Network Working Group                                   Tony Bates
Internet Draft                                       Cisco Systems
Expiration Date: June  1997                           Ravi Chandra
                                                     Cisco Systems
                                                         Dave Katz
                                                     Cisco Systems
                                                     Yakov Rekhter
                                                     Cisco Systems


                   Multiprotocol Extensions for BGP-4

                 draft-bates-bgp4-multiprotocol-00.txt


1. Status of this Memo

   This document is an Internet-Draft.  Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups.  Note that other groups may also distribute
   working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as ``work in progress.''

   To learn the current status of any Internet-Draft, please check the
   ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
   Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
   munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
   ftp.isi.edu (US West Coast).


2. Abstract

   Currently BGP-4 [BGP-4] is capable of carrying routing information
   only for IPv4 [IPv4]. This document defines extensions to BGP-4 to
   enable it to carry routing information for multiple Network Layer
   protocols (e.g., IPv6, IPX, etc...). The extensions are backward
   compatible - a router that supports the extensions can interoperate
   with a router that doesn't support the extensions.









Bates, Chandra, Katz, Rekhter                                   [Page 1]


Internet Draft   draft-bates-bgp4-multiprotocol-00.txt     December 1996


3. Overview

   The only three pieces of information carried by BGP-4 that are IPv4
   specific are (a) the NEXT_HOP attribute (expressed as an IPv4
   address), (b) AGGREGATOR (contains an IPv4 address), and (c) NLRI
   (expressed as IPv4 address prefixes). This document assumes that any
   BGP speaker (including the one that supports multiprotocol
   capabilities defined in this document) will have to support IPv4 and
   have an IPv4 address.  Therefore, to enable BGP-4 to support routing
   for multiple Network Layer protocols the only two things that have to
   be added to BGP-4 are (a) the ability to associate a particular
   Network Layer protocol with the next hop information, and (b) the
   ability to associated a particular Network Layer protocol with NLRI.
   To identify individual Network Layer protocols this document uses
   Address Family, as defined in [RFC1700].

   One could further observe that the next hop information (the
   information provided by the NEXT_HOP attribute) is meaningful (and
   necessary) only in conjunction with the advertisements of reachable
   destinations - in conjunction with the advertisements of unreachable
   destinations (withdrawing routes from service) the next hop
   information is meaningless. This suggests that the advertisement of
   reachable destinations should be grouped with the advertisement of
   the next hop to be used for these destinations, and that the
   advertisement of reachable destinations should be segregated from the
   advertisement of unreachable destinations.

   To provide backward compatibility, as well as to simplify
   introduction of the multiprotocol capabilities into BGP-4 this
   document uses two new attributes, Multiprotocol Reachable NLRI
   (MP_REACH_NLRI), and Multiprotocol Unreachable NLRI
   (MP_UNREACH_NLRI). The first one (MP_REACH_NLRI) is used to carry the
   set of reachable destinations together with the next hop information
   to be used for forwarding to these destinations. The second one
   (MP_UNREACH_NLRI) is used to carry the set of unreachable
   destinations.  Both of these attributes are optional and non-
   transitive.  This way a BGP speaker that doesn't support the
   multiprotocol capabilities would just ignore the information carried
   in these attributes, and wouldn't pass it to other BGP speakers.












Bates, Chandra, Katz, Rekhter                                   [Page 2]


Internet Draft   draft-bates-bgp4-multiprotocol-00.txt     December 1996


4. Multiprotocol Reachable NLRI - MP_REACH_NLRI (Type Code 14):

   This is an optional non-transitive attribute that can be used for the
   following purposes:

      (a) to advertise a feasible route to a peer

      (b) to permit a router to advertise the Network Layer address of
      the router that should be used as the next hop to the destinations
      listed in the Network Layer Reachability Information field of the
      MP_NLRI attribute.

      (c) to allow a given router to report some or all of the
      Subnetwork Points of Attachment (SNPAs) that exist within the
      local system

   The attribute contains one or more triples <Address Family, Next Hop
   Information, Network Layer Reachability Information>, where each
   triple is encoded as shown below:


      +---------------------------------------------------------+
      | Address Family (2 octets)                               |
      +---------------------------------------------------------+
      | Length of Next Hop Network Address (1 octet)            |
      +---------------------------------------------------------+
      | Network Address of Next Hop (variable)                  |
      +---------------------------------------------------------+
      | Number of SNPAs (1 octet)                               |
      +---------------------------------------------------------+
      | Length of first SNPA(1 octet)                           |
      +---------------------------------------------------------+
      | First SNPA (variable)                                   |
      +---------------------------------------------------------+
      | Length of second SNPA (1 octet)                         |
      +---------------------------------------------------------+
      | Second SNPA (variable)                                  |
      +---------------------------------------------------------+
      | ...                                                     |
      +---------------------------------------------------------+
      | Length of Last SNPA (1 octet)                           |
      +---------------------------------------------------------+
      | Last SNPA (variable)                                    |
      +---------------------------------------------------------+
      | Network Layer Reachability Information Length (2 octets)|
      +---------------------------------------------------------+
      | Network Layer Reachability Information (variable)       |
      +---------------------------------------------------------+



Bates, Chandra, Katz, Rekhter                                   [Page 3]


Internet Draft   draft-bates-bgp4-multiprotocol-00.txt     December 1996


   The use and meaning of these fields are as follows:

      Address Family:

         This field carries the identity of the Network Layer protocol
         associated with the Network Address that follows. Presently
         defined values for this field are specified in RFC1700.

      Length of Next Hop Network Address:

         A 1 octet field whose value expresses the length of the
         "Network Address of Next Hop" field as measured in octets

      Network Address of Next Hop:

         A variable length field that contains the Network Address of
         the next router on the path to the destination system

      Number of SNPAs:

         A 1 octet field which contains the number of distinct SNPAs to
         be listed in the following fields.  The value 0 may be used to
         indicate that no SNPAs are listed in this attribute.

      Length of Nth SNPA:

         A 1 octet field whose value expresses the length of the "Nth
         SNPA of Next Hop" field as measured in semi-octets

      Nth SNPA of Next Hop:

         A variable length field that contains an SNPA of the router
         whose Network Address is contained in the "Network Address of
         Next Hop" field.  The field length is an integral number of
         octets in length, namely the rounded-up integer value of one
         half the SNPA length expressed in semi-octets; if the SNPA
         contains an odd number of semi-octets, a value in this field
         will be padded with a trailing all-zero semi-octet.

      Network Layer Reachability Information Length:

         This 2-octets unsigned integer indicates the total length of
         the Network Layer Reachability Information field in octets.

      Network Layer Reachability Information:

         A variable length field that lists the destinations for the
         feasible routes that are being advertised in this attribute.



Bates, Chandra, Katz, Rekhter                                   [Page 4]


Internet Draft   draft-bates-bgp4-multiprotocol-00.txt     December 1996


         Each NLRI is encoded as specified in the "NLRI encoding"
         section of this document.

   The next hop information carried in the MP_REACH_NLRI path attribute
   defines the Network Layer address of the border router that should be
   used as the next hop to the destinations listed in the MP_NLRI
   attribute in the UPDATE message.  When advertising a MP_REACH_NLRI
   attribute to an external peer, a router may use one of its own
   interface addresses in the next hop component of the attribute,
   provided the external peer to which the route is being advertised
   shares a common subnet with the next hop address.  This is known as a
   "first party" next hop.  A BGP speaker can advertise to an external
   peer an interface of any internal peer router in the next hop
   component, provided the external peer to which the route is being
   advertised shares a common subnet with the next hop address.  This is
   known as a "third party" next hop information.  A BGP speaker can
   advertise any external peer router in the next hop component,
   provided that the Network Layer address of this border router was
   learned from an external peer, and the external peer to which the
   route is being advertised shares a common subnet with the next hop
   address.  This is a second form of "third party" next hop
   information.

   Normally the next hop information is chosen such that the shortest
   available path will be taken.  A BGP speaker must be able to support
   disabling advertisement of third party next hop information to handle
   imperfectly bridged media or for reasons of policy.

   A BGP speaker must never advertise an address of a peer to that peer
   as a next hop, for a route that the speaker is originating.  A BGP
   speaker must never install a route with itself as the next hop.

   When a BGP speaker advertises the route to an internal peer, the
   advertising speaker should not modify the next hop information
   associated with the route.  When a BGP speaker receives the route via
   an internal link, it may forward packets to the next hop address if
   the address contained in the attribute is on a common subnet with the
   local and remote BGP speakers.

   An UPDATE message that carries the MP_REACH_NLRI must also carry the
   ORIGIN and the AS_PATH attributes (both in EBGP and in IBGP
   exchanges).  Moreover, in IBGP exchanges such a message must also
   carry the LOCAL_PREF attribute.

   When an UPDATE message carries the MP_REACH_NLRI attribute, the
   attribute shall be placed after all other attributes in the message.





Bates, Chandra, Katz, Rekhter                                   [Page 5]


Internet Draft   draft-bates-bgp4-multiprotocol-00.txt     December 1996


5. Multiprotocol Unreachable NLRI - MP_UNREACH_NLRI (Type Code 15):

   This is an optional non-transitive attribute that can be used for the
   purpose of withdrawing multiple unfeasible routes from service.

   The attribute contains one or more triples <Address Family,
   Unfeasible Routes Length, Withdrawn Routes>, where each triple is
   encoded as shown below:

      +-------------------------------------+
      | Address Family (2 octets)           |
      +-------------------------------------+
      | Unfeasible Routes Length (2 octets) |
      +-------------------------------------+
      | Withdrawn Routes (variable)         |
      +-------------------------------------+



   The use and the meaning of these fields are as follows:

      Address Family:

         This field carries the identity of the Network Layer protocol
         associated with the NLRI that follows. Presently defined values
         for this field are specified in RFC1700.

      Unfeasible Routes Length:

         This 2-octets unsigned integer indicates the total length of
         the Withdrawn Routes field in octets.

      Withdrawn Routes:

         This is a variable length field that contains a list of NLRIs
         for the routes that are being withdrawn from service. Each NLRI
         is encoded as specified in the "NLRI encoding" section of this
         document.

   An UPDATE message that contains the MP_UNREACH_NLRI is not required
   to carry any other path attributes.










Bates, Chandra, Katz, Rekhter                                   [Page 6]


Internet Draft   draft-bates-bgp4-multiprotocol-00.txt     December 1996


6. NLRI encoding

   The Network Layer Reachability information is encoded as one or more
   2-tuples of the form <length, prefix>, whose fields are described
   below:


      +---------------------------+
      |   Length (1 octet)        |
      +---------------------------+
      |   Prefix (variable)       |
      +---------------------------+



   The use and the meaning of these fields are as follows:

      a) Length:

         The Length field indicates the length in bits of the address
         prefix. A length of zero indicates a prefix that matches all
         (as specified by the address family) addresses (with prefix,
         itself, of zero octets).

      b) Prefix:

         The Prefix field contains address prefixes followed by enough
         trailing bits to make the end of the field fall on an octet
         boundary.  Note that the value of trailing bits is irrelevant.



7. Use of IPv6 Link-Local Addresses



8. Security Considerations

   Security issues are not discussed in this document.












Bates, Chandra, Katz, Rekhter                                   [Page 7]


Internet Draft   draft-bates-bgp4-multiprotocol-00.txt     December 1996


9. Acknowledgements

   To be supplied.


10. References


   [BGP-4]

   [IPv4]

   [IPv6]

   [RFC1700]


11. Author Information


   Tony Bates
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134
   email: tbates@cisco.com

   Ravi Chandra
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134
   email: rchandra@cisco.com

   Dave Katz
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134
   email: dkatz@cisco.com

   Yakov Rekhter
   Cisco Systems, Inc.
   170 West Tasman Drive
   San Jose, CA 95134
   email: yakov@cisco.com








Bates, Chandra, Katz, Rekhter                                   [Page 8]