection
               port in/port out exists.

               <connections> ::= <input-port-id> <output-port-id>

                    <connections>: The actual connection between an
                    input port and an output port

                    <input-port-id>: The input port associated with the
                    output port.

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 5]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

                    <output-port-id>: The output port associated with 
                    the input port.

   <flexi-grid-transponder> ::= <flexi-grid-transponder-attributes> 
      <flexi-grid-node-attributes>

     <flexi-grid-transponder>: Determines an optical transponder in the
     network

     <flexi-grid-transponder-attributes> ::= <available-modulation>
     <modulation-type> <available-FEC> <FEC-enabled> [<FEC-type>]

          <flexi-grid-transponder-attributes>: Contains all the 
          attributes related to the transponder, such as whether 
          it has FEC enabled or not, or its modulation type.

          <available-modulation>: It provides a list of the modulations
          available at this transponder.

          <modulation-type>: Determines the type of modulation in use:
          QPSK, QAM16, QAM64...

          <available-FEC>: It provides a list of the FEC algorithms
          available at this transponder.

          <FEC-enabled>: Boolean value that determines whether is the
          FEC enabled or not.

          <FEC-type>: Determines the type of FEC in use: reed-solomon,
          hamming-code, enum golay, BCH...

     <flexi-grid-node-attributes>: See above, node attributes are
     reused also for transponders.

   <flexi-grid-sliceable-transponder> ::= <carrier-id> 
     <flexi-grid-transponder-attributes>

     <flexi-grid-sliceable-transponder>: Provides a list of 
     transponders.

     <carrier-id>: An identifier for each one of the transponders 
     in the list.

     <flexi-grid-transponder-attributes>: See above, transponder 
     attributes are reused also for sliceable transponders.

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 6]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

   <link> ::= <flexi-grid-link-attributes>

     <link>: This element describes all the information of a link.

     <flexi-grid-link-attributes> ::= <link-id> <technology-type> 
     <available-label-flexi-grid> <N-max> <base-frequency> 
     <nominal-central-frequency-granularity> <slot-width-granularity>

          <flexi-grid-link-attributes>: Contains all the attributes
          related to the link, such as its unique id, its N value, its
          latency, etc.

          <link-id>: Unique id of the link

          <available-label-flexi-grid>: Array of bits that determines, 
          with each bit, the availability of each interface for 
          flexi-grid technology.

          <N-max>: The max value of N in this link, being N the number 
          of slots.

          <base-frequency>: The default central frequency used in the
          link.

          <nominal-central-frequency-granularity>: It is the spacing
          between allowed nominal central frequencies and it is set to
          6.25 GHz (note: sometimes referred to as 0.00625 THz).

          <slot-width-granularity>: 12.5 GHz, as defined in G.694.1.

4.2. Media-channel/network-media-channel

   The model defines two types of media channels, following the
   terminology summarized in [RFC7698]:
   media-channel, which represents a (effective) frequency slot 
   supported by a concatenation of media elements (fibers, amplifiers,
   filters, switching matrices...); 
   network-media-channel: It is a media channel that transports an 
   Optical Tributary Signal. In the model, the network media channel 
   has as end-points transponders, which are the source and 
   destination of the optical signal. The description of these 
   components is provided below:

   <media-channel> ::= <source> <destination> <link-channel> <effective-
   freq-slot>

     <media-channel>: Determines a media-channel and its components.

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 7]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

     <source > ::= <source-node> <source-port>

          <source>: In a media-channel, the source is a node and a port.

          <source-node>: Reference to the source node of the media
          channel.

          <source-port>: Reference to the source port in the source
          <node.

     <destination> ::= <destination-node> <destination-port>

          <destination>: In a media-channel, the destination is a node 
          and a port.

          <destination-node>: Reference to the destination node of the
          media channel.

          <destination-port>: Reference to the destination port in the
          destination node.

     <link-channel> ::= <link-id> <N> <M> <source-node> <source-port>
     <destination-node> <destination-port> <link> <bidirectional>

          <link-channel>: Defines a list with each of the links between
          elements in the media channel.

          <link-id>: Unique identifier for the link channel

          <N>: N used for this link channel.

          <M>: M used for this link channel.

          <source-node>: Reference to the source node of this link
          channel.

          <source-port>: Reference to the source port of this link
          channel.

          <destination-node>: Reference to the destination node of this
          link channel.

          <destination-port>: Reference to the destination port of this
          link channel.

          <link>: Reference to the link of this link channel.

          <bidirectional>: Indicates if this link is bidirectional or
          not.

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 8]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

     <effective-freq-slot> ::= <N> <M>

          <effective-freq-slot>: Defines the effective frequency slot of
          the media channel, which could be different from the one 
          defined in the link channels.

          <N>: Defines the effective N for this media channel.

          <M>: Defines the effective M for this media channel.

   <network-media-channel> ::= <source> <destination> <link-channel>
   <effective-freq-slot>

     <network-media-channel>: Determines a network media-channel and
     its components.

     <source > ::= <source-node> <source-transponder>

          <source>: In a network media channel, the source is defined by
          a node and a transponder.

          <source-node>: Reference to the source node of the media
          channel.

          <source-transponder>: Reference to the source transponder in
          the source node.

     <destination> ::= <destination-node> <destination-transponder>

          <destination>: In a network media channel, the destination is
          defined by a node and a transponder

          <destination-node>: Reference to the destination node of the
          media channel.

          <destination-port>: Reference to the destination port in the
          destination node.

     <link-channel>: See above, the information is reused for both types
     of media channels.

     <effective-freq-slot>: See above, this information is reused for 
     both types of media channels.

5. Example of use

   In order to explain how this model is used, we provide the following
   example. An optical network usually has multiple transponders,

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 9]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

   switches (nodes) and links between them. Figure 1 shows a simple
   topology, where two physical paths interconnect two optical
   transponders.

                               Media channel
            <==================================================>
                                  Path x
            <-------------------------------------------------->

                     +----------+          +----------+
              Link 1 |Flexi-grid|  Link 2  |Flexi-grid| Link 3
                .--->|   node   |<-------->|   node   |<---.
                |    |    B     |          |    C     |    |
                |    +----------+          +----------+    |
                v                                          v
            +-------------+                      +-------------+
            | Flexi-grid  |                      | Flexi-grid  |
            | transponder |                      | transponder |
            |      A      |                      |      E      |
            +-------------+                      +-------------+
                  ^                                     ^
                  |             +----------+            |
                  |    Link 4   |Flexi-grid|   Link 5   |
                  '------------>|   node   |<-----------'
                                |    D     |
                                +----------+
            <-------------------------------------------------->
                                  Path y

                      Figure 1. Topology example.

   In order to configure a media channel to interconnect transponders A
   and E, first of all we have to populate the flexi-grid TED YANG model
   with all elements in the network:

   1. We define the transponders A and E, including their FEC type, if
      enabled, and modulation type. We also provide node identifiers
      and addresses for the transponders, as well as interfaces
      included in the transponders. Sliceable transponders can also be
      defined if needed.

   2. We do the same for the nodes B, C and D, providing their
      identifiers, addresses and interfaces, as well as the internal
      connectivity matrix between interfaces.

   3. Then, we also define the links 1 to 5 that interconnect nodes and
      transponders, indicating which flexi-grid labels are available. 
      Other information, such as the slot frequency and granularity are
      also provided.

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 10]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

   Next, we can configure the media channel from the information we
   have stored in the flexi-grid TED, by querying which elements are
   available, and planning the resources that have to be provided on
   each situation. Note that every element in the flexi-grid TED has a
   reference, and this is the way in which they are called in the media
   channel.

   4. Depending on the case, it is possible to define either the source
      and destination node ports, or the source and destination node
      and transponder. In our case, we would define a network media
      channel, with source transponder A and source node B, and
      destination transponder E and destination node C. Thus, we are
      going to follow path x.

   5. Then, for each link in the path x, we indicate which channel we
      are going to use, providing information about the slots, and what
      nodes are connected.

   Finally, the flexi-grid TED has to be updated with each element 
   usage status each time a media channel is created or torn down.

6. Formal Syntax

   The following syntax specification uses the augmented Backus-Naur
   Form (BNF) as described in [RFC5234].

7. Security Considerations

   The transport protocol used for sending the managed information MUST
   support authentication and SHOULD support encryption.

   The defined data-model by itself does not create any security
   implications.

8. IANA Considerations

   The namespace used in the defined models is currently based on the
   IDEALIST project URI. Future versions of this document could
   register a URI in the IETF XML registry [RFC3688], as well as in the
   YANG Module Names registry [RFC6020].
   

9. References

9.1. Normative References

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 11]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

   [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234, January 2008,
             <http:/www.rfc-editor.org/info/rfc5234>.

   [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for 
             the Network Configuration Protocol (NETCONF)", RFC 6020,
             October 2010.

   [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
             January 2004.

             
9.2. Informative References

   [RFC7698] Gonzalez de Dios, O., Casellas, R., "Framework and 
             Requirements for GMPLS-Based Control of Flexi-Grid Dense 
             Wavelength Division Multiplexing (DWDM) Networks", RFC7698, 
             November 2015.

   [I-D.draft-ietf-i2rs-yang-network-topo]  Clemm, A., Medved, J., 
         Varga, R., Tkacik, T., Bahadur, N., Ananthakrishnan,
         H., "A YANG Data Model for Network Topologies", Internet Draft 
         draft-ietf-i2rs-yang-network-topo-02.txt, 2015.

   [I-D.draft-dharini-netmod-g-698-2-yang] Galimberti, G., Kunze, R.,
         Kam Lam, Hiremagalur, D., Grammel, G., Eds., "A YANG model to
         manage optical interface parameters of DWDM applications", 
         Internet Draft, draft-dharini-netmod-g-698-2-yang-04, 2015.

10. Contributors

   The model presented in this paper was contributed to by more people
   than can be listed on the author list.  Additional contributors
   include:

   o Daniel Michaud Vallinoto, Universidad Autonoma de Madrid

11. Acknowledgments

   The work presented in this Internet-Draft has been partially funded
   by the European Commission under the project Industry-Driven Elastic
   and Adaptive Lambda Infrastructure for Service and Transport
   Networks (IDEALIST) of the Seventh Framework Program, with Grant
   Agreement Number: 317999.

Appendix A.                 YANG models

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 12]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016

A.1. Flexi-grid TED YANG Model

A.1.1. Yang Model - Tree Structure

module: ietf-flexi-grid-ted
flexi-grid-network-type
    augment /nd:networks/nd:network/nd:network-types:
   +--rw flexi-grid-network!
flexi-grid-network-attributes
     augment /nd:networks/nd:network:
   +--rw flexi-grid-network-attributes
      +--rw name?   string
flexi-grid-node-attributes
     augment /nd:networks/nd:network/nd:node:
   +--rw node-type?             flexi-grid-node-type
   +--rw interfaces* [name]
   |  +--rw name                    string
   |  +--rw port-number?            uint32
   |  +--rw input-port?             boolean
   |  +--rw output-port?            boolean
   |  +--rw description?            string
   |  +--rw type?                   interface-type
   |  +--rw numbered-interface
   |  |  +--rw n-i-ip-address?   inet:ip-address
   |  +--rw unnumbered-interface
   |     +--rw u-i-ip-address?   inet:ip-address
   |     +--rw label?            uint32
   +--rw connectivity-matrix
      +--rw connections* [input-port-id]
         +--rw input-port-id     flexi-grid-node-port-ref
         +--rw output-port-id?   flexi-grid-node-port-ref
flexi-grid-transponder-attributes
      augment /nd:networks/nd:network/nd:node:
   +--rw available-modulation*   modulation
   +--rw modulation-type?        modulation
   +--rw available-FEC*          FEC
   +--rw FEC-enabled?            boolean
   +--rw FEC-type?               FEC
flexi-grid-sliceable-transponder-attributes
      augment /nd:networks/nd:network/nd:node:
   +--rw transponder-list* [carrier-id]
      +--rw carrier-id              uint32
      +--rw available-modulation*   modulation
      +--rw modulation-type?        modulation
      +--rw available-FEC*          FEC
      +--rw FEC-enabled?            boolean
      +--rw FEC-type?               FEC
flexi-grid-link-attributes
      augment /nd:networks/nd:network/nt:link:
   +--rw available-label-flexi-grid*              bits
   +--rw N-max?                                   int32
   +--rw base-frequency?                          decimal64
   +--rw nominal-central-frequency-granularity?   decimal64
   +--rw slot-width-granularity?                  decimal64
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 13]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016   

A.1.2. YANG Model - Code

   <CODE BEGINS> file "ietf-flexi-grid-ted.yang"
   module ietf-flexi-grid-ted {
      yang-version 1;
      
      namespace 
         "urn:ietf:params:xml:ns:yang:ietf-flexi-grid-ted";

      prefix fg-ted;

      import ietf-inet-types {
            prefix inet;
      }

      import ietf-network {
            prefix nd;
      }
      
      import ietf-network-topology {
            prefix nt;
      }

      organization
         "IETF CCAMP Working Group";

      contact
         "Editor: Jorge Lopez de Vergara 
                  <jorge.lopez_vergara@uam.es>";

      description
         "This module contains a collection of YANG definitions for
         a Flexi-Grid Traffic Engineering Database (TED).

         Copyright (c) 2016 IETF Trust and the persons identified as
         authors of the code.  All rights reserved.

         Redistribution and use in source and binary forms, with or
         without modification, is permitted pursuant to, and subject
         to the license terms contained in, the Simplified BSD
         License set forth in Section 4.c of the IETF Trust's Legal
         Provisions Relating to IETF Documents
         (http://trustee.ietf.org/license-info).";

      revision 2016-02-04 {
         description
            "version 3.";

         reference
             "RFC XXX: A Yang Data Model for 
             Flexi-Grid Optical Networks ";
      }
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 14]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

      typedef flexi-grid-node-type {
           type enumeration {
            enum flexi-grid-node {
               description
                  "Flexi-grid node";
            }
            enum flexi-grid-transponder {
               description
                  "Flexi-grid transponder";
            }
            enum flexi-grid-sliceable-transponder {
               description
                  "Flexi-grid sliceable transponder";
            }
        }
        description "Determines the node type: 
            flexi-grid-node,
            flexi-grid-transponder or 
            flexi-grid-sliceable-transponder";
        }

      typedef modulation {
         type enumeration {
            enum QPSK {
                description 
                "QPSK (Quadrature Phase Shift Keying) modulation";
                }
            enum DP_QPSK {
                description "DP-QPSK (Dual Polarization Quadrature
                Phase Shift Keying) modulation";
                }
            enum QAM16 {
                description "QAM16 (Quadrature Amplitude Modulation
                - 4 bits per symbol) modulation";
                }
            enum DP_QAM16 {
                description "DP-QAM16 (Dual Polarization 
                Quadrature Amplitude Modulation - 4 bits per
                symbol) modulation";
                }
            enum DC_DP_QAM16 {
                description "DC DP-QAM16 (Dual Polarization
                Quadrature Amplitude Modulation - 4 bits per
                symbol) modulation";
                }
         }
         description 
            "Enumeration that defines the type of wave modulation";
      }

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 15]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

      typedef FEC {
         type enumeration {
            enum reed-solomon {
                description "Reed-Solomon error correction";
            }
            enum hamming-code{
                description "Hamming Code error correction";
            }
            enum golay{
                description "Golay error correction";
            }
         }
         description "Enumeration that defines the type of 
         Forward Error Correction";
      }

      typedef interface-type {
         type enumeration{
            enum numbered-interface {
                description "The interface is numbered";
            }
            enum unnumbered-interface {
                description "The interface is unnumbered";
            }
         }
         description 
            "Enumeration that defines if an interface is numbered or
            unnumbered";
      }

      typedef flexi-grid-transponder-ref {
         type leafref {
            path 
             "/nd:networks/nd:network/nd:node/nd:node-id";
         }
         description
            "This type is used by data models that need to reference
            a flexi-grid optical transponder.";
      }

      typedef flexi-grid-node-ref {
         type leafref {
            path 
             "/nd:networks/nd:network/nd:node/nd:node-id";
         }
         description
            "This type is used by data models that need to reference
            a flexi-grid optical node.";
      }

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 16]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  
          
      typedef flexi-grid-link-ref {
         type leafref {
            path 
               "/nd:networks/nd:network/nt:link/nt:link-id";
         }

         description
            "This type is used by data models that need to reference
            a flexi-grid optical link.";
      }

      typedef flexi-grid-node-port-ref {
         type leafref {
            path "/nd:networks/nd:network/nd:node/fg-ted:interfaces/"+
            "fg-ted:port-number";
         }
         description
            "This type is used by data models that need to reference
            a flexi-grid optical link.";
      }

      grouping flexi-grid-network-type {
         container flexi-grid-network {
            presence "indicates a flexi-grid optical network";
            description "flexi-grid optical network";
         }
         description "If present, it indicates a a flexi-grid
         optical TED network";
      }

      grouping flexi-grid-network-attributes {
         container flexi-grid-network-attributes {
            leaf name {
               type string;
               description "Name of the topology";
            }
            description "The attributes of the flexi-grid
            TED topology";
         }
         description "The attributes of the flexi-grid
         TED topology";
      }

      grouping flexi-grid-node-attributes {
      
         description "Set of attributes of an optical node.";
         
         leaf node-type {
            type flexi-grid-node-type;
            description "Type of flexi-grid node";
         }
         
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 17]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  
                 
         list interfaces {
            key "name";
            unique "port-number";
            description "List of interfaces contained in the node";
            leaf name {
               type string;
               description "Interface name";
            }
            leaf port-number {
               type uint32;
               description "Number of the port used by the interface";
            }
            leaf input-port {
               type boolean;
               description "Determines if the port is an input port";
            }
            leaf output-port {
               type boolean;
               description "Determines if the port is an output port";
            }
            leaf description {
               type string;
               description "Description of the interface";
            }
            leaf type {
               type interface-type;
               description "Determines the type of the interface";
            }
            container numbered-interface {
               when "type == numbered-interface" {
                 description "If the interface is a numbered interface";
               }
               description "Container that defines an numbered
               interface with an ip-address";
               leaf n-i-ip-address{
                  type inet:ip-address;
                  description "IP address of the numbered interface";
               }
            }
                        
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 18]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

                        
            container unnumbered-interface {
               when "type == unnumbered-interface" {
                 description 
                   "If the interface is an unnumbered interface";
               }
               description "Container that defines an unnumbered 
               interface with an ip-address and a label";
               leaf u-i-ip-address{
                  type inet:ip-address;
                  description "IP address of the interface";
               }
               leaf label {
                  type uint32;
                  description "Number as label for the interface";
               }
            }
         }

         container connectivity-matrix {
            description "Connectivity matrix bentween the input and 
                output ports";
            list connections {
               key "input-port-id";
               leaf input-port-id {
                  type flexi-grid-node-port-ref;
                  description "Identifier of the input port";
               }
               leaf output-port-id {
                  type flexi-grid-node-port-ref;
                  description "Identifier of the output port";
               }
               description "List of connections between input and
                output ports";
            }
         }
      }
      
      grouping flexi-grid-transponder-attributes {
         description "Set of attributes of an optical transponder.";
         leaf-list available-modulation {
            type modulation;
            description 
               "List determining all the available modulations";
         }
         leaf modulation-type {
            type modulation;
            description "Modulation type of the wave";
         }
                 
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 19]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

                 
         leaf-list available-FEC {
            type FEC;
            description "List determining all the available FEC";
         }
         leaf FEC-enabled {
            type boolean;
            description 
               "Determines whether the FEC is enabled or not";
         }
         leaf FEC-type {
            type FEC;
            description "FEC type of the transponder";
         }
         //uses flexi-grid-node-attributes;
      }

      grouping flexi-grid-sliceable-transponder-attributes {
         description
            "Grouping that defines a sliceable transponder which is
            composed by several transponders.";
               list transponder-list {
                  key "carrier-id";
                  description "List of carriers";
                  leaf carrier-id {
                     type uint32;
                     description "Identifier of the carrier";
                  }
                  uses flexi-grid-transponder-attributes;
               }
      }
          
      grouping flexi-grid-link-attributes {
         description "Set of attributes of an optical link";
            leaf-list available-label-flexi-grid {
               type bits {
                  bit is-available{
                    description "Set to 1 when it is available";
                  }
               }
               description 
                  "Array of bits that determines whether a spectral 
                  slot is available or not.";
            }

            leaf N-max {
               type int32;
               description "Maximum number of channels available.";
            }
 
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 20]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

 
            leaf base-frequency {
               type decimal64 {
                  fraction-digits 5;
               }
               units THz;
               default 193.1;
               description "Default central frequency";
               reference "draft-ietf-ccamp-flexi-grid-fwk-07";
            }

            leaf nominal-central-frequency-granularity {
               type decimal64 {
                  fraction-digits 5;
               }
               units GHz;
               default 6.25;
               description 
                  "It is the spacing between allowed nominal central
                  frequencies and it is set to 6.25 GHz";
               reference "draft-ietf-ccamp-flexi-grid-fwk-07";
            }
            
            leaf slot-width-granularity {
               type decimal64 {
                  fraction-digits 5;
               }
               units GHz;
               description "Minimum space between slot widths";
               reference "draft-ietf-ccamp-flexi-grid-fwk-07";
            }
            
         }

         augment "/nd:networks/nd:network/nd:network-types" {
            uses flexi-grid-network-type;
             description "Augment network-types including flexi-grid 
             topology";
        }

         augment "/nd:networks/nd:network" {
            when "/nd:networks/nd:network/"+
                "nd:network-types/fg-ted:flexi-grid-network" {
                description "When it is a flexi-grid network";
            }
            uses flexi-grid-network-attributes;
            description "Augment with flexi-grid network attributes";
         }
                 
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 21]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

         augment "/nd:networks/nd:network/nd:node"  {
            when "/nd:networks/nd:network/"+
              "nd:network-types/fg-ted:flexi-grid-network"{
                description "When the node is part of a flexi-grid
                topology";
            }
            uses flexi-grid-node-attributes;
            description "Augment node with flexi-grid attributes";
         }
         
         augment "/nd:networks/nd:network/nd:node" {
            when "fg-ted:node-type/
                    fg-ted:flexi-grid-transponder"{
                description "When it is a flexi-grid transponder";
            }
            uses flexi-grid-transponder-attributes;
            description "Augment node with transponder attributes";
         }

         augment "/nd:networks/nd:network/nd:node" {
            when "fg-ted:node-type/
                    fg-ted:optical-sliceable-transponder"{
                description 
                    "When it is a flexi-grid sliceable transponder";
            }
            uses flexi-grid-sliceable-transponder-attributes;
            description "Augment node with sliceable transponder 
                attributes";
         }

         augment "/nd:networks/nd:network/nt:link" {
            when "/nd:networks/nd:network/"+
              "nd:network-types/fg-ted:flexi-grid-network"{
                description "When it is a flexi-grid TED";
            }
            uses flexi-grid-link-attributes;
            description "Augment network link attributes when it
                is a flexi-grid topology";
         }
   }

   <CODE ENDS>

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 22]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

A.2. Media Channel YANG Model

A.2.1. YANG Model - Tree

module: ietf-flexi-grid-media-channel
   +--rw media-channel
   |  +--rw source
   |  |  +--rw source-node?   fg-ted:flexi-grid-node-ref
   |  |  +--rw source-port?   fg-ted:flexi-grid-node-port-ref
   |  +--rw destination
   |  |  +--rw destination-node?   fg-ted:flexi-grid-node-ref
   |  |  +--rw destination-port?   fg-ted:flexi-grid-node-port-ref
   |  +--rw effective-freq-slot
   |  |  +--rw N?   int32
   |  |  +--rw M?   int32
   |  +--rw link-channel* [link-id]
   |     +--rw link-id             int32
   |     +--rw N?                  int32
   |     +--rw M?                  int32
   |     +--rw source-node?        fg-ted:flexi-grid-node-ref
   |     +--rw source-port?        fg-ted:flexi-grid-node-port-ref
   |     +--rw destination-node?   fg-ted:flexi-grid-node-ref
   |     +--rw destination-port?   fg-ted:flexi-grid-node-port-ref
   |     +--rw link?               fg-ted:flexi-grid-link-ref
   |     +--rw bidireccional?      boolean
   +--rw network-media-channel
      +--rw source
      |  +--rw source-node?          fg-ted:flexi-grid-node-ref
      |  +--rw source-transponder?   fg-ted:flexi-grid-transponder-ref
      +--rw destination
      |  +--rw destination-node?          fg-ted:flexi-grid-node-ref
      |  +--rw destination-transponder?
      |            fg-ted:flexi-grid-transponder-ref
      +--rw effective-freq-slot
      |  +--rw N?   int32
      |  +--rw M?   int32
      +--rw link-channel* [link-id]
         +--rw link-id             int32
         +--rw N?                  int32
         +--rw M?                  int32
         +--rw source-node?        fg-ted:flexi-grid-node-ref
         +--rw source-port?        fg-ted:flexi-grid-node-port-ref
         +--rw destination-node?   fg-ted:flexi-grid-node-ref
         +--rw destination-port?   fg-ted:flexi-grid-node-port-ref
         +--rw link?               fg-ted:flexi-grid-link-ref
         +--rw bidireccional?      boolean

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 23]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

                 
A.2.2. YANG Model - Code

   <CODE BEGINS> file "ietf-flexi-grid-media-channel.yang"

   module ietf-flexi-grid-media-channel {
      yang-version 1;
      
      namespace 
        "urn:ietf:params:xml:ns:yang:ietf-flexi-grid-media-channel";
      prefix fg-mc;
      
      import ietf-flexi-grid-ted {
         prefix fg-ted;
      }

      organization
         "IETF CCAMP Working Group";

      contact
         "Editor: Jorge Lopez de Vergara 
                    <jorge.lopez_vergara@uam.es>";

      description
         "This module contains a collection of YANG definitions for
         a Flexi-Grid media channel.

         Copyright (c) 2016 IETF Trust and the persons identified as
         authors of the code.  All rights reserved.

         Redistribution and use in source and binary forms, with or
         without modification, is permitted pursuant to, and subject
         to the license terms contained in, the Simplified BSD
         License set forth in Section 4.c of the IETF Trust's Legal
         Provisions Relating to IETF Documents
         (http://trustee.ietf.org/license-info).";

      revision 2016-02-04 {
         description
            "version 3.";

         reference
            "RFC XXX: A Yang Data Model for Flexi-Grid Optical 
            Networks ";
      }         
          
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 24]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

         
      container media-channel {
         description 
            "Media association that represents both the topology
            (i.e., path through the media) and the resource 
            (frequency slot) that it occupies.  As a topological
            construct, it represents a (effective) frequency slot
            supported by a concatenation of media elements (fibers,
            amplifiers, filters, switching matrices...).  This term
            is used to identify the end-to-end physical layer entity
            with its corresponding (one or more) frequency slots
            local at each link filters.";
         reference "draft-ietf-ccamp-flexi-grid-fwk-07";
         container source {
            description "Source of the media channel";
            leaf source-node {
               type fg-ted:flexi-grid-node-ref;
               description "Source node";
            }
            leaf source-port {
               type fg-ted:flexi-grid-node-port-ref;
               description "Source port";
             }
         }
         container destination {
            description "Destination of the media channel";
            leaf destination-node {
               type fg-ted:flexi-grid-node-ref;
               description "Destination node";
            }
            leaf destination-port {
               type fg-ted:flexi-grid-node-port-ref;
               description "Destination port";
            }
         }
         uses media-channel-attributes;
      }

          
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 25]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

      container network-media-channel {
         description 
            "It is a media channel that transports an Optical
            Tributary Signal ";
         reference "draft-ietf-ccamp-flexi-grid-fwk-07";
         container source {
            description "Source of the network media channel";
            leaf source-node {
               type fg-ted:flexi-grid-node-ref;
               description "Source node";
            }
            leaf source-transponder {
               type fg-ted:flexi-grid-transponder-ref;
               description "Source transponder";
            }
         }
         container destination {
            description "Destination of the network media channel";
            leaf destination-node {
               type fg-ted:flexi-grid-node-ref;
               description "Destination node";
            }
            leaf destination-transponder {
               type fg-ted:flexi-grid-transponder-ref;
               description "Destination transponder";
            }
         }
         uses media-channel-attributes;
      }

      grouping media-channel-attributes {
         description "Set of attributes of a media channel";
         container effective-freq-slot {
            description 
               "The effective frequency slot is an attribute of
               a media channel and, being a frequency slot, it is
               described by its nominal central frequency and slot
               width";
            reference "draft-ietf-ccamp-flexi-grid-fwk-07";
                        
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 26]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

            leaf N {
               type int32;
               description
                  "Is used to determine the Nominal Central
                  Frequency. The set of nominal central frequencies
                  can be built using the following expression: 
                     f = 193.1 THz + n x 0.00625 THz,
                  where 193.1 THz is ITU-T ''anchor frequency'' for
                  transmission over the C band, n is a positive or
                  negative integer including 0.";
               reference "draft-ietf-ccamp-flexi-grid-fwk-07";
            }
            leaf M {
               type int32;
               description
                  "Is used to determine the slot width. A slot width
                  is constrained to be M x SWG (that is, M x 12.5 GHz),
                  where M is an integer greater than or equal to 1.";
               reference "draft-ietf-ccamp-flexi-grid-fwk-07";
            }
         }
         list link-channel {
            key "link-id";
            description
                "A list of the concatenated elements of the media
                channel.";
            leaf link-id {
               type int32;
               description "Identifier of the link";
            }
            uses link-channel-attributes;
         }
      }

      grouping link-channel-attributes {
         description 
            "A link channel is one of the concatenated elements of
            the media channel.";
         leaf N {
            type int32;
            description
               "Is used to determine the Nominal Central Frequency.
               The set of nominal central frequencies can be built
               using the following expression:
                  f = 193.1 THz + n x 0.00625 THz, 
               where 193.1 THz is ITU-T ''anchor frequency'' for
               transmission over the C band, n is a positive or
               negative integer including 0.";
            reference "draft-ietf-ccamp-flexi-grid-fwk-07";
         }
                 
Lopez de Vergara, et al.    Expires August 28, 2016      [Page 27]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

         leaf M {
            type int32;
               description
                  "Is used to determine the slot width. A slot
                  width is constrained to be M x SWG (that is,
                  M x 12.5 GHz), where M is an integer greater than
                  or equal to 1.";
               reference "draft-ietf-ccamp-flexi-grid-fwk-07";
         }
         leaf source-node {
            type fg-ted:flexi-grid-node-ref;
            description "Source node of the link channel";
         }
         leaf source-port {
            type fg-ted:flexi-grid-node-port-ref;
            description "Source port of the link channel";
         }
         leaf destination-node {
            type fg-ted:flexi-grid-node-ref;
            description "Destination node of the link channel";
         }
         leaf destination-port {
            type fg-ted:flexi-grid-node-port-ref;
            description "Destination port of the link channel";
         }
         leaf link {
            type fg-ted:flexi-grid-link-ref;
            description "Link of the link channel";
         }
         leaf bidireccional {
            type boolean;
            description 
               "Determines whether the link is bidireccional or 
               not";
         }
      }
   }
   <CODE ENDS>

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 28]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

   
A.3. License

   Copyright (c) 2015 IETF Trust and the persons identified as authors
   of the code. All rights reserved.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   o Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.

   o Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in
      the documentation and/or other materials provided with the
      distribution.

   o Neither the name of Internet Society, IETF or IETF Trust, nor the
      names of specific contributors, may be used to endorse or promote
      products derived from this software without specific prior
      written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
   FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
   COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
   INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
   BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
   CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
   ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   POSSIBILITY OF SUCH DAMAGE.

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 29]

Internet-Draft   A YANG data model for Flexi-Grid    March 2016  

Authors' Addresses

   Jorge E. Lopez de Vergara
   Universidad Autonoma de Madrid
   Escuela Politecnica Superior
   C/Francisco Tomas y Valiente, 11
   E-28049 Madrid, Spain

   Email: jorge.lopez_vergara@uam.es

   Victor Lopez
   Telefonica I+D/GCTO
   Distrito Telefonica
   E-28050 Madrid, Spain

   Email: victor.lopezalvarez@telefonica.com

   Oscar Gonzalez de Dios
   Telefonica I+D/GCTO
   Distrito Telefonica
   E-28050 Madrid, Spain

   Email: oscar.gonzalezdedios@telefonica.com

   Daniel King
   Lancaster University

   Email: d.king@lancaster.ac.uk

   Young Lee
   Huawei Technologies
   
   Email: leeyoung@huawei.com

   Zafar Ali
   Cisco Systems

   Email: zali@cisco.com

Lopez de Vergara, et al.    Expires August 28, 2016      [Page 30]