CCAMP Working Group                                     Snigdho Bardalai
Internet-Draft                                                 Rajan Rao
Intended status: Proposed Standard                  Ashok Kunjidhapatham
Expires: May 12, 2011                                   Khuzema Pithewan
                                                           Infinera Corp
                                                        November 8, 2010

      OSPF TE Extensions for Generalized MPLS (GMPLS) Control of
                   G.709 Optical Transport Networks
                draft-ashok-ccamp-gmpls-ospf-g709-02.txt


Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as
   Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/1id-abstracts.html

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

Copyright and License Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors. All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document. Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Ashok, et al.             Expires May 12, 2011                  [Page 1]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


Abstract

   As OTN network capabilities continue to evolve, there is an increased
   need to support GMPLS control for the same. [RFC4328] introduced
   GMPLS signaling extensions for supporting the early version of G.709
   [G.709-v1]. The basic routing considerations from signaling
   perspective is also specified in [RFC4328].

   The recent revision of ITU-T Recommendation G.709 [G.709-v3] and
   [GSUP.43] have introduced new ODU containers (both fixed and
   flexible) and additional ODU multiplexing capabilities, enabling
   support for optimal service aggregation.

   This document describes OSPF protocol extensions to support
   Generalized MPLS (GMPLS) control for routing services over the
   standardized OTU/ODU containers in support of ODU based TDM
   switching. Routing support for Optical Channel Layer switching
   (Lambda switching) is not covered in this document.



Table of Contents

   1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4
   2. Conventions used in this document  . . . . . . . . . . . . . . . 5
   3. OTU/ODU Link Representation  . . . . . . . . . . . . . . . . . . 5
      3.1. OTUk TE-Link  . . . . . . . . . . . . . . . . . . . . . . . 5
      3.2. ODUk TE-Link  . . . . . . . . . . . . . . . . . . . . . . . 6
      3.3. ODUj TE-Link  . . . . . . . . . . . . . . . . . . . . . . . 6
      3.4. Bundled TE-Link . . . . . . . . . . . . . . . . . . . . . . 7
      3.5. OTU/ODU Link Property Agreement . . . . . . . . . . . . . . 7
   4. OTU/ODU Link Bandwidth Model . . . . . . . . . . . . . . . . . . 8
   5. OSPF TE-LSA Extension  . . . . . . . . . . . . . . . . . . . . . 9
      5.1. Maximum Bandwidth . . . . . . . . . . . . . . . . . . . . . 9
      5.2. Maximum Reservable Bandwidth  . . . . . . . . . . . . . . . 9
      5.3. Unreserved Bandwidth  . . . . . . . . . . . . . . . . . . . 9
      5.4. Interface Switch Capability Descriptor  . . . . . . . . . . 9
         5.4.1. TDM - Switch Capability Specific Information . . . .  10
         5.4.2. ODUk Switch Capability Specific Information  . . . .  11
            5.4.2.1 PER-SIGNALTYPE-BW-TLV  . . . . . . . . . . . . .  12
            5.4.2.2 ODUFLEX-BW-TLV . . . . . . . . . . . . . . . . .  14
   6. Backward Compatibility consideration . . . . . . . . . . . . .  15
   7. Use Cases  . . . . . . . . . . . . . . . . . . . . . . . . . .  16
      7.1. Links supporting line rate service only . . . . . . . . .  16
      7.2. Multi-stage multiplexing  . . . . . . . . . . . . . . . .  16
      7.3. Link bundle with dissimilar OTU/ODU interfaces  . . . . .  17
   8. Security Considerations  . . . . . . . . . . . . . . . . . . .  18
   9. IANA Considerations  . . . . . . . . . . . . . . . . . . . . .  18



Ashok, et al.             Expires May 12, 2011                  [Page 2]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


   10.  References . . . . . . . . . . . . . . . . . . . . . . . . .  18
      10.1.  Normative References  . . . . . . . . . . . . . . . . .  18
      10.2.  Informative References  . . . . . . . . . . . . . . . .  19
   11. Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  19
   Author's Addresses  . . . . . . . . . . . . . . . . . . . . . . .  19
   Appendix A  . . . . . . . . . . . . . . . . . . . . . . . . . . .  20













































Ashok, et al.             Expires May 12, 2011                  [Page 3]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


1. Introduction

   Generalized Multi-Protocol Label Switching (GMPLS) [RFC3945] extends
   MPLS from supporting Packet Switching Capable (PSC) interfaces and
   switching to include support of four new classes of interfaces and
   switching: Layer-2 Switching (L2SC), Time-Division Multiplex (TDM),
   Lambda Switch (LSC), and Fiber-Switch (FSC) Capable.  A functional
   description of the extensions to MPLS signaling that are needed to
   support these new classes of interfaces and switching is provided in
   [RFC3471]. OSPF extensions for supporting GMPLS are defined in
   [RFC4203].

   ITU-T Recommendations G.709 and G.872 provide specifications for OTN
   interface and network architecture respectively. As OTN network
   capabilities continue to evolve; there is an increased need to
   support GMPLS control for the same.

   GMPLS signaling extensions to support G.709 OTN interfaces are
   specified in [RFC4328]. The basic routing considerations from
   signaling perspective is specified. G.709 specifications evolved
   rapidly over the last few years. Following are the features added
   in OTN since the first version [G.709-v1].

      (a) OTU Containers:
          Pre-existing Containers: OTU1, OTU2 and OTU3
          New Containers introduced in [G.709-v3]: OTU2e and OTU4
          New Containers introduced in [GSUP.43]: OTU1e, OTU3e1 and OTU3e2

      (b) Fixed ODU Containers:

          Pre-existing Containers: ODU1, ODU2 and ODU3
          New Containers introduced in [G.709-v3]: ODU0, ODU2e and ODU4
          New Containers introduced in [GSUP.43]: ODU1e, ODU3e1 and ODU3e2

      (c) Flexible ODU Containers:
          ODUflex for CBR and GFP-F mapped services. ODUflex uses 'n'
          number of OPU Tributary Slots where 'n' is different from the
          number of OPU Tributary Slots used by the Fixed ODU Containers.

      (d) Tributary Slot Granularity:
          OPU2 and OPU3 support two Tributary Slot Granularities:
          (i) 1.25Gbps and (ii) 2.5Gbps.

      (e) Multi-stage ODU Multiplexing:
          Multi-stage multiplexing of LO-ODUs into HO-ODU is supported.
          Also, multiplexing could be heterogeneous (meaning LO-ODUs of
          different rates can be multiplexed into a HO-ODU).




Ashok, et al.             Expires May 12, 2011                  [Page 4]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      OTN networks support switching at two layers: (i) ODU Layer - TDM
      Switching and (ii) OCH Layer - Lambda (LSC) Switching. The nodes on
      the network may support one or both the switching types. When
      multiple switching types are supported MLN based routing [RFC5339]
      is assumed.

      This document covers OSPF extensions to support routing over the
      standardized OTU/ODU containers in support of ODU Layer based TDM
      switching as outlined in the framework document [G.709-FRAME].
      The Interface Switch Capability Descriptor extensions for ODU Layer
      switching and bandwidth representation for ODU containers are defined
      in this document.

      Routing support for Optical Channel Layer switching (LSC) is beyond
      the scope of this document. Refer to [WSON-FRAME] for further
      details.


2. Conventions used in this document

      The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
      "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
      document is to be interpreted as described in RFC-2119 [RFC2119].

      In addition, the reader is assumed to be familiar with the
      terminology used in ITU-T [G.709-v3], [G.872] and [GSUP.43], as
      well as [RFC4201] and [RFC4203].  Abbreviations used in this
      document is detailed in Appendix A.


3. OTU/ODU Link Representation

      G.709 OTU/ODU Links are represented as TE-Links in GMPLS Traffic
      Engineering Topology for supporting ODU layer switching. These
      TE-Links can be modeled in multiple ways. Some of the prominent
      representations are captured below.

3.1. OTUk TE-Link

      OTUk Link can be modeled as a TE-Link. Switching at ODUk layer
      and ODUj layer (including multi-stage multiplexing) can be managed on
      OTUk TE-Link. Figure-1 below provides an illustration of this link
      type.

      When a LO-ODU layer being switched on an OTUk interface involves
      multi-stage multiplexing, all the HO-ODU layer(s) should
      necessarily terminate between the same pair of nodes as the OTUk
      layer in this case.  For example, if ODU1 layer switching is



Ashok, et al.             Expires May 12, 2011                  [Page 5]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      configured on a OTU3 link via multiplexing hierarchy
      ODU3<-ODU2<-ODU1, HO-ODUs (namely ODU3 & ODU2) should terminate
      between the same pair of nodes as OTU3 layer.

        +-------+               +-------+               +-------+
        |  OTN  |               |  OTN  |               |  OTN  |
        |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
        |   A   |               |   B   |               |   C   |
        +-------+               +-------+               +-------+

                |<-- TE-Link -->|       |<-- TE-Link -->|

                          Figure-1: OTUk TE-Link

3.2. ODUk TE-Link

      When ODUk layer does not terminate on the same pair of nodes
      as OTUk layer, ODUk link should be modeled as a TE-Link. As
      bandwidth is directly managed on the ODUk link, associated OTUk
      links are not significant in this case. Switching at ODUj layer
      (including multi-stage multiplexing) can be managed on ODUk TE-Link.
      Figure-2 below provides an illustration of this link type.

      When a LO-ODU layer being switched on the ODUk interface involves
      multi-stage multiplexing, all the HO-ODU layer(s) should necessarily
      terminate between the same pair of nodes as ODUk in this case. For
      example, if ODU1 layer switching is configured on an ODU3 link via
      multiplexing hierarchy ODU3<-ODU2<-ODU1, HO-ODU (namely ODU2)
      should terminate between the same pair of nodes as ODU3.

        +-------+               +-------+               +-------+
        |  OTN  |               |  OTN  |               |  OTN  |
        |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
        |   A   |               |   B   |               |   C   |
        +-------+               +-------+               +-------+
                              ODUk Switched

                |<------------- ODUk Link ------------->|
                |<-------------- TE-Link--------------->|

                         Figure-2: ODUk TE-Link

3.3. ODUj TE-Link

      When a LO-ODUj within a HO-ODUk does not terminate on the same
      pair of nodes as HO-ODUk layer, Separate TE-Links needs to be
      modeled for ODUk link and ODUj link. Also, ODUk link shall
      no longer manage the bandwidth associated with the ODUj link.



Ashok, et al.             Expires May 12, 2011                  [Page 6]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      Switching at sub-ODUj layer (including multi-stage multiplexing)
      can be supported on this ODUj TE-Link. Figure-3 below provides
      an illustration of this link type.

      When a LO-ODU layer being switched on an ODUj interface involves
      multi-stage multiplexing, all the HO-ODU layer(s) should necessarily
      terminate between the same pair of nodes as ODUj in this case. For
      example, if ODU0 layer switching is configured on an ODU2 link via
      multiplexing hierarchy ODU2<-ODU1<-ODU0, HO-ODU (namely ODU1)
      should terminate between the same pair of nodes as ODU2.

       +-----+             +-----+             +-----+             +-----+
       | OTN |             | OTN |             | OTN |             | OTN |
       | SW  |<-OTUk Link->| SW  |<-OTUk Link->| SW  |<-OTUk Link->| SW  |
       | A   |             | B   |             | C   |             | D   |
       +-----+             +-----+             +-----+             +-----+
                      ODUj Switched         ODUk Switched

                                 |<--------- ODUk Link ---------->|
                                 |<--------- TE-Link #1 --------->|

             |<-------------------- ODUj Link ------------------->|
             |<-------------------- TE-Link #2 ------------------>|

                         Figure-3: ODUj TE-Link


3.4. Bundled TE-Link

      Any mix of OTU and ODU links of dissimilar rates that terminates on
      same pair of nodes and meets the entire bundling criterion specified in
      TE-Link Bundling specification [RFC4201] can be pulled together to
      form a Bundle TE-Link. This is required for better scalability.

3.5. OTU/ODU Link Property Agreement

      The OTN interfaces (associated with peer nodes) participating in a
      TE-Link may not be fully compatible in terms of OTN interface
      properties.  The lowest common denominator between the two links
      endpoints need to be used for forming the TE link. Some of OTN
      specific link properties that need to be agreed upon between
      the two link endpoints (on peer nodes) are:

      (a) OPU Tributary Slot Granularity for OPU2 and OPU3.

      (b) Multiplexing hierarchies supported - both number of stages and
          specific LO-ODUs supported in each stage. This includes both
          Fixed and Flexible ODU containers.



Ashok, et al.             Expires May 12, 2011                  [Page 7]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      These link properties either can be configured or discovered through
      Link discovery mechanism. The details of such mechanism is beyond the
      scope of this document.

4. OTU/ODU Link Bandwidth Model

      Bandwidth allocation/management on OTU/ODU links is done in terms
      of discrete units called OPU Tributary Slots. OPU Tributary Slots
      occurs in two granularities (1.25Gbps and 2.5Gbps) and the actual
      bit-rate of the OPU Tributary Slot slightly varies for different
      ODU container types (i.e., ODU1, ODU2, ODU3 and ODU4). As a result
      of this disparity, number of Tributary Slots required to map a
      LO-ODU on different HO-ODU container types could vary. For example,
      ODU2e requires 9 OPU TSs on ODU3 and 8 OPU TSs on ODU4.

      The basic objectives of OTN interface bandwidth model are as
      follows:

      (a) Support ODU multi-stage multiplexing hierarchy and yet not
          require advertisement of complete hierarchy tree.

      (b) Account for bandwidth fragmentation that can result due to
          the restricted multiplexing hierarchy supported on an OTN
          interface. For example, assume that an ODU3 interface
          supports direct multiplexing of ODU2 only. Here, mapping
          of ODU1 and ODU0 is possible only through second stage
          multiplexing underneath ODU2. If two ODU1 are created under
          two different ODU2, only two ODU2 can be created further on
          the interface although 28 Tributary Slots (1.25Gbps) are
          available on the interface (ODU hierarchy).

      (c) Hide the complexities in Tributary Slot Granularities (1.25Gbps
          and 2.5Gbps) from bandwidth model and thereby simplify the
          end-to-end path computation. As explained in the previous
          section, this needs to be negotiated as a part of link
          discovery or pre-configured locally on the either ends.

      (d) Hide the complexities in Tributary Slot Size disparities (among
          ODU containers) and number of Tributary Slots required to map
          a LO-ODU. This can be achieved by advertising the number of
          LO-ODU containers that can be mapped on an OTN interface rather
          than number of Tributary Slots or absolute bandwidth in
          bytes/sec.

      (e) For ODU-Flex service, Absolute bandwidth required (for CBR
          or GFP mapped service) needs to be mapped to 'n' Tributary
          Slots of certain bit rate. This needs Tributary Slot bit-rate
          and number of Tributary slots to be advertised.



Ashok, et al.             Expires May 12, 2011                  [Page 8]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


5. OSPF TE-LSA Extension

      This section describes the OSPF TE-LSA Extensions to support
      bandwidth encoding for OTU/ODU TE-Links.

5.1. Maximum Bandwidth

      The format and interpretation of this attribute must be consistent
      with OSPF-TE Extension [RFC3630] and TE-Link Bundling Support
      [RFC4201] specifications. The  OPUk payload nominal rate (in bytes
      per sec) as specified in [G.709-v3] shall be encoded in this
      attribute.

5.2. Maximum Reservable Bandwidth

      The format and interpretation of this attribute must be consistent
      with OSPF-TE Extension [RFC3630] and TE-Link Bundling Support
      [RFC4201] specifications.

5.3. Unreserved Bandwidth

      The format and interpretation of this attribute must be consistent
      with OSPF-TE Extension [RFC3630] and TE-Link Bundling Support
      [RFC4201] specifications.

      Unreserved Bandwidth in bytes per second is not of much value for
      OTU/ODU interfaces. Unreserved Bandwidth per ODU rate is more
      appropriate and useful in this case. Implementations may choose to
      ignore this attribute and consider per ODU-rate Unreserved Bandwidth
      defined in Interface Switch Capability Descriptor for "G.709 ODUk"
      encoding type. See section 5.4.2.

5.4. Interface Switch Capability Descriptor

      As specified in GMPLS Signaling Extensions for OTN [RFC4328],
      following are the Switching and Encoding Types that needs to be
      used for OTU/ODU interface supporting ODU switching.

      Switching Type = TDM  [defined in RFC3471]
      Encoding Type = G.709 ODUk (Digital Path) [defined in RFC4328]

      Interface Switching Capability Descriptor for TDM is defined in
      [RFC4203]. The current definition needs to be extended to cover the
      bandwidth specification for ODU layer(s). When Encoding Type is
      "G.709 ODUk", Interface switching Capability Descriptor should be
      interpreted as follows:





Ashok, et al.             Expires May 12, 2011                  [Page 9]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Switching Cap |   Encoding    |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 0              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 1              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 2              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 3              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 4              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 5              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 6              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 7              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         TDM - Switch Capability Specific Information          |
      |                         (8 bytes)                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         ODUk - Switch Capability Specific Information         |
      |                        (variable length)                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Max LSP Bandwidth

      Format and interpretation of this attribute must be consistent with
      specification in GMPLS Routing Extension [RFC4202] and TE-Link
      Bundling Support [RFC4201].

      For ODU Encoding type, this should be coded with the maximum
      bandwidth available on a single ODUk/ODUj container associated
      with the given OTN interface. If OTU/ODU interface is composed of
      multiple ODU containers (through multi-stage multiplexing), the
      ODU container with the highest unreserved capacity shall be chosen
      for encoding this attribute.

      When link bundling is involved, the encoding and interpretation of
      this attribute must be consistent with TE-Link Bundling Support
      [RFC4201].

5.4.1. TDM - Switch Capability Specific Information

      The format and interpretation of TDM - Switch Capability Specific



Ashok, et al.             Expires May 12, 2011                 [Page 10]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      Information must be as per OSPF GMPLS Extension [RFC4203].

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Minimum LSP Bandwidth                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Indication  |            Reserved (not Padding!)            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Minimum LSP Bandwidth

      The Minimum LSP Bandwidth specifies the minimum bandwidth an LSP
      could reserve on an ODU container. The format and interpretation
      of this attribute must be as defined in OSPF GMPLS Extension
      [RFC4203].

      Indication

      This attribute is not applicable for this encoding type.

      It is important to note that Padding bytes defined in [RFC4203]
      should be interpreted as "Reserved". That means - TLV length of
      Interface Switch Capability Descriptor includes these bytes as well.

5.4.2. ODUk Switch Capability Specific Information

      This is the new sub-TLV added for supporting ODUk switching. This
      must be included when encoding type is "G.709 ODUk". TLV type of
      ODUk-SCSI-TLV shall be coded as 1. This Sub-TLV should contain one
      or more PER-SIGNALTYPE-BW-TLV sub-TLVs and/or ODUFLEX-BW-TLV
      sub-TLV (if applicable).







       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Type (1)           |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    PER-SIGNALTYPE-BW-TLV #1                   |
      |                          (TLV Length)                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             ....                              |



Ashok, et al.             Expires May 12, 2011                 [Page 11]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                    PER-SIGNALTYPE-BW-TLV #n                   |
      |                          (TLV Length)                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   ODUFLEX-BW-TLV (if applicable)              |
      |                          (TLV Length)                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

5.4.2.1 PER-SIGNALTYPE-BW-TLV

      PER-SIGNALTYPE-BW-TLV shall be included for each Signal Type that
      can be switched on the TE-Link with an exception of ODUflex for
      which a separate TLV type is defined. The TLV type of
      PER-SIGNALTYPE-BW-TLV shall be coded as 1. The format of this
      sub-TLV is as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Type (1)           |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Signal Type  |Bw Type| Flags |            Reserved           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Available ODUs at Prio 0    |    Available ODUs at Prio 1   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Available ODUs at Prio 2    |    Available ODUs at Prio 3   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Available ODUs at Prio 4    |    Available ODUs at Prio 5   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Available ODUs at Prio 6    |    Available ODUs at Prio 7   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Optimization Note:
      It is possible to optimize this bandwidth information by including
      the available bandwidth for the supported priority levels only. A
      bitmap (8 bits) can be added in place of  reserved bytes to
      indicate the priority values(8) for which available bandwidth is
      advertised.

   Signal Type

      This field (8 bits) must be coded as specified in OTN Signaling
      Extension [RFC4328]. The values defined in [RFC4328] pertains to
      [G.709-v1]. This needs to be extended to support additional ODU
      containers defined in more recent G.709 specifications [G.709-v3].





Ashok, et al.             Expires May 12, 2011                 [Page 12]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      Value     Type
      -----     ----
        4       ODU4 (100Gbps)
        5       ODU0 (1.25Gbps)
        10      ODUflex
        11      ODU1e (10Gbps Ethernet [GSUP.43])
        12      ODU2e (10Gbps Ethernet)
        13      ODU3e1 (40Gbps Ethernet [GSUP.43])
        14      ODU3e2 (40Gbps Ethernet [GSUP.43])
        15-39   Reserved (for future)
        40      ODU0_ANY (ODU0 and future 1.25Gbps ODU variants)
        41      ODU1_ANY (ODU1 and future 2.5Gbps ODU variants )
        42      ODU2_ANY (ODU2, ODU1e, ODU2e and future 10Gbps ODU variants)
        43      ODU3_ANY (ODU3, ODU3e1, ODU3e2 and future 40Gbps ODU variants)
        44      ODU4_ANY (ODU4 and future 100Gbps ODU variants)
        45-255  Reserved (for future)

       Signal Types 40 to 44 can be used for further optimizing the
       bandwidth encoding by advertising a single bandwidth entry for all
       the ODU types (of almost same rate) switchable on a given interface.
       For instance, assume an OTU interface that can be configured as
       OTU2 or OTU2e or OTU1e. Though the interface can potentially
       switch ODU2 or ODU2e or ODU1e, it is wasteful to advertise
       separate PER-SIGNALTYPE-BW-TLV for each ODU2 variants namely
       ODU1e, ODU2e and ODU2. In such cases, ODU2_ANY can be used. It is
       important to note that when ODUj_ANY bandwidth entry is included,
       no separate bandwidth entry for individual ODUj variants must be
       present. The route computation engine should treat ODUj_ANY as
       a wildcard entry for all the ODUj variants of the same rate.

   Bandwidth Type

      This field (4 bits) indicates the bandwidth (BW) type pertaining to
      "Available ODUs" field. The values supported are as follows:

      Value     Type
      -----     ----
        0       Max LSP Bandwidth
        1       Unreserved Bandwidth
        2-15    Reserved (for future)


   Flags

      This field (4 bits) should be interpreted as a bitmap. The bits are
      reserved for future use. This should be coded as 0x0. The receiving
      node should discard this field.




Ashok, et al.             Expires May 12, 2011                 [Page 13]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


   Available ODUs

      This field (16 bits) indicates the maximum number of ODU Containers
      of a given Signal-Type available on this TE-Link.

      When Bw-Type (=0) is "Max-Lsp-Bandwidth", The "Available ODUs" of
      a bundled link at priority p is defined to be the maximum of the
      "Available ODUs" at priority p of all of its component links.

      When Bw-Type (=1) is "Unreserved-Bandwidth", The "Available ODUs" of a
      bundled link at priority p is defined to be the sum of the
      "Available ODUs" at priority p of all of its component links.

      Bw-Type of 1 (Unreserved Bandwidth) is not applicable when there is
      no link bundling.

5.4.2.2 ODUFLEX-BW-TLV

      ODUFLEX-BW-TLV shall be included if ODUflex signal type is
      supported on the TE-Link. The TLV type of ODUFLEX-BW-TLV shall be
      coded as 2. The format of this sub-TLV is as follows:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Type (1)           |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Signal Type  |Bw Type| Flags |            Reserved           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 0             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 1             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 2             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 3             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 4             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 5             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 6             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Available BW in byes/sec at Prio 7             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Optimization Note:
      It is possible to optimize this bandwidth information by including



Ashok, et al.             Expires May 12, 2011                 [Page 14]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      the available bandwidth for the supported priority levels only. A
      bitmap (8 bits) can be added in place of  reserved bytes to
      indicate the priority values(8) for which available bandwidth is
      advertised.

      Fields of ODUFLEX-BW-TLV

      All the fields of ODUFLEX-BW-TLV are same as that of
      PER-SIGNALTYPE-BW-TLV except that "Available ODUs" in
      PER-SIGNALTYPE-BW-TLV is replaced by "Available BW in bytes/second"
      in ODUFLEX-BW-TLV.

      Available BW (in bytes/sec)

      Available BW (in bytes/sec) is represented in IEEE float-point
      format similar to Max-Lsp-Bandwidth in ISCD. Maximum bandwidth
      available  for ODUflex on the OTN interface is coded in this
      attribute. If OTU/ODU interface is composed of multiple ODU
      containers (through multi-stage multiplexing), the ODU container
      with the highest unreserved capacity for ODUflex shall be chosen
      for encoding this attribute.

      Available Bw (at Pi) = Max-Unreserved-TS-Count x TS-Nominal-Rate

      where,
      Max-Unreserved-TS-Count: Maximum OPU Tributary Slots available for
                               ODUflex service on a single ODU container.

      TS-Nominal-Rate: Nominal rate of an OPU Trib Slot on the ODU
                       Container in Bytes per second.

      When Bw-Type (=0) is "Max-Lsp-Bandwidth", The "Available Bw" of a
      bundled link at priority p is defined to be the maximum of the
      "Available Bw" at priority p of all of its component links.

      When Bw-Type (=1) is "Unreserved-Bandwidth", The "Available Bw"
      of a bundled link at priority p is defined to be the sum of the
      "Available Bw" at priority p of all of its component links.

      Bw-Type of 1 (Unreserved Bandwidth) is not of much value for
      ODUflex signale type. It is not mandatory to include this
      bandwidth type even for bundled links.

6. Backward Compatibility consideration

      As the definition of the pre-existing BW TLVs are not modified,
      this draft is fully backward compatible for all the legacy
      services supported in [RFC4328]. For supporting the OTN



Ashok, et al.             Expires May 12, 2011                 [Page 15]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      capabilities added since the first version of G.709 [G.709-v1],
      ODUk SCSI TLV encoding and interpretation is required.

7. Use Cases

      This sections presents some use-cases for bandwidth encoding
      and usage.

7.1. Links supporting line rate service only

       Assume OTU2 interface that supports ODU2 switching only. Interface
       Switching Capability Descriptor should be coded as follows:

       Max Lsp Bw = <ODU2 rate>    // Nominal rate of ODU2 in bytes per
                                   // second.
       Min Lsp Bw = <ODU2 rate>    // Nominal rate of ODU2 in bytes per
                                   // second.

       ODUk Switching Capability Specific Information:
       +===============+================+===========================+
       |  Signal Type  | Bandwidth Type |  Available ODUs at Prio P |
       +===============+================+===========================+
       |   2 (ODU2)    | 0 (Max-Lsp-Bw) |             1             |
       +---------------+----------------+---------------------------+

       ODUFLEX-BW-TLV will not be included as the ODUflex rate is not
       supported on the interface.

7.2. Multi-stage multiplexing

       Assume OTU3 interface that supports switching at line rate ODU3
       and lower rates - ODU0, ODU1, ODU2, ODU2e & ODUflex via
       multiplexing.

       Max Lsp Bw = <ODU3 rate>     // Nominal rate of ODU3 in bytes
                                    // per second.
       Min Lsp Bw = <ODU0 rate>     // Nominal rate of ODU0 in bytes
                                    // per second.

       ODUk Switching Capability Specific Information:

       +===============+================+===========================+
       |  Signal Type  | Bandwidth Type |  Available ODUs at Prio P |
       +===============+================+===========================+
       |    3 (ODU3)   | 0 (Max-Lsp-Bw) |            1              |
       +---------------+----------------+---------------------------+
       |    5 (ODU0)   | 0 (Max-Lsp-Bw) |            32             |
       +---------------+----------------+---------------------------+



Ashok, et al.             Expires May 12, 2011                 [Page 16]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


       |    1 (ODU1)   | 0 (Max-Lsp-Bw  |            16             |
       +---------------+----------------+---------------------------+
       |    2 (ODU2)   | 0 (Max-Lsp-Bw) |            4              |
       +---------------+----------------+---------------------------+
       |    12 (ODU2e) | 0 (Max-Lsp-Bw) |            3              |
       +---------------+----------------+---------------------------+

       +===============+================+===========================+
       |  Signal Type  | Bandwidth Type |   Available Bw at Prio P  |
       +===============+================+===========================+
       | 10 (ODUflex)  | 0 (Max-Lsp-Bw) |    (32 * 1,254,703)/8     |
       +===============+================+===========================+

7.3. Link bundle with dissimilar OTU/ODU interfaces

       Assume a link bundle involving OTU3, OTU2 and OTU2e interfaces
       that support switching at all standard LO-ODUs.

       Max Lsp Bw = <ODU3 rate>     // Nominal rate of ODU3 in bytes
                                    // per second.
       Min Lsp Bw = <ODU0 rate>     // Nominal rate of ODU0 in bytes
                                    // per second.

       ODUk Switching Capability Specific Information:

       +===============+================+===========================+
       |  Signal Type  | Bandwidth Type |  Available ODUs at Prio P |
       +===============+================+===========================+
       |    3 (ODU3)   | 0 (Max-Lsp-Bw) |             1             |
       +---------------+----------------+---------------------------+
       |    5 (ODU0)   | 0 (Max-Lsp-Bw) | 32 (i.e. Max of 32 and 8) |
       +---------------+----------------+---------------------------+
       |    1 (ODU1)   | 0 (Max-Lsp-Bw  | 16 (i.e. Max of 16 and 4) |
       +---------------+----------------+---------------------------+
       |    2 (ODU2)   | 0 (Max-Lsp-Bw) |  4 (i.e. Max of 4 and 1)  |
       +---------------+----------------+---------------------------+
       |    12 (ODU2e) | 0 (Max-Lsp-Bw) |  3 (i.e. Max of 3 and 1)  |
       +---------------+----------------+---------------------------+
       |    3 (ODU3)   |  1 (Unres-Bw)  |            1              |
       +---------------+----------------+---------------------------+
       |    5 (ODU0)   |  1 (Unres-Bw)  |       40 (i.e. 32 + 8)    |
       +---------------+----------------+---------------------------+
       |    1 (ODU1)   |  1 (Unres-Bw)  |       20 (i.e. 16 + 4)    |
       +---------------+----------------+---------------------------+
       |    2 (ODU2)   |  1 (Unres-Bw)  |        5 (i.e. 4 + 1)     |
       +---------------+----------------+---------------------------+
       |    12 (ODU2e) |  1 (Unres-Bw)  |        4 (i.e. 3 + 1)     |
       +---------------+----------------+---------------------------+



Ashok, et al.             Expires May 12, 2011                 [Page 17]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


       +===============+================+===========================+
       |  Signal Type  | Bandwidth Type |   Available Bw at Prio P  |
       +===============+================+===========================+
       | 10 (ODUflex)  | 0 (Max-Lsp-Bw) |    (32 * 1,254,703)/8     |
       +===============+================+===========================+

8. Security Considerations

   There are no additional security implications to OSPF routing
   protocol due to the extensions captured in this document.

9. IANA Considerations

   The memo introduces two new sub-TLVs of the Interface Switch Capability
   Descriptor Sub-TLV of TE-LSA. [RFC3630] says that the sub-TLVs of the
   TE Link TLV in the range 10-32767 must be assigned by Expert Review,
   and must be registered with IANA.

   The memo has three suggested values for the three sub-TLVs of the
   Interface Switch Capability Descriptor Sub-TLV; it is strongly
   recommended that the suggested values be granted, as there are
   interoperable implementations using these values.

10.  References

10.1.  Normative References

      [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
                Requirement Levels".

      [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
                (TE) Extensions to OSPF Version 2", RFC 3630

      [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
                (GMPLS) Signaling Functional Description", RFC 3471,
                January 2003.

      [RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling in
                MPLS Traffic Engineering (TE)"

      [RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support of
                Generalized Multi-Protocol Label Switching (GMPLS)"

      [RFC4204] Lang, J., Ed., "Link Management Protocol (LMP)", RFC
                4204, October 2005.

      [RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label
                Switching (GMPLS) Signaling Extensions for G.709 Optical



Ashok, et al.             Expires May 12, 2011                 [Page 18]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


                Transport Networks Control", RFC 4328, January 2006.

      [RFC5339]  Le Roux, JL. and D. Papadimitriou, "Evaluation of Existing
                 GMPLS Protocols against Multi-Layer and Multi-Region
                 Networks (MLN/MRN)", RFC 5339, September 2008.

      [G.709-v3] ITU-T, "Interfaces for the Optical Transport Network
                 (OTN)", G.709 Recommendation, December 2009.

      [GSUP.43]   ITU-T, "Proposed revision of G.sup43 (for agreement)",
                 December 2008.


10.2.  Informative References

      [RFC3945] Mannie, E., "Generalized Multi-Protocol Label Switching
                (GMPLS) Architecture", RFC 3945, October 2004.

      [G.709-v1] ITU-T, "Interface for the Optical Transport Network
                 (OTN)," G.709 Recommendation (and Amendment 1), February
                 2001 (October 2001).

      [G.872] ITU-T, "Architecture of optical transport networks",
              November 2001 (11 2001).

      [G.709-FRAME] F. Zhang, D. Li, H. Li, S. Belotti, "Framework for
                    GMPLS and PCE Control of  G.709 Optical Transport
                    Networks", draft-zhang-ccamp-gmpls-g709-framework-02,
                    work in progress.

      [WSON-FRAME] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS
                   and PCE Control of Wavelength Switched Optical Networks
                   (WSON)", draft-ietf-ccamp-rwa-wson-framework, work in
                   progress.

11. Acknowledgements
   Authors would like to thank Lou Berger, Biao Lu, Ping Pan, Radhakrishna
   Valiveti and Mohit Misra for review comments and suggestions.


Author's Addresses

      Snigdho Bardalai
      Infinera Corporation
      169, Java Drive
      Sunnyvale, CA-94089
      USA
      Email: sbardalai@infinera.com



Ashok, et al.             Expires May 12, 2011                 [Page 19]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      Rajan Rao
      Infinera Corporation
      169, Java Drive
      Sunnyvale, CA-94089
      USA
      Email: rrao@infinera.com


      Ashok Kunjidhapatham
      Infinera Corporation
      169, Java Drive
      Sunnyvale, CA-94089
      USA
      Email: akunjidhapatham@infinera.com


      Khuzema Pithewan
      Infinera Corporation
      169, Java Drive
      Sunnyvale, CA-94089
      USA
      Email: kpithewan@infinera.com



Appendix A

   A. Abbreviations:

      CBR          Constant Bit Rate
      GFP          Generic Framing Procedure
      HO-ODU       Higher Order ODU
      LSC          Lambda Switch Capable
      LSP          Label Switched Path
      LO-ODU       Lower Order ODU
      ISCD         Interface Switch Capability Descriptor
      OCC          Optical Channel Carrier
      OCG          Optical Carrier Group
      OCh          Optical Channel (with full functionality)
      OChr         Optical Channel (with reduced functionality)
      ODTUG        Optical Date Tributary Unit Group
      ODU          Optical Channel Data Unit
      OMS          Optical Multiplex Section
      OMU          Optical Multiplex Unit
      OPS          Optical Physical Section
      OPU          Optical Channel Payload Unit
      OSC          Optical Supervisory Channel
      OTH          Optical Transport Hierarchy



Ashok, et al.             Expires May 12, 2011                 [Page 20]


Internet-Draft  draft-ashok-ccamp-gmpls-ospf-g709-02.txtNovember 8, 2010


      OTM          Optical Transport Module
      OTN          Optical Transport Network
      OTS          Optical Transmission Section
      OTU          Optical Channel Transport Unit
      OTUkV        Functionally Standardized OTUk
      SCSI         Switch Capability Specific Information
      TDM          Time Division Multiplex

   B. Terminology

      1. ODUk and ODUj

      ODUk refers to the ODU container that is directly mapped to an
      OTU container. ODUj refers to the lower order ODU container that
      is mapped to an higher order ODU container via multiplexing.

      2. LO-ODU and HO-ODU

      LO-ODU refers to the ODU client layer of lower rate that is mapped
      to an ODU server layer of higher rate via multiplexing. HO-ODU
      refers to the ODU server layer of higher rate that supports
      mapping of one or more ODU client layers of lower rate.

      In multi-stage multiplexing case, a given ODU layer can be a
      client for one stage (interpreted as LO-ODU) and at the same
      time server for another stage (interpreted as HO-ODU). In this
      case, the notion of LO-ODU and HO-ODU needs to be interpreted in a
      recursive manner.

                               ODU0   | (LO-ODU)
                                 |    |
                                 |    | Stage #1
                                 V    |
                   (LO-ODU) |  ODU1   | (HO-ODU)
                            |    |
                   Stage #2 |    |
                            |    V
                   (HO-ODU) |  ODU2   | (LO-ODU)
                                 |    |
                                 |    | Stage #3
                                 V    |
                               ODU3   | (HO-ODU)

                      Figure-4 : LO-ODU and HO-ODU







Ashok, et al.             Expires May 12, 2011                 [Page 21]