An Architecture for Use of PCE and PCEP in a Network with Central Control
draft-zhao-teas-pce-control-function-00

The information below is for an old version of the document
Document Type Active Internet-Draft (individual)
Last updated 2016-05-06
Replaced by draft-ietf-teas-pce-central-control, rfc8283
Stream (None)
Intended RFC status (None)
Formats pdf htmlized bibtex
Stream Stream state (No stream defined)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state I-D Exists
Telechat date
Responsible AD (None)
Send notices to (None)
TEAS Working Group                                        A. Farrel, Ed.
Internet-Draft                                          Juniper Networks
Intended status: Informational                              Q. Zhao, Ed.
Expires: November 7, 2016                                          R. Li
                                                     Huawei Technologies
                                                                 C. Zhou
                                                           Cisco Systems
                                                             May 6, 2016

   An Architecture for Use of PCE and PCEP in a Network with Central
                                Control
                draft-zhao-teas-pce-control-function-00

Abstract

   The Path Computation Element (PCE) has become established as a core
   component of Software Defined Networking (SDN) systems.  It can
   compute optimal paths for traffic across a network for any definition
   of "optimal" and can also monitor changes in resource availability
   and traffic demands to update the paths.

   Conventionally, the PCE has been used to derive paths for MPLS Label
   Switched Paths (LSPs).  These paths are supplied using the Path
   Computation Element Communication Protocol (PCEP) to the head end of
   the LSP for signaling in the MPLS network.

   SDN has a far broader applicability than just signaled MPLS traffic
   engineered networks, and the PCE may be used to determine paths in a
   wide range of use cases including static LSPs, segment routing,
   service function chaining (SFC), and indeed any form of routed or
   switched network.  It is, therefore reasonable to consider PCEP as a
   general southbound control protocol for use in these environments to
   allow the PCE to be fully enabled as a central controller.

   This document briefly introduces the architecture for PCE as a
   central controller, examines the motivations and applicability for
   PCEP as a southbound interface, and introduces the implications for
   the protocol.  This document does not describe the use cases in
   detail and does not define protocol extensions: that work is left for
   other documents.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

Farrel, et al.          Expires November 7, 2016                [Page 1]
Internet-Draft             PCE-CC Architecture                  May 2016

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 7, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Architecture  . . . . . . . . . . . . . . . . . . . . . . . .   4
     2.1.  Resilience and Scaling  . . . . . . . . . . . . . . . . .   7
       2.1.1.  Partitioned Network . . . . . . . . . . . . . . . . .   8
       2.1.2.  Multiple Parallel Controllers . . . . . . . . . . . .   9
       2.1.3.  Hierarchical Controllers  . . . . . . . . . . . . . .  10
   3.  Applicability . . . . . . . . . . . . . . . . . . . . . . . .  11
     3.1.  Technology-Oriented Applicability . . . . . . . . . . . .  12
       3.1.1.  Applicability to Control Plane Operated Networks  . .  12
       3.1.2.  Static LSPs in MPLS . . . . . . . . . . . . . . . . .  12
       3.1.3.  MPLS Multicast  . . . . . . . . . . . . . . . . . . .  13
       3.1.4.  Transport SDN . . . . . . . . . . . . . . . . . . . .  13
       3.1.5.  Segment Routing . . . . . . . . . . . . . . . . . . .  13
       3.1.6.  Service Function Chaining . . . . . . . . . . . . . .  14
     3.2.  High-Level Applicability  . . . . . . . . . . . . . . . .  14
       3.2.1.  Traffic Engineering . . . . . . . . . . . . . . . . .  14
Show full document text