Route Leak Detection and Filtering using Roles in Update and Open messages
draft-ymbk-idr-bgp-open-policy-01

The information below is for an old version of the document
Document Type Active Internet-Draft (individual)
Last updated 2016-10-26
Replaced by draft-ietf-idr-bgp-open-policy
Stream (None)
Intended RFC status (None)
Formats pdf htmlized (tools) htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                          A. Azimov
Internet-Draft                                              E. Bogomazov
Intended status: Standards Track                             Qrator Labs
Expires: April 29, 2017                                          R. Bush
                                               Internet Initiative Japan
                                                        October 26, 2016

   Route Leak Detection and Filtering using Roles in Update and Open
                                messages
                   draft-ymbk-idr-bgp-open-policy-01

Abstract

   Route Leaks are propagation of BGP prefixes which violate assumptions
   of BGP topology relationships; e.g. passing a route learned from one
   peer to another peer or to a transit provider, passing a route
   learned from one transit provider to another transit provider or to a
   peer.  Today, approaches to leak prevention rely on marking routes
   according to some configuration options without any check of the
   configuration corresponds to that of the BGP neighbor, or enforcement
   that the two BGP speakers agree on the relationship.  This document
   enhances BGP Open to establish agreement of the (peer, customer,
   provider, internal) relationship of two BGP neighboring speakers to
   enforce appropriate configuration on both sides.  Propagated routes
   are then marked with a eOTC and iOTC attributes according to agreed
   relationship allowing prevetion and detection of route leaks.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to
   be interpreted as described in RFC 2119 [RFC2119] only when they
   appear in all upper case.  They may also appear in lower or mixed
   case as English words, without normative meaning.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any

Azimov, et al.           Expires April 29, 2017                 [Page 1]
Internet-Draft     Route Leak Detection and Filtering       October 2016

   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 29, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  BGP Role  . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Role capability . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Role correctness  . . . . . . . . . . . . . . . . . . . . . .   4
     4.1.  Strict mode . . . . . . . . . . . . . . . . . . . . . . .   5
   5.  Restrictions on the Complex role  . . . . . . . . . . . . . .   5
   6.  BGP Internal Only To Customer attribute . . . . . . . . . . .   5
   7.  BGP External Only To Customer attribute . . . . . . . . . . .   6
   8.  Compatibility with BGPsec . . . . . . . . . . . . . . . . . .   6
   9.  Additional Considerations . . . . . . . . . . . . . . . . . .   6
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   11. Security Considerations . . . . . . . . . . . . . . . . . . .   7
   12. References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
     12.1.  Normative References . . . . . . . . . . . . . . . . . .   8
     12.2.  Informative References . . . . . . . . . . . . . . . . .   8
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   For the purposes of this document BGP route leaks are when a BGP
   route was learned from transit provider or peer and is announced to
   another provider or peer.  See [RFC7908].  These are usually the
   result of misconfigured or absent BGP route filtering or lack of
   coordination between two BGP speakers.

Azimov, et al.           Expires April 29, 2017                 [Page 2]
Show full document text