Network Working Group                                    Greg Bernstein
Internet Draft                                        Grotto Networking
Intended status: Standards Track                              Young Lee
Expires: August 2008                                             Dan Li
                                                                 Huawei
                                                         Wataru Imajuku
                                                                    NTT


                                                      February 20, 2008

       Routing and Wavelength Assignment Information for Wavelength
                         Switched Optical Networks
                  draft-bernstein-ccamp-wson-info-02.txt


Status of this Memo

   By submitting this Internet-Draft, each author represents that
   any applicable patent or other IPR claims of which he or she is
   aware have been or will be disclosed, and any of which he or she
   becomes aware will be disclosed, in accordance with Section 6 of
   BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html

   This Internet-Draft will expire on August 20, 2008.

Copyright Notice

   Copyright (C) The IETF Trust (2008).

Abstract




Bernstein and Lee      Expires August 20, 2008                 [Page 1]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   This memo provides and information model and compact encodings for
   information needed for path computation and wavelength assignment in
   wavelength switched optical networks. Such encodings can be used in
   extensions to Generalized Multi-Protocol Label Switching (GMPLS)
   routing for control of wavelength switched optical networks (WSON) or
   for other mechanisms, e.g. XML based, for conveying this information
   to a path computation element.



Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC-2119 [RFC2119].

Table of Contents


   1. Introduction...................................................3
   2. Terminology....................................................3
   3. High Level Information Model...................................4
      3.1. Information Model.........................................4
      3.2. Node Information..........................................5
         3.2.1. ConnectivityMatrix...................................5
         3.2.2. OEOWavelengthConverterInfo...........................6
      3.3. Link Information..........................................6
         3.3.1. Port Wavelength Restrictions.........................7
      3.4. Dynamic Link Information..................................7
      3.5. Dynamic Node Information..................................8
      3.6. End System Information....................................8
   4. Application to OSPF GMPLS extensions...........................8
      4.1. Node Top Level TLV........................................8
      4.2. Link Sub-TLVs.............................................9
      4.3. Dealing with Dynamic Information..........................9
   5. Type Length Value (TLV) Encoding of WSON Information...........9
      5.1. Wavelength Information Encoding..........................10
      5.2. Link Set Sub-TLV.........................................10
      5.3. Wavelength Set Sub-TLV...................................12
         5.3.1. Inclusive/Exclusive Wavelength Lists................13
         5.3.2. Inclusive/Exclusive Wavelength Ranges...............14
         5.3.3. Bitmap Wavelength Set...............................14
      5.4. Connectivity Matrix Sub-TLV..............................15
      5.5. Port Wavelength Restriction sub-TLV......................19
   6. Security Considerations.......................................20
   7. IANA Considerations...........................................20
   8. Acknowledgments...............................................20
   9. References....................................................21


   Bernstein and Lee Expires August 20, 2008 [Page 2]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


      9.1. Normative References.....................................21
      9.2. Informative References...................................21
   10. Contributors.................................................22
   Author's Addresses...............................................22
   Intellectual Property Statement..................................23
   Disclaimer of Validity...........................................24

1. Introduction

   This document provides an information model and efficient encodings
   of information needed by the routing and wavelength assignment (RWA)
   process in wavelength switched optical networks (WSONs).  Such
   encodings can be to extend GMPLS IGPs. In addition these encodings or
   information could be used by other mechanisms to convey this same
   information to a path computation element (PCE). Note since these
   encodings are relatively efficient they can provide more accurate
   analysis of the control plane communications/processing load for
   WSONs looking to utilize a GMPLS control plane.

2. Terminology

   CWDM: Coarse Wavelength Division Multiplexing.

   DWDM: Dense Wavelength Division Multiplexing.

   FOADM: Fixed Optical Add/Drop Multiplexer.

   ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port
   count wavelength selective switching element featuring ingress and
   egress line side ports as well as add/drop side ports.

   RWA: Routing and Wavelength Assignment.

   Wavelength Conversion/Converters: The process of converting an
   information bearing optical signal centered at a given wavelength to
   one with "equivalent" content centered at a different wavelength.
   Wavelength conversion can be implemented via an optical-electronic-
   optical (OEO) process or via a strictly optical process.

   WDM: Wavelength Division Multiplexing.

   Wavelength Switched Optical Networks (WSON): WDM based optical
   networks in which switching is performed selectively based on the
   center wavelength of an optical signal.






   Bernstein and Lee Expires August 20, 2008 [Page 3]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


3. High Level Information Model

   The purpose of the following information model and encodings for
   WSONs is to facilitate constrained lightpath computation. In
   particular, the cases of no or a limited number of wavelength
   converters available in the WSON. This constraint is frequently
   referred to as the "wavelength continuity" constraint, and the
   corresponding constrained lightpath computation is known as the
   routing and wavelength assignment (RWA) problem. Hence the
   information model must provide sufficient topology and wavelength
   restriction and availability information to support this computation.
   More details on the RWA process and WSON subsystems and their
   properties can be found in [WSON-Frame].

3.1. Information Model

   From [WSON-Frame] the following WSON information needs to be conveyed
   via GMPLS routing or some other mechanism.

      Information                         Static/Dynamic
      ---------------------------------------------------------
      Connectivity matrix                 Static
      Per port wavelength restrictions    Static(2)
      WDM link (fiber) lambda ranges      Static(2)
      WDM link channel spacing            Static(2)
      Laser Transmitter range             Static(2)
      Wavelength conversion capabilities  Static(2)
      Wavelength Availability             Dynamic(2)
      Wavelength Converter availability   Dynamic(1,2)

   Notes:

   1. This could be dynamic in the case of a limited pool of converters
      where the number available can change with connection
      establishment. Note we may want to include regeneration
      capabilities here since OEO converters are also regenerators.

   2. Not necessarily needed in the case of distributed wavelength
      assignment via signaling.

   See [WSON-Frame] for more details on these types of WSON information
   and their use.

   For the purposes of conveying the information we can group the
   information model into four categories regardless of whether they
   stem from a switching subsystem or a line subsystem:

   o  Node Information


   Bernstein and Lee Expires August 20, 2008 [Page 4]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   o  Link Information

   o  Dynamic Node Information

   o  Dynamic Link Information

   o  End System Information

   In the following we use a BNF/Regular expression like syntax where
   the symbol "|" indicates a choice between two or more elements; the
   symbol "*" indicates zero or more occurrences of an element; the
   symbol "?" indicates zero or one occurrences; and the symbol "+"
   indicates one or more occurrences.

3.2. Node Information

   Node information contains relatively static information related to a
   WSON node. This includes internal information such as a connectivity
   matrix and port wavelength constraints. Additional information could
   include properties of wavelength converters in the node if any are
   present.

   Formally,

   Node Information := Node_ID (ConnectivityMatrix?,
   OEOWavelengthConverterInfo? )

   Where the Node_ID would be a "Router ID" in OSPFv2.

   3.2.1. ConnectivityMatrix

   The ConnectivityMatrix represents the potential connectivity matrix
   for asymmetric switches (e.g. ROADMs and such) and the connectivity
   matrix for asymmetric fixed devices. The following provides a compact
   representation of the connectivity via a list of pairs of link sets
   that have connectivity to each other.

   ConnectivityMatrix :=   ConnectivityFixed (LinkSetA, LinkSetB)+

   Where ConnectivityFixed is a Boolean that takes the value true if the
   device has fixed connectivity and false if the device is a switch or
   ROADM. LinkSets are defined in Section 5.2. Only two valid
   combinations of link sets A and B are permitted. In the first case
   LinkSetA is a set of ingress links and LinkSetB is a set of egress
   links. In the second case LinkSetA and LinkSetB are both bi-
   directional link sets.




   Bernstein and Lee Expires August 20, 2008 [Page 5]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   3.2.2. OEOWavelengthConverterInfo

   An OEO based wavelength converter can be characterized by an input
   wavelength set and an output wavelength set.  In addition any
   constraints on the signal formats and rates accommodated by the
   converter must be described. Such a wavelength converter can be
   modeled by:

   OEOWavelengthConverterInfo := RegeneratorLevel
   (IngressWavelengthRange, EgressWavelengthRange, BitRateRange?,
   AcceptableSignals? )

   Where the RegeneratorLevel is used to model an OEO regenerator.
   Regenerators are usually classified into three levels. Level 1
   provides signal amplification, level 2 amplification and pulse
   shaping, and level 3 amplification, pulse shaping and timing
   regeneration. Level 2 regenerators can have a restricted bit rate
   range, while level 3 regenerators can also be specialized to a
   particular signal type.  For ingress and egress wavelength ranges see
   the WavelengthSet definition in section 5.3.

3.3. Link Information

   WSONs contribute information in addition to that in RFC3630 (OSPF-TE)
   and RFC4203 (OSPF for GMPLS) via additional link constraints. These
   stem from (a) WDM line system characterization, laser transmitter
   tuning restrictions, and switching subsystem port wavelength
   constraints, e.g., colored ROADM drop ports.

   As described below we add two new sub-elements to the link
   information model derived from [RFC3630, RFC4203]: (a) the maximum
   number of channels, and (b) link wavelength restrictions. Note that
   network topology information is implicit in the link information
   element.

   LinkInfo :=  LocalLinkID LocalNodeID RemoteLinkID RemoteNodeID
   (AdministrativeGroup?, InterfaceCapDesc?,
   MaximumBandwidthPerChannel?, Protection?, SRLG*,
   TrafficEngineeringMetric?, PortWavelengthRestriction?)

   Note that RFC3630 provides other ways to identify local and remote
   link ends in the case of numbered links. In the above we have
   reinterpreted the Maximum Bandwidth of RFC3630 as the maximum
   bandwidth per WDM channel and have omitted the Maximum Reservable
   Bandwidth of RFC3630 since overbooking is not typically used in
   circuit switching for obvious reasons. In addition we propose an
   alternative to the Unreserved Bandwidth of RFC3630 in the next
   section.


   Bernstein and Lee Expires August 20, 2008 [Page 6]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   3.3.1. Port Wavelength Restrictions

   Models the wavelength restrictions that various optical devices such
   as OXC, ROADMs, and waveband mulitplers may impose on a port.

   PortWavelengthRestriction := (RestrictionKind, MaxNumChannels,
   WavelengthSet )

   Where RestrictionKind can take the following values and meanings:

   0   Simple wavelength selective restriction. Max number of channels
   indicates the number of wavelength permitted on the port and the
   accompanying wavelength set indicates the permitted values.

   1   Waveband device with a tunable center frequency and passband. In
   this case the maximum number of channels indicates the maximum width
   of the waveband in terms of the channels spacing given in the
   wavelength set. The corresponding wavelength set is used to indicate
   the overall tuning range. Specific center frequency tuning
   information can be obtained from dynamic channel in use information.
   It is assumed that both center frequency and bandwidth (Q) tuning can
   be done without causing faults in existing signals.

   A 16 bit non-negative integer would suffice for the maximum number of
   channels. For example if the port is a "colored" drop port of a ROADM
   then the value of RestrictionKind = 0 for a simple wavelength
   selective restriction, the MaxNumberOfChannels = 1, and the
   wavelength restriction is just a wavelength set consisting of a
   single member corresponding to the frequency of the permitted
   wavelength.

3.4. Dynamic Link Information

   By dynamic information we mean information that is subject to change
   on a link with subsequent connection establishment or teardown.
   Currently for WSON the only information we currently envision is
   wavelength availability.

   DynamicLinkInfo :=  LocalLinkID LocalNodeID RemoteLinkID
   RemoteNodeID AvailableWavelengths

   Where, once again, the local and remote link and node IDs are used to
   specify the particular link in the unnumbered case and
   AvailableWavelengths is a WavelengthSet as defined in Section 5.3.






   Bernstein and Lee Expires August 20, 2008 [Page 7]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


3.5. Dynamic Node Information

   Dynamic node information is used to hold information for a node that
   can change frequently.  Currently only wavelength converter
   availability information is included as a possible (but not required)
   information sub-element.

   DynamicNodeInfo :=  NodeID AvailableWavelengthConverters?

   Where NodeID is a node identifier such as the router ID in OSPFv2 and
   the number of currently available wavelength converters is given by
   AvailableWavelengthConverters.

3.6. End System Information

   Current end system information of interest includes the tuning range
   of laser transmitters, support or single or multiple wavelengths on a
   port, etc...

4. Application to OSPF GMPLS extensions

   RFC2370 defined the opaque link state advertisement (LSA) and its
   various flavors based on flooding scope. RFC3630 defines the Traffic
   Engineering (TE) LSA which is an opaque LSA of area flooding scope
   with an LSA ID defined by:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       1       |                   Instance                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   "The Instance field is an arbitrary value used to maintain multiple
   Traffic Engineering LSAs.  A maximum of 16777216 Traffic Engineering
   LSAs may be sourced by a single system.  The LSA ID has no
   topological significance." [RFC3630]

   From RFC3630 the TE LSA can contain only one top level TLV and
   RFC3630 defines two top level TLVs: (a) router address, and (b) link.
   RFC4203 adds new sub-TLVs to the top level link TLV to support GMPLS,
   but does not add any new top level TLVs.

4.1. Node Top Level TLV

   As we saw in section 3.2. for WSON networks there can be a
   significant amount of information specific to nodes in WSON networks
   hence we recommend the addition of a new top level TE TLV (e.g. type


   Bernstein and Lee Expires August 20, 2008 [Page 8]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   5) for holding node related information. Currently we have defined
   two sub-TLVs for the Node TLV: (a) Connectivity Matrix sub-TLV, (b)
   OEO Wavelength converter information sub-TLV.

4.2. Link Sub-TLVs

   As discussed in section 3.3. two new sub-TLVs are needed to
   characterize WSON links: (a) Maximum number of channels sub-TLV and,
   (b) wavelength constraints sub-TLV.

4.3. Dealing with Dynamic Information

   In our information model we differentiated between relatively static
   and dynamic information; defining dynamic information as that
   information that is subject to change due to connection setup or
   teardown. There are three ways that we could differentiate dynamic
   from static information in flooding and processing, if desired.

   A. Use a separate TE LSA instance for static and dynamic information
      for the same modeled entity. For example, one could group all the
      relatively static information concerning a specific link into one
      instance and the wavelength availability information (subTLV of
      the link TLV) into another TE LSA instance.

   B. Use separate top level TLVs to differentiate static and dynamic
      information. For example define a top level "dynamic link" TLV.

   C. Define a new "dynamic TE LSA" type (e.g. opaque type 5)
      specifically for conveying dynamic information

   These three different options are ordered in reverse of the amount of
   processing required to tell whether the information is dynamic or
   not. For example in case (A) one must look all the way into the sub-
   TLV type to understand that this is dynamic information, while in
   case (C) this can easily be inferred from the LSA ID.  Note that for
   high level LSA processing the LSA ID is the finest granularity field
   that would be looked at.



5. Type Length Value (TLV) Encoding of WSON Information

   A TLV encoding of the high level WSON information model is given in
   the following sections.  This encoding is designed to be suitable for
   use in routing protocols such as OSPFv2 via the extension mechanisms
   of RFC2370 (opaque LSA), RFC3630 (OSPF-TE) and RFC4203 (OSPF-GMPLS),
   and in PCE protocols such as PCEP. Note that the information in



   Bernstein and Lee Expires August 20, 2008 [Page 9]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   RFC3630 and RFC4203 is arranged via the nesting of sub-TLVs within
   TLVs and we will make use of such constructs.

   The following encodings have multiple uses in specifying WSON
   information.

5.1. Wavelength Information Encoding

   This document makes frequent use of the lambda label format defined
   in [Otani] shown below:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |S|  Reserved     |               n               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Where

   Grid is used to indicate which ITU-T grid specification is being
   used.

   C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T
   G.694.1 grid.

   S = sign of the offset from the center frequency of 193.1THz for the
   ITU-T 6.694.1 grid.

   n = Used to specify the frequency as 193.1THz +/- n*(channel spacing)
   where the + or - is chosen based on the sign (S) bit.

5.2. Link Set Sub-TLV

   We will frequently want to describe properties of links. To do so
   efficiently we can make use of a link set concept similar to the
   label set concept of [RFC3471]. All links will be denoted by their
   local link identifier as defined an used in[RFC4202, RFC4203,
   RFC4205].

   The information carried in a Link Set is defined by:











   Bernstein and Lee Expires August 20, 2008 [Page 10]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Action     |Dir|  Format   |         Reserved              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link Identifier 1                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                               :                               :
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Link Identifier N                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


      Action: 8 bits

         0 - Inclusive List

    Indicates that the object/TLV contains one or more link elements
   that are included in the Link Set.

         1 - Exclusive List

   Indicates that the object/TLV contains one or more link elements that
   are excluded from the Link Set.

         2 - Inclusive Range

   Indicates that the object/TLV contains a range of links.  The
   object/TLV contains two link elements.  The first element indicates
   the start of the range.  The second element indicates the end of the
   range.  A value of zero indicates that there is no bound on the
   corresponding portion of the range.

         3 - Exclusive Range

   Indicates that the object/TLV contains a range of links that are
   excluded from the Link Set.  The object/TLV contains two link
   elements.  The first element indicates the start of the range.  The
   second element indicates the end of the range. A value of zero
   indicates that there is no bound on the corresponding portion of the
   range.

   Dir: Directionality of the Link Set (2 bits)

   0 -- bidirectional

   1 -- ingress


   Bernstein and Lee Expires August 20, 2008 [Page 11]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   2 -- egress

   In optical networks we think in terms of unidirectional as well as
   bidirectional links.  For example wavelength restrictions or
   connectivity may be much different for an ingress port, than for its
   "companion" egress port if it has one. Note that "interfaces" such as
   discussed in the Interfaces MIB are assumed bidirectional, as well as
   the links of various link state IGPs.

   Format: The format of the link identifier (6 bits)

   0 -- Link Local Identifier

   Others TBD.

   Reserved: 16 bits

   This field is reserved. It MUST be set to zero on transmission and
   MUST be ignored on receipt.

      Link Identifier:

   The link identifier represents the port which is being described
   either for connectivity or wavelength restrictions.  This can be the
   link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS
   OSPF routing, and [RFC4205] IS-IS GMPLS routing. The use of the link
   local identifier format can result in more compact WSON encodings
   when the assignments are done in a reasonable fashion.



5.3. Wavelength Set Sub-TLV

   Wavelength sets come up frequently in WSONs to describe the range of
   a laser transmitter, the wavelength restrictions on ROADM ports, or
   the availability of wavelengths on a DWDM link. The general format
   for a wavelength set is given below. This format uses the Action
   concept from [RFC3471] with an additional Action to define a "bit
   map" type of label set. Note that the second 32 bit field is a lambda
   label in the previously defined format. This provides important
   information on the WDM grid type and channel spacing that will be
   used in the compact encodings listed.








   Bernstein and Lee Expires August 20, 2008 [Page 12]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Action        |   Reserved    |    Num Wavelengths            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |S|  Reserved     |  n  for lowest frequency      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Additional fields as necessary per action                 |
     |



   Action:

   0 - Inclusive List

   1 - Exclusive List

   2 - Inclusive Range

   3 - Exclusive Range

   4 - Bitmap Set

   5.3.1. Inclusive/Exclusive Wavelength Lists

   In the case of the inclusive/exclusive lists the wavelength set
   format is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Action=0 or 1  | Reserved      |      Num Wavelengths          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |S|    Reserved   |    n  for lowest frequency    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    n2                         |          n3                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            ...                                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    nm                         |                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   Where Num Wavelengths tells us the number of wavelength in this
   inclusive or exclusive list this does not include the initial
   wavelength in the list hence if the number of wavelengths is odd then
   zero padding of the last half word is required.




   Bernstein and Lee Expires August 20, 2008 [Page 13]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   5.3.2. Inclusive/Exclusive Wavelength Ranges

   In the case of inclusive/exclusive ranges the wavelength set format
   is given by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Action=2 or 3  | Reserved      |      Num Wavelengths          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |S|  Reserved     |      n  for lowest frequency  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   In this case Num Wavelengths specifies the number of wavelengths in
   the range starting at the given wavelength and incrementing the Num
   Wavelengths number of channel spacing up in frequency (regardless of
   the value of the sign bit).

   5.3.3. Bitmap Wavelength Set

   In the case of Action = the bitmap the wavelength set format is given
   by:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Action = 4    | Reserved    |      Num Wavelengths            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |S|  Reserved   |      n  for lowest frequency    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Bit Map Word #1  (Lowest frequency channels)               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                ...                                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Bit Map Word #N  (Highest frequency channels)              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where Num Wavelengths in this case tells us the number of wavelengths
   represented by the bit map which is required to be ceiling[(Num
   Wavelengths)/32]. Each bit in the bit map represents a particular
   frequency with a value of 1/0 indicating whether the frequency is in
   the set or not. Bit position zero represents the lowest frequency,
   while each succeeding bit position represents the next frequency a
   channel spacing (C.S.) above the previous.

   Example:



   Bernstein and Lee Expires August 20, 2008 [Page 14]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   A 40 channel C-Band DWDM system with 100GHz spacing with lowest
   frequency 192.0THz (1561.4nm) and highest frequency 195.9THz
   (1530.3nm). These frequencies correspond to n = -11, and n = 28
   respectively. Now suppose the following channels are available:

            Frequency(THz)    n Value     bit map position
         --------------------------------------------------
            192.0             -11         0
            192.5             -6          5
            193.1             0           11
            193.9             8           19
            194.0             9           20
            195.2             21          32
            195.8             27          38


   With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S.
   set to indicate 100GHz, and with S (sign) set to indicate negative
   this lambda bit map set would then be encoded as follows:



      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Action = 4    | Reserved      |    Num Wavelengths = 40       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |S|    Reserved   | n  for lowest frequency = -11 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |1 0 0 0 0 0 1 0|   Not used in 40 Channel system (all zeros)   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



5.4. Connectivity Matrix Sub-TLV

   The potential connectivity matrix for asymmetric switches (e.g.
   ROADMs and such) and the connectivity matrix for asymmetric fixed
   devices can be represented by a matrix A where Amn = 0 or 1,
   depending upon whether a wavelength on ingress port m can be
   connected to egress port n.

   This can be compactly represented link sets as follows:





   Bernstein and Lee Expires August 20, 2008 [Page 15]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Connectivity   |               Reserved                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set A #1                         |
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Link Set B #1
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       Additional Link set pairs as needed     |
      :                       to specify connectivity                 :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Where Connectivity = 0 if the device is fixed

                        1 if the device is reconfigurable (ROADM/OXC)



   Issue for further study:

   It may be useful to have a bit from the reserved field to indicate
   whether "local" switching can take place or not, i.e., whether the
   diagonal of Amn should be assumed to be 0 or 1 in cases where the
   same port # appears in both ingress set list and egress set list. For
   a typical ROADM Amm = 0.

   Example:

   Suppose we have a typical 2-degree 40 channel ROADM. In addition to
   its two line side ports it has 80 add and 80 drop ports. The picture
   below illustrates how a typical 2-degree ROADM system that works with
   bi-directional fiber pairs is a highly asymmetrical system composed
   of two unidirectional ROADM subsystems.













   Bernstein and Lee Expires August 20, 2008 [Page 16]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


                         (Tributary) Ports #3-#42
                     Ingress added to    Egress dropped from
                     West Line Egress    East Line Ingress
                            vvvv           ^^^^
                          | |...|        | |...|
                    +-----| |...|--------| |...|------+
                    |    +----------------------+     |
                    |    |                      |     |
        Egress      |    | Unidirectional ROADM |     |
   -----------------+    |                      |     +--------------
   <=====================|                      |===================<
   -----------------+    +----------------------+     +--------------
                    |                                 |
        Port #1     |                                 |   Port #2
   (West Line Side) |                                 |(East Line Side)
   -----------------+    +----------------------+     +--------------
   >=====================|                      |===================>
   -----------------+    | Unidirectional ROADM |     +--------------
                    |    |                      |     |
                    |    |              _       |     |
                    |    +----------------------+     |
                    +-----| |...|--------| |...|------+
                          | |...|        | |...|
                            vvvv           ^^^^
                     (Tributary) Ports #43-#82
                Egress dropped from       Ingress added to
                West Line ingress         East Line egress


   Referring to the figure we see that the ingress direction of ports
   #3-#42 (add ports) can only potentially egress on port #1. While in
   ingress side of port #2 (line side) can egress only on ports #3-#42
   (drop) and #1 (pass through). Similarly, the ingress direction of
   ports #43-#82 can only potentially egress on port #2 (line). While
   the ingress direction of port #1 can only potentially egress on ports
   #43-#82 (drop) or port #2 (pass through). We can now represent this
   potential connectivity matrix as follows. This representation uses
   only 30 32-bit words.












   Bernstein and Lee Expires August 20, 2008 [Page 17]


Internet-Draft   Wavelength Switched Optical Networks     February 2008



       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Conn = 1   |                 Reserved                      |1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                          Note: adds to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #3                |3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |4
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |6
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |8
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #3                |10
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |11
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |13
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |15
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                Note: adds to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #42               |17
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #82               |18
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Bernstein and Lee Expires August 20, 2008 [Page 18]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


     |  Action=0     |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |20
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to drops
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |22
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=2     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #43               |24
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #82               |25
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Note: line to line
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #1                |27
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Action=0     |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                     Link Local Identifier = #2                |30
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

5.5. Port Wavelength Restriction sub-TLV

   The port wavelength restriction of section 3.3.1. can be encoded as a
   sub-TLV as follows.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |RestrictionKind|   Reserved    |     MaxNumChannels            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     --Wavelength Set--
     | Action        |   Reserved    |    Num Wavelengths            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Grid |  C.S. |S|  Reserved     |  n  for lowest frequency      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Additional fields as necessary per action                 |
     |                                                               |


   Where the meanings of RestrictionKind, MaxNumChannels and the
   Wavelength Set were defined in section 3.3.1.


   Bernstein and Lee Expires August 20, 2008 [Page 19]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


6. Security Considerations

   This document has no requirement for a change to the security models
   within GMPLS and associated protocols. That is the OSPF-TE, RSVP-TE,
   and PCEP security models could be operated unchanged.


7. IANA Considerations

   TBD. Once finalized in our approach we will need identifiers for such
   things and modulation types, modulation parameters, wavelength
   assignment methods, etc...

8. Acknowledgments

   This document was prepared using 2-Word-v2.0.template.dot.


































   Bernstein and Lee Expires August 20, 2008 [Page 20]


Internet-Draft   Wavelength Switched Optical Networks     February 2008




9. References

9.1. Normative References

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching
             (GMPLS) Signaling Functional Description", RFC 3471,
             January 2003.

   [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM
             applications: DWDM frequency grid", June, 2002.

   [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
             (TE) Extensions to OSPF Version 2", RFC 3630, September
             2003.

   [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4202, October 2005

   [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in
             Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4203, October 2005.

9.2. Informative References

   [Otani]   T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized
             Labels of Lambda-Switching Capable Label Switching Routers
             (LSR)", work in progress: draft-otani-ccamp-gmpls-lambda-
             labels-01.txt, November 2007.

   [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM
             applications: DWDM frequency grid, June 2002.

   [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM
             applications: CWDM wavelength grid, December 2003.

   [RFC4205] Kompella, K., Ed., and Y. Rekhter, Ed., "Intermediate
             System to Intermediate System (IS-IS) Extensions in Support
             of Generalized Multi-Protocol Label Switching (GMPLS)", RFC
             4205, October 2005.





   Bernstein and Lee Expires August 20, 2008 [Page 21]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   [WSON-Frame] G. Bernstein, Y. Lee, W. Imajuku, "Framework for GMPLS
             and PCE Control of Wavelength Switched Optical Networks",
             work in progress: draft-bernstein-ccamp-wavelength-
             switched-02.txt, February 2008.

10. Contributors

   Diego Caviglia
   Ericsson
   Via A. Negrone 1/A 16153
   Genoa Italy

   Phone: +39 010 600 3736
   Email: diego.caviglia@(marconi.com, ericsson.com)

   Anders Gavler
   Acreo AB
   Electrum 236
   SE - 164 40 Kista Sweden

   Email: Anders.Gavler@acreo.se

   Jonas Martensson
   Acreo AB
   Electrum 236
   SE - 164 40 Kista, Sweden

   Email: Jonas.Martensson@acreo.se

   Itaru Nishioka
   NEC Corp.
   1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666
   Japan

   Phone: +81 44 396 3287
   Email: i-nishioka@cb.jp.nec.com



Author's Addresses

   Greg Bernstein (ed.)
   Grotto Networking
   Fremont, CA, USA

   Phone: (510) 573-2237
   Email: gregb@grotto-networking.com



   Bernstein and Lee Expires August 20, 2008 [Page 22]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   Young Lee (ed.)
   Huawei Technologies
   1700 Alma Drive, Suite 100
   Plano, TX 75075
   USA

   Phone: (972) 509-5599 (x2240)
   Email: ylee@huawei.com


   Dan Li
   Huawei Technologies Co., Ltd.
   F3-5-B R&D Center, Huawei Base,
   Bantian, Longgang District
   Shenzhen 518129 P.R.China

   Phone: +86-755-28973237
   Email: danli@huawei.com

   Wataru Imajuku
   NTT Network Innovation Labs
   1-1 Hikari-no-oka, Yokosuka, Kanagawa
   Japan

   Phone: +81-(46) 859-4315
   Email: imajuku.wataru@lab.ntt.co.jp



Intellectual Property Statement

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.




   Bernstein and Lee Expires August 20, 2008 [Page 23]


Internet-Draft   Wavelength Switched Optical Networks     February 2008


   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Disclaimer of Validity

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

Acknowledgment

   Funding for the RFC Editor function is currently provided by the
   Internet Society.






















   Bernstein and Lee Expires August 20, 2008 [Page 24]