Service Chaining using MPLS Source Routing
draft-xu-mpls-service-chaining-00

Document Type Active Internet-Draft (individual)
Last updated 2016-10-13
Stream (None)
Intended RFC status (None)
Formats plain text xml pdf html bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
MPLS Working Group                                                 X. Xu
Internet-Draft                                                 S. Bryant
Intended status: Standards Track                                  Huawei
Expires: April 16, 2017                                     H. Assarpour
                                                                Broadcom
                                                                 H. Shah
                                                                   Ciena
                                                            L. Contreras
                                                          Telefonica I+D
                                                              D. Bernier
                                                             Bell Canada
                                                        October 13, 2016

               Service Chaining using MPLS Source Routing
                   draft-xu-mpls-service-chaining-00

Abstract

   Source Packet Routing in Networking (SPRING) WG is developing an MPLS
   source routing mechanism.  This MPLS source routing mechanism can be
   leveraged to realize the service path layer functionality of the
   service function chaining (i.e., steering the selected traffic
   through a particular service function path) by encoding the service
   function path information as an MPLS label stack.  This document
   describes how to use the MPLS source routing mechanism as developed
   by the SPRING WG to realize the service path layer functionality of
   service function chaining.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any

Xu, et al.               Expires April 16, 2017                 [Page 1]
Internet-Draft Service Chaining using MPLS Source Routing   October 2016

   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 16, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Solution Description  . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Encoding SFP Information by an MPLS Label Stack . . . . .   4
   4.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   5
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   5
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   6
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .   6
     7.2.  Informative References  . . . . . . . . . . . . . . . . .   6
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   7

1.  Introduction

   When applying a particular Service Function Chain (SFC) [RFC7665] to
   the traffic selected by a service classifier, the traffic need to be
   steered through an ordered set of Service Functions (SF) in the
   network.  This ordered set of SFs in the network indicates the
   Service Function Path (SFP) associated with the above SFC.  In order
   to steer the selected traffic through the required ordered list of
   SFs, the service classifier needs to attach information to the packet
Show full document text