CCAMP Working Group                                        D. Ceccarelli
Internet-Draft                                               D. Caviglia
Intended status: Standards Track                                Ericsson
Expires: April 18, 2011                                       S. Belotti
                                                               P. Grandi
                                                          Alcatel-Lucent
                                                                F. Zhang
                                                                   D. Li
                                                     Huawei Technologies
                                                                J. Drake
                                                                 Juniper
                                                        October 15, 2010


Technology Agnostic OSPF Traffic Engineering Extensions  for Generalized
                              MPLS (GMPLS)
                draft-bccdg-ccamp-gmpls-ospf-agnostic-00

Abstract

   This document defines a new approach to Generalized Multiprotocol
   Label Switching (GMPLS) bandwidth advertisement aiming at providing
   the Network Elements (NEs) and Path Computation Elements (PCEs) with
   all the data required for crank-backs minimization and scalability
   optimization.

   A new Open Shortest Path First - Traffic Engineering (OSPF-TE)
   routing protocol sub-tlv is defined for bandwidth advertisement per
   service type.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 18, 2011.

Copyright Notice



Ceccarelli, et al.       Expires April 18, 2011                 [Page 1]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
     1.1.  Conventions Used in This Document  . . . . . . . . . . . .  3
   2.  OSPF Extensions  . . . . . . . . . . . . . . . . . . . . . . .  3
     2.1.  Bandwidth Accounting sub-TLV . . . . . . . . . . . . . . .  4
   3.  LSA composition  . . . . . . . . . . . . . . . . . . . . . . .  8
   4.  Examples . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
   5.  Applicability  . . . . . . . . . . . . . . . . . . . . . . . . 12
   6.  Compatibility Considerations . . . . . . . . . . . . . . . . . 16
   7.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
   8.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 16
   9.  Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 16
   10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17
   11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
     11.1. Normative References . . . . . . . . . . . . . . . . . . . 17
     11.2. Informative References . . . . . . . . . . . . . . . . . . 17
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 17



















Ceccarelli, et al.       Expires April 18, 2011                 [Page 2]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


1.  Introduction

   An Opaque OSPF (Open Shortest Path First) LSA (Link State
   Advertisements) carrying application-specific information can be
   generated and advertised to other nodes following the flooding
   procedures defined in [RFC5250].  Three types of opaque LSA are
   defined, i.e. type 9 - link-local flooding scope, type 10 - area-
   local flooding scope, type 11 - AS flooding scope.

   Traffic Engineering (TE) LSA using type 10 opaque LSA is defined in
   [RFC3630] for TE purposes.  This type of LSA is composed of a
   standard LSA header and a payload including one top-level TLV (Type/
   Length/Value triplet) and possible several nested sub-TLVs.
   [RFC3630] defines two top-level TLVs: Router Address TLV and Link
   TLV; and nine possible sub-TLVs for the Link TLV, used to carry link
   related TE information.

   The Link type sub-TLVs are enhanced by [RFC4203] in order to support
   GMPLS networks and related specific link information.

   In GMPLS networks each node generates TE LSAs to advertise its TE
   information and capabilities (link-specific or node-specific),
   through the network.  The TE information carried in the LSAs are
   collected by the other nodes of the network and stored into their
   local Traffic Engineering Databases (TED).

   In GMPLS networks, routing serves as the foundation for automatically
   establishing Label Switched Paths (LSPs) through GMPLS RSVP-TE
   signaling.

   This document describes technology agnostic OSPF LSA extensions to
   support connection oriented tranport networks under the control of
   GMPLS (e.g.  OTN, SDH, MPLS-TP).  In particular a new OSPF-TE LSP is
   defined for bandwidth advertisement per service type tanking into
   account priorities and technology specific capabilities.

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].


2.  OSPF Extensions

   Each TE LSA can carry a top-level link TLV with several nested sub-
   TLVs to describe different attributes of a TE link.  Two top-level
   TLVs are defined in [RFC 3630]. (1) The Router Address TLV (referred



Ceccarelli, et al.       Expires April 18, 2011                 [Page 3]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


   to as the Node TLV) and (2) the TE link TLV.  One or more sub-TLVs
   can be nested into the two top-level TLVs.  The sub-TLV set for the
   two top-level TLVs are also defined in [RFC 3630] and [RFC 4203].

   This document defines a new link sub-TLV, called Bandwidth Accounting
   (BA) sub-TLV (Sub-tlv value TBA by IANA, suggested 26).

   One or more component links can be bundled as a TE link.  In case of
   link bundling a single BA sub-TLV will be used to describe several
   component links.

2.1.  Bandwidth Accounting sub-TLV

   The BA sub-TLV has a so generic format that it can be used for the
   advertisement of any type of transport technology, from SDH/SONET to
   OTN, from L2SC to PSC etc.  The main difference from the ISCD defined
   in [RFC4202] is the fact that unreserved bandwidth is advertised per
   service type per priority.  The format of the BA sub-TLV is based on
   "8 bytes" data blocks repeated for each service type/priority/
   technology specific capability combination as is illustrated in
   Figure 1.






























Ceccarelli, et al.       Expires April 18, 2011                 [Page 4]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Switching Cap |   Encoding    |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Service Type  | M |  T.S. Flags   |     Reserved        |Prior|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Bandwidth                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Service Type  | M |  T.S. Flags   |     Reserved        |Prior|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Bandwidth                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Service Type  | M |  T.S. Flags   |     Reserved        |Prior|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Bandwidth                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                             ...                               ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Service Type  | M |  T.S. Flags   |     Reserved        |Prior|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Bandwidth                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


               Figure 1: Bandwidth Accounting sub-TLV format

   Where:

   o Switching Capability (8 bits): the values for this field are
   defined in [RFC4203] section 1.4.

   o Encoding (8 bits): the values for this field are defined in
   [RFC3471] section 3.1.1 and [RFC4328] section 3.1.1

   - Data Blocks: Data blocks are composed by 64 bits and contain
   Service Type, M field, Technology Specific Flags, Priority and
   Bandwidth.  For the definition of each field refer below.  The number
   of data blocks depends on the number of service types, priority and
   technology specific features supported.  Blocks declared in the LSA
   MUST contain a supported service type.  Blocks declaring bandwidth at
   priority Pi, MUST NOT be declared in case priority Pi is not
   supported by the network element.  Data blocks SHOULD be ordered from
   the highest to the lowest priority.  If no priority is supported,
   just the 0 priority MUST be advertised.  Please see the Example
   section for further details.

   o Service Type (8 bits): Indicates the type of service supported by



Ceccarelli, et al.       Expires April 18, 2011                 [Page 5]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


   TE link (e.g.  STMx in an SDH network, ODUx in an OTN network).  Each
   Service Type in a TE-link can be advertised only once for each
   supported priority.

   o M field (2 bits): This field defines the meaning of the Bandwidth
   field.  It states that the Bandwidth field is indicating Unreserved
   Bandwidth, Max LSP Bandwidth or Available Bandwidth.  Possible values
   are:

      0 - Unreserved bandwidth at priority Pi

      1 - Max LSP bandwidth at priority Pi

   For the service types where the advertisement of more than one of the
   previous values needs to be advertised (e.g.  OTN ODUflex, MPLS-TP
   interface), a data block for each value MUST be advertised.  For
   example, when advertising an ODUflex service type in an OTN network,
   both Unreserved bandwidth and MAX LSDP bandwidth are advertised as
   illustrated in Figure 2 (assuming supported priorities: P1 and P5).

   [EDITOR NOTE]: Under Discussion - M=2 - Available bandwdith at
   priorioty Pi, Where Available bandwidth is defined as the unused link
   bandwidth available for additional non-traffic engineered IP/LDP
   forwarding and can be used as input to a node equal cost multipath
   load balancing function


























Ceccarelli, et al.       Expires April 18, 2011                 [Page 6]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Switching Cap |   Encoding    |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    ODUflex    |M=0|  T.S. Flags   |     Reserved        |  P1 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Unreserved Bandwidth @ P1                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    ODUflex    |M=1|  T.S. Flags   |     Reserved        |  P1 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Max LSP Bandwidth @ P1                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    ODUflex    |M=0|  T.S. Flags   |     Reserved        |  P5 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                Unreserved Bandwidth @ P1                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    ODUflex    |M=1|  T.S. Flags   |     Reserved        |  P5 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                   Max LSP Bandwidth @ P1                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                   Figure 2: M field utilization example

   o Technology Specific Flags (8 bits): These bits are used for the
   advertisement of technology specific interface capabilities and are
   defined in companion technology specific IDs.  Depending on the
   technology it could be possible to have different data block
   advertised for different cabability flags.

   o Reserved (11 bits): Reserved bits MUST be set to zero.

   o Priority (3 bits): Indicates the priority related to the advertised
   service type.  Only supported priorities MUST be advertised.

   o Bandwidth (32 bits): Independently on the type of bandwidth being
   advertised (see M field), this field is expressed in Bytes/sec in
   IEEE floating point format unless differently stated in technology
   specific documents.

   The maximum bandwidth that an LSP can occupy in a TE link is
   determined by the component link with the maximum unreserved
   bandwidth in such TE link.  For example, if two OTN OTU3 component
   links are bundled in a TE link, the unreserved bandwidth of the first
   component link is 20*1.25 Gbps, and the unreserved bandwidth of the
   second component link is 24*1.25Gbps, then the unreserved bandwidth
   of this TE link is 44*1.25Gbps, but the maximum bandwidth an LSP can



Ceccarelli, et al.       Expires April 18, 2011                 [Page 7]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


   occupy in this TE link is 24*1,25Gbps, not 44*1,25Gbps.

   All the reserved fields MUST be set to zero and SHOULD be ignored
   when received.


3.  LSA composition

   Each NE generates an LSA to describe the attributes of each TE link.
   If we suppose to have unnumbered link IDs, the LSA should carry a
   link TLV with the following nested minimal sub-TLVs:



      < Link > ::=  < Link Type > < Link ID > < Link
      Local/Remote Identifiers > < Generalized-ISCD >


   o Link Type sub-TLV: Defined in [RFC 3630].

   o Link ID sub-TLV: Defined in [RFC 3630], for point-to-point link,
   indicates the remote router ID.

   o Link Local/Remote Identifiers sub-TLV: Defined in [RFC 4203],
   indicates the local link ID and the remote link ID.

   o Bandwidth Accounting sub-TLV: Defined in this document, carries the
   Bandwidth related information of the advertised TE-link.


4.  Examples

   The examples in the following pages are not normative and are not
   intended to infer or mandate any specific implementation.  Moreover
   they aim at giving a general idea of the utilization of the BA sub-
   TLV in a technology agnostic scenario.

   Figure 3 shows the case of a TE-link composed of two component links.



                      +------+ component link 1 +------+
                      |      +------------------+      |
                      |  N1  +------------------+  N2  |
                      |      | component link 2 |      |
                      +------+                  +------+





Ceccarelli, et al.       Expires April 18, 2011                 [Page 8]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


                             Figure 3: Example

   The nominal bandwidth of the two component links is 10Gbps and 40Gbps
   respectively.  The former has the capability of carrying service
   types A and B, while the latter, service types B and C, where A and C
   are fixed bandwidth service types (just unreserved bandwidth is
   advertised) and B variable bandwidth service types (unreserved
   bandwidth and Max LSP bandwidth advertised).  The supported
   priorities are:0 and 3.

   In this example the two component links are bundled as a TE link but
   it could also be possible to consider each of them as separate TE
   links.

   If the two component links are bundled together, N1 and N2 should
   assign a link local ID to the TE link and then N1 can get the link
   remote ID automatically or manually.

   Just after the creation of the TE Link comprising the two component
   links, the BA sub-TLV would be advertised as follows:































Ceccarelli, et al.       Expires April 18, 2011                 [Page 9]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Switching Cap |    Encoding   |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(A)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 10 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(A)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 10 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 50 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=1|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Max LSP Bandwidth = 40 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 50 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=1|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Max LSP Bandwidth = 40 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(C)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 40 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(C)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 40 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                    Figure 4: Example - BA sub-TLV(to)

   Suppose that at time t1 an service type B LSP is created allocating
   35 Gbps at priority 3.  The BA sub-TLV will be modified as follows:








Ceccarelli, et al.       Expires April 18, 2011                [Page 10]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Switching Cap |    Encoding   |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(A)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 10 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(A)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 10 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 50 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=1|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Max LSP Bandwidth = 40 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 15 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=1|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Max LSP Bandwidth = 10 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(C)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 40 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(C)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 5 Gbps                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                    Figure 5: Example - BA sub-TLV(t1)

   The last example shows how the prehemption is managed.  In
   particular, if at time t2 a new 15 GBps service type B LSP with
   priority 0 is created, the LSP with priority 3 is pre-empted and its
   resources (or part of them) are allocated to the LSP with higher
   priority.  The BA sub-TLV is updated accordingly to Figure 6:





Ceccarelli, et al.       Expires April 18, 2011                [Page 11]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Switching Cap |    Encoding   |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(A)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 10 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(A)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 10 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 35 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=1|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Max LSP Bandwidth = 25 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 35 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(B)    |M=1|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Max LSP Bandwidth = 25 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(C)    |M=0|  T.S. Flags   |    Reserved         |  P0 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 15 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  S.Type(C)    |M=0|  T.S. Flags   |    Reserved         |  P3 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Unreserved Bandwidth = 15 Gbps                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                    Figure 6: Example - BA sub-TLV (t2)


5.  Applicability

   The goal of this section is providing a comparison in term of
   bandwidth utilization between the BA sub-TLV based advertisement and
   the [RFC4203] based one.  In order to provide a meaningful comparison
   between the two solutions (i.e. with same type and quantity of



Ceccarelli, et al.       Expires April 18, 2011                [Page 12]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


   information carried) it is necessary to assume [RFC4203] tools
   properly extended.

   In other words it is assumed that both unreserved bandwidth and max
   LSP bandwidth are advertised per signal type.  The unreserved
   bandwidth per signal type could be advertised by means of an
   unreserved bandwidth sub-tlv per signal type (1 header word + 8 body
   words) or using the technology specific part of the ISCD (8 words).
   In this example the utilization of the technology specific part of
   the ISCD is considered in order to take into account the most
   optimized option.

   The following example is based on the advertisement of a simple link
   supporting six different types of fixed bandwidth service types
   (A,B,C,D,E,F) and a variable length service type (G).


                      +------+                  +------+
                      |      |      TE-link     |      |
                      |  N1  +------------------+  N2  |
                      |      |                  |      |
                      +------+                  +------+


                             Figure 7: Example

   Three different cases are analyzed:

      - 8 priorities supported

      - 5 priorities supported

      - 1 priorities supported

   In the first case, [RFC4203] approach would use 1 ISCD per signal
   type.  The ISCD would need to be extended as follows:















Ceccarelli, et al.       Expires April 18, 2011                [Page 13]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Switching Cap |   Encoding    |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 0              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 1              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 2              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 3              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 4              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 5              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 6              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                  Max LSP Bandwidth at priority 7              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  +
   |                  Technology Specific Part                     |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  | S
   |                  Technology Specific Part                     |  | W
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  | I
   |                  Unreserved Bandwidth at priority 0           |  | T
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  | C
   |                  Unreserved Bandwidth at priority 1           |  | H.
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   |                  Unreserved Bandwidth at priority 2           |  | C
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  | A
   |                  Unreserved Bandwidth at priority 3           |  | P.
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  |
   |                  Unreserved Bandwidth at priority 4           |  | S
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  | P
   |                  Unreserved Bandwidth at priority 5           |  | E
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  | C.
   |                  Unreserved Bandwidth at priority 6           |  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  | I
   |                  Unreserved Bandwidth at priority 7           |  | N
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  + F.


                             Figure 8: Example

   The amount of words used per ISCD is 20 for a total amount of 140



Ceccarelli, et al.       Expires April 18, 2011                [Page 14]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


   words.  On the other side, using the BA sub-TLV these words would be
   used:

      - 1 word for type/length declaration

      - 1 word for sub-tlv header

      - 2 words per (fixed) service type per priority = 2*6*8 = 96

      - 4 words per (variable) service type per priority = 4*1*8 = 32

   Total words used with 8 priorities: 140 (RFC4203) vs 130 (BA sub-
   TLV).

   Performing the same computation in a scenario where 5 priorities are
   supported, the number of words used in the [RFC4203] approach would
   be the same (140), while in the BA sub-TLV would be:

      - 1 word for type/length declaration

      - 1 word for sub-tlv header

      - 2 words per (fixed) service type per priority = 2*6*5 = 60

      - 4 words per (variable) service type per priority = 4*1*5 = 20

   Total words used with 5 priorities: 140 (RFC4203) vs 82 (BA sub-TLV).

   The difference is significantly higher as the number of supported
   priorities decreases.  Considering the case of single priority, the
   number of words used by the BA sub-TLV approach would be:

      - 1 word for type/length declaration

      - 1 word for sub-tlv header

      - 2 words per (fixed) service type per priority = 2*6*1 = 12

      - 4 words per (variable) service type per priority = 4*1*1 = 4

   Total words used with 1 priority: 140 (RFC4203) vs 18 (BA sub-TLV).

   It is worth considering that using the Unreserved bandwdith sub-TLV
   for unreserved bandwidth advertisement would increase the difference
   between the two solutions due to the fact that a higher number of
   headers is needed and at least a new word per sub-TLV would be
   required for the identification of the service type.




Ceccarelli, et al.       Expires April 18, 2011                [Page 15]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


6.  Compatibility Considerations

   Backward compatibility issues are addressed in technology specific
   documents.


7.  Security Considerations

   This document specifies the contents of Opaque LSAs in OSPFv2.  As
   Opaque LSAs are not used for SPF computation or normal routing, the
   extensions specified here have no direct effect on IP routing.
   Tampering with GMPLS TE LSAs may have an effect on the underlying
   transport (optical and/or SONET-SDH) network.  [RFC3630] suggests
   mechanisms such as [RFC2154] to protect the transmission of this
   information, and those or other mechanisms should be used to secure
   and/or authenticate the information carried in the Opaque LSAs.


8.  IANA Considerations

   TBD


9.  Contributors

      Francesco Fondelli, Ericsson

      Email: francesco.fondelli@ericsson.com



      Eve Varma, Alcatel-Lucent

      EMail: eve.varma@alcatel-lucent.com



      Jonathan Sadler, Tellabs

      EMail: Jonathan.Sadler@tellabs.com



      Lyndon Ong, Ciena

      EMail: Lyong@Ciena.com





Ceccarelli, et al.       Expires April 18, 2011                [Page 16]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


10.  Acknowledgements

   TBD


11.  References

11.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2154]  Murphy, S., Badger, M., and B. Wellington, "OSPF with
              Digital Signatures", RFC 2154, June 1997.

   [RFC2370]  Coltun, R., "The OSPF Opaque LSA Option", RFC 2370,
              July 1998.

   [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
              (TE) Extensions to OSPF Version 2", RFC 3630,
              September 2003.

   [RFC4201]  Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
              in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.

   [RFC4202]  Kompella, K. and Y. Rekhter, "Routing Extensions in
              Support of Generalized Multi-Protocol Label Switching
              (GMPLS)", RFC 4202, October 2005.

   [RFC4203]  Kompella, K. and Y. Rekhter, "OSPF Extensions in Support
              of Generalized Multi-Protocol Label Switching (GMPLS)",
              RFC 4203, October 2005.

   [RFC5250]  Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The
              OSPF Opaque LSA Option", RFC 5250, July 2008.

   [RFC5339]  Le Roux, JL. and D. Papadimitriou, "Evaluation of Existing
              GMPLS Protocols against Multi-Layer and Multi-Region
              Networks (MLN/MRN)", RFC 5339, September 2008.

11.2.  Informative References










Ceccarelli, et al.       Expires April 18, 2011                [Page 17]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


Authors' Addresses

   Daniele Ceccarelli
   Ericsson
   Via A. Negrone 1/A
   Genova - Sestri Ponente
   Italy

   Email: daniele.ceccarelli@ericsson.com


   Diego Caviglia
   Ericsson
   Via A. Negrone 1/A
   Genova - Sestri Ponente
   Italy

   Email: diego.caviglia@ericsson.com


   Sergio Belotti
   Alcatel-Lucent
   Via Trento, 30
   Vimercate
   Italy

   Email: sergio.belotti@alcatel-lucent.com


   Pietro Vittorio Grandi
   Alcatel-Lucent
   Via Trento, 30
   Vimercate
   Italy

   Email: pietro_vittorio.grandi@alcatel-lucent.com


   Fatai Zhang
   Huawei Technologies
   F3-5-B R&D Center, Huawei Base
   Shenzhen 518129 P.R.China  Bantian, Longgang District
   Phone: +86-755-28972912

   Email: zhangfatai@huawei.com






Ceccarelli, et al.       Expires April 18, 2011                [Page 18]


Internet-Draft         Technology Agnostic OSPF-TE          October 2010


   Dan Li
   Huawei Technologies
   F3-5-B R&D Center, Huawei Base
   Shenzhen 518129 P.R.China  Bantian, Longgang District
   Phone: +86-755-28973237

   Email: danli@huawei.com


   John E Drake
   Juniper


   Email: jdrake@juniper.net





































Ceccarelli, et al.       Expires April 18, 2011                [Page 19]