CCAMP Working Group                                        D. Ceccarelli
Internet-Draft                                               D. Caviglia
Intended status: Standards Track                                Ericsson
Expires: September 9, 2010                                      F. Zhang
                                                                   D. Li
                                                     Huawei Technologies
                                                                   Y. Xu
                                                                    CATR
                                                           March 8, 2010


  Traffic Engineering Extensions to OSPF for Generalized MPLS (GMPLS)
                Control of Evolutive G.709 OTN Networks
               draft-ceccarelli-ccamp-gmpls-ospf-g709-01

Abstract

   Recent revisions of ITU-T Recommendation G.709 have introduced new
   features for OTNs:ODU0, ODU4, ODU2e, ODU3e1, ODU3e2 and ODUflex.  The
   new features for the evolutive OTNs are described in separate ITU-T
   documents.  ODU0, ODU2e and ODU4 ODUflex are described in [G709-V3].
   ODU3e1 and ODU3e2 are described in [Gsup43].  This document describes
   OSPF routing protocol extensions to support the evolutive Optical
   Transport Networks (OTN) under the control of Generalized MPLS
   (GMPLS).

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on September 9, 2010.



Ceccarelli, et al.      Expires September 9, 2010               [Page 1]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the BSD License.


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  OSPF Requirements  . . . . . . . . . . . . . . . . . . . . . .  3
   3.  Overview of the Evolutive G.709  . . . . . . . . . . . . . . .  4
   4.  G.709 Digital Layer TE Information . . . . . . . . . . . . . .  6
     4.1.  Tributary Slot type  . . . . . . . . . . . . . . . . . . .  6
     4.2.  TE link type . . . . . . . . . . . . . . . . . . . . . . .  7
     4.3.  LO ODU signal type . . . . . . . . . . . . . . . . . . . .  7
     4.4.  TE link Unreserved Bandwidth . . . . . . . . . . . . . . .  8
     4.5.  Maximum LSP Bandwidth  . . . . . . . . . . . . . . . . . .  8
   5.  OSPF Extensions  . . . . . . . . . . . . . . . . . . . . . . .  8
     5.1.  OTN Interface Switching Capability Descriptor  . . . . . .  9
   6.  Compatibility Considerations . . . . . . . . . . . . . . . . . 11
   7.  Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
   8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
   9.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 16
   10. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 16
   11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17
   12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 18
     12.1. Normative References . . . . . . . . . . . . . . . . . . . 18
     12.2. Informative References . . . . . . . . . . . . . . . . . . 18
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 18












Ceccarelli, et al.      Expires September 9, 2010               [Page 2]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


1.  Introduction

   An Opaque OSPF (Open Shortest Path First) LSA (Link State
   Advertisements) carrying application-specific information can be
   generated and advertised to other nodes following the flooding
   procedures defined in [RFC5250].  Three types of opaque LSA are
   defined, i.e. type 9 - link-local flooding scope, type 10 - area-
   local flooding scope, type 11 - AS flooding scope.

   Traffic Engineering (TE) LSA using type 10 opaque LSA is defined in
   [RFC3630] for TE purpose.  This type of LSA is composed of a standard
   LSA header and a payload including one top-level TLV (Type/Length/
   Value triplet) and possible several nested sub-TLVs.  [RFC3630]
   defines two top-level TLVs: Router Address TLV and Link TLV; and nine
   possible sub-TLVs for the Link TLV, used to carry link related TE
   information.

   The Link type sub-TLVs are enhanced by [RFC4203] in order to support
   GMPLS networks and related specific link information.

   In GMPLS networks each node generates TE LSAs to advertise its TE
   information and capabilities (link-specific or node-specific),
   through the network.  The TE information carried in the LSAs are
   collected by the other nodes of the network and stored into their
   local Traffic Engineering Databases (TED).

   In the GMPLS based G.709 Optical Transport Networks (OTNs), in order
   to automatically establish ODUk connections through GMPLS RSVP-TE
   signaling, routing is the foundation.

   OTN networks provide flexible and various multiplexing relationships
   (e.g., ODUj multiplexed into ODUk (j<k)), two different tributary
   slots for ODUk (K=1, 2, 3) and ODUflex signal type, which is being
   standardized in ITU-T.  In order to present this information in the
   routing process, the OSPF protocol needs to be extended.

   This document describes OSPF routing protocol extensions to support
   the evolutive OTNs under the control of GMPLS.  Please note that the
   routing information for Optical Channel Layer (OCh) (i.e.,
   wavelength) is out of the scope of this document.  Please refer to
   [WSON-Frame] for further information.


2.  OSPF Requirements

   ITU-T has introduced in the recently approved G.709 [2009] new fixed
   size ODU containers and a new variable size ODUflex container that
   can be used to transport either CBR signals or packets.  OTN serves



Ceccarelli, et al.      Expires September 9, 2010               [Page 3]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


   as the convergence layer for transporting a wide range of services,
   including those whose bit rates do not allow efficient usage of the
   entire bandwidth associated with a single lambda.  In the latter
   case, OTN allows aggregation (and protection) of traffic to support
   optimization of overall network bandwidth allocation; i.e., OTN
   allows the aggregate service rate to be decoupled from the OTN line
   system capacity.

   For example, within a given networking domain, you can think of LSPs
   (ODUs) serving different roles (service and line).  A line rate LSP
   only uses the line rate capacity (OTUk capacity) and cannot be
   further electrically multiplexed (e.g., a line rate 10Gbit/s can only
   traverse OTU2 links).  On the other hand, a service LSP may be
   electrically multiplexed and it is able to cross any kind of link
   regardless of the line rate.  From a routing scalability perspective,
   it is also necessary to have the possibility to group/map information
   about certain physical resources (e.g., links) and their properties.

   Thus, it is necessary to define a maximally scalable control plane
   solution that is able to fully exploit OTN flexibility (both in terms
   of aggregation and survivability).  This leads the authors to view it
   as critical to fulfill the following requirements:

        - Support G.709 ODUs including ODUflex.  As opposed to fixed size
      containers, for ODUflex it is necessary to declare the maximum LSP
      bandwidth.  Support all standard (fixed and flexible) ODUs.

        - Be able to differentiate multiplexed capacity from line rate
      capacity.  This allows support of the scenarios in the OTN
      framework draft (in particular, the hybrid scenario).

        - Be capable of bundling links either at the same line rate or
      different line rates (e.g. 40G and 10G).  Bundling links at
      different rates makes the control plane more scalable and permits
      better networking flexibility.

        - Support priority for restoration.


3.  Overview of the Evolutive G.709

   The traditional OTN specification [G709] describes the Optical
   Transport Hierarchy (OTH) and introduces three types of ODU (Optical
   Channel Data Unit) signal (i.e.  ODU1, ODU2 and ODU3).  The ODUj can
   be mapped into one or more Tributary Slots (with granularity of
   2.5Gbps) of OPUk (Optical Channel Payload Unit-k) where j<k.  The
   ODUj can also be mapped into OTUj (Optical Channel Transport Unit-j,
   j=1, 2 or 3) directly.



Ceccarelli, et al.      Expires September 9, 2010               [Page 4]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


   Recent revisions of ITU-T Recommendation G.709 have introduced new
   features for OTNs:ODU0, ODU4, ODU2e, ODU3e1, ODU3e2 and ODUflex.  The
   new features for the evolutive OTNs are described in separate ITU-T
   documents.  ODU0, ODU2e and ODU4 ODUflex are described in [G709-V3].
   ODU3e1 and ODU3e2 are described in [Gsup43].

   The ITU-T documents also define the new multiplexing hierarchy for
   the evolutive OTN.  In this multiplexing hierarchy, LO (Lower Order)
   ODUj can be mapped into an OTUj, or multiplexed into an HO (Higher
   Order) ODUk (where j<k) occupying several TSs (Tributary Slots).

   In the case of LO ODUj mapping into OTUj, the following mappings are
   defined:

      - ODU1 into OTU1 mapping

      - ODU2 into OTU2 mapping

      - ODU3 into OTU3 mapping

      - ODU4 into OTU4 mapping

      - ODU2e into OTU2e mapping

   In the case of LO ODUj multiplexing into HO ODUk, a new Tributary
   Slot granularity (i.e. 1.25Gbps) is introduced in [G709-V3].  For the
   evolutive OTN, the multiplexing of ODUj (j = 0, 1, 2, 2e, 3, flex)
   into an ODUk (k > j) signal can be depicted as follows:

   - ODU0 into ODU1 multiplexing (with 1,25Gbps TS granularity)

   - ODU0, ODU1, ODUflex into ODU2 multiplexing (with 1.25Gbps TS
   granularity)

   - ODU1 into ODU2 multiplexing (with 2.5Gbps TS granularity)

   - ODU0, ODU1, ODU2, ODU2e and ODUflex into ODU3 multiplexing (with
   1.25Gbps TS granularity)

   - ODU1, ODU2 into ODU3 multiplexing (with 2.5Gbps TS granularity)

   - ODU0, ODU1, ODU2, ODU2e, ODU3 and ODUflex into ODU4 multiplexing
   (with 1.25Gbps TS granularity)

   - ODU2e into ODU3e1 multiplexing (with 2.5Gbps TS granularity)

   - ODU2e into ODU3e2 multiplexing (with 1.25Gbps TS granularity)




Ceccarelli, et al.      Expires September 9, 2010               [Page 5]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


   In order to be backward compatible with the 2.5Gbps TS defined in
   [G709-V3], both the 2.5Gbps TS and the 1.25Gbps TS can be used in the
   two cases listed below:

   o ODU1 into ODU2 multiplexing

   o ODU1 and ODU2 into ODU3 multiplexing

   From the link perspective, it can only work under one TS type.  For
   example, if the both ends (or interfaces) of the link can support
   2.5Gbps TS and 1.25Gbps TS, then it can work under 2.5Gbps TS or
   1.25Gbps TS.  If one end can support 1.25Gbps TS, and another end can
   support 2.5Gbps TS, the end with 1.25Gbps TS MUST adopt a 2.5Gbps
   TS).


4.  G.709 Digital Layer TE Information

   This document only considers the TE information needed for LO ODU
   path computation.  WSON TE information is out of scope.  Please refer
   to [WSON-OSPF] for more information about WSON routing information.

   From the perspective of [G709-V3], there are two different cases for
   LO ODU:

   (1) A LO ODUk mapped into an OTUk.  In this case, the server layer of
   this LO ODU is an OTUk.  For example, if a STM-16 signal is
   encapsulated into an ODU1 and then mapped into OTU1, the ODU1 is a LO
   ODU.

   (2) A LO ODUj multiplexed into a HO (Higher Order) ODUk (j < k)
   occupying several TSs.  In this case, the server layer of this LO ODU
   is a HO ODUk.  For example, if an ODU1 is multiplexed into ODU2 and
   then mapped into an OTU2, the ODU1 is a LO ODU and the ODU2 is a HO
   ODU.

   In order to compute a suitable path the PCE (centralized or
   distributed) needs a set of data that should be advertised by the
   routing protocol.  In the following sections each type of data is
   listed and analyzed, while the possible values are shown in section
   5.

4.1.  Tributary Slot type

   ITU-T recommendations define two types of TS but, from the link
   perspective, it can only work under one of them.  For example, if the
   both ends (or interfaces) of a link can support 2.5Gbps TS or
   1.25Gbps TS, then the link will work under 2.5Gbps TS or 1.25Gbps TS.



Ceccarelli, et al.      Expires September 9, 2010               [Page 6]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


   If one end can support the 1.25Gbps TS, and another end the 2.5Gbps
   TS, the former end SHOULD adopt the 2.5Gbps TS.

   In addition, the bandwidth accounting depends on the type of TS.
   Therefore, the type of the TS should be known during LO ODU path
   computation.

4.2.  TE link type

   The link type indicates the OTUk/HO ODUk type of the TE link.

   The TS bandwidth of different types of OTUk is different; it
   increases along with the increasing of k (see [G709-V3]).  The
   bandwidth of a TS in a TE link can be deduced from the TS type and
   link type of the TE link.  For example, the bandwidth of a 1.25G TS
   without NJO (Negative Justification Opportunity) in an OTU2 is about
   1.249409620 Gbps, while the bandwidth of a 1.25G TS without NJO in an
   OTU3 is about 1.254703729 Gbps.

   The actual TS bandwidth of a TE link is useful to determine the
   number of TSs needed by an ODUflex service.  And the actual TS
   bandwidth of a TE link can be deduced by the TE link type and TS
   type.

4.3.  LO ODU signal type

   It is possible that some equipments can not support all the LO ODU
   signal types.  When a path computation procedure for a LO ODU is
   performed, it needs to check whether a link has the capability to
   carry a specific type of LO ODU or not.  If a link can not carry this
   type of LO ODU, it should be excluded during the path computation.
   Only the links with the capability of carrying this type of LO ODU
   can be the candidates.

   For example, in the following figure, the interfaces IF1, IF2, IF8,
   IF7, IF5 and IF6 can support ODUflex signals, while the interfaces
   IF3 and IF4 cannot.  In this case, if one ODUflex connection from A
   to C is requested, link #1 and #2 are excluded and link #3 and link
   #4 are the candidates (the possible path could be A-D-C through link
   #3 and link #4).











Ceccarelli, et al.      Expires September 9, 2010               [Page 7]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


                                 +-----+
                       link #3   |     |  link #4
               +-----------------+  D  +-----------------+
               |              IF8|     |IF7              |
               |                 +-----+                 |
               |                                         |
               |IF1                                   IF6|
            +--+--+              +-----+              +--+--+
            |     |    link #1   |     |    link #2   |     |
            |  A  +--------------+  B  +--------------+  C  |
            |     |IF2        IF3|     |IF4        IF5|     |
            +-----+              +-----+              +-----+


                       Figure 1: LO ODU signal type

   Therefore, it is necessary to advertise the LO ODU types that the OTU
   or HO ODU TE link can support.

4.4.  TE link Unreserved Bandwidth

   In the GMPLS based OTN networks, the Unreserved Bandwidth of a TE
   link is the sum of the unreserved bandwidths of all the component
   links associated with the bundled link.

   The unreserved bandwidth can be accounted through the unallocated
   Tributary Slots of the TE link.

4.5.  Maximum LSP Bandwidth

   The Maximum Bandwidth that an LSP can occupy in a TE link is
   determined by the component link with the maximum unreserved
   bandwidth in such TE link.

   For example, if two OTU3 component links are bundled to a TE link,
   the unreserved bandwidth of the first component link is 20*1.25G TSs,
   and the unreserved bandwidth of the second component link is 24*1.25G
   TSs.  Then the unreserved bandwidth of this TE link is 44*1.25G TSs,
   but the maximum TSs that a LSP can occupy in this TE link is 24, not
   44.


5.  OSPF Extensions

   In terms of GMPLS based OTN networks, each OTUk/HO ODUk can be viewed
   as a component link, and each component link can carry one or more
   types of LO ODU.




Ceccarelli, et al.      Expires September 9, 2010               [Page 8]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


   Each TE LSA can carry a top-level TLV with several nested sub-TLVs to
   describe different attributes of a TE link.  Two top-level TLVs are
   defined in [RFC 3630]. (1) The Router Address TLV (referred to as the
   Node TLV) and (2) the TE link TLV.  One or more sub-TLVs can be
   nested into the two top-level TLVs.  The sub-TLV set for the two top-
   level TLVs are also defined in [RFC 3630] and [RFC 4203].

   A general Interface Switching Capability Descriptor (ISCD) sub-TLV is
   defined In [RFC 4203].  The bandwidth accounting is encoded in a 4
   octets field in the IEEE floating point format.  Max LSP Bandwidth is
   accounted at each priority X (0~7).

   This document defines a new sub-TLV of the Link TLV, called OTN
   Interface Switching Capability Descriptor (OTN-ISCD) with value TBD
   by IANA.  The OTN-ISCD format is described in Section 5.1.

   One or more component links can be bundled as a TE link.  In case of
   link bundling an OTN-ISCD will be used for each component link.

5.1.  OTN Interface Switching Capability Descriptor

   The format of the new OTN-Interface Switching Capability Descriptor
   is defined in Figure 2.




























Ceccarelli, et al.      Expires September 9, 2010               [Page 9]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Res| T |OD(T)Uk|  Reserved     |   Signal Flags  |G|F|E|D|C|B|A|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P0     |          Unreserved TS at p0  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P1     |          Unreserved TS at p1  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P2     |          Unreserved TS at p2  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P3     |          Unreserved TS at p3  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P4     |          Unreserved TS at p4  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P5     |          Unreserved TS at p5  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P6     |          Unreserved TS at p6  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Max lsp TS at P7     |          Unreserved TS at p7  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


          Figure 2: OTN-Interface Switching Capability Descriptor

   Where:

   o T (2 bits): Indicates the type of the Tributary Slot of this TE
   link, value 0 means the TS type is 1.25Gbps, value 1 means the TS
   type is 2.5Gbps.

   o OD(T)Uk (4 bits): Indicates the type of the TE link, i.e. the
   server layer signal that the LO ODUs can be mapped or multiplexed
   into.  The following values are defined:

      0: Reserved (for future use)

      1: OTU1/HO ODU1

      2: OTU2/HO ODU2

      3: OTU3/HO ODU3

      4: OTU4/HO ODU4





Ceccarelli, et al.      Expires September 9, 2010              [Page 10]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


      5: OTU2e/HO ODU2e

      6-15: Reserved (for future use)

   The bandwidth of a TS in this TE link can be deduced from T bit and
   OD(T)Uk field.

   o Signal Flags (16 bits): This field indicates the LO ODU type
   supported by the TE link.  A flag set to 1 indicates that the TE link
   supports the corresponding LO ODU signal.  Currently the following
   flags are defined:

      Flag A: indicates whether LO ODU0 is supported.

      Flag B: indicates whether LO ODU1 is supported.

      Flag C: indicates whether LO ODU2 is supported.

      Flag D: indicates whether LO ODU3 is supported.

      Flag E: indicates whether LO ODU4 is supported.

      Flag F: indicates whether LO ODU2e is supported.

      Flag G: indicates whether LO ODUflex is supported.

   Other bits are reserved and must be set to zero when sent and should
   be ignored when received.

   o Max lsp TS at Pi (16 bits): Indicates the maximum number of
   unreserved TS at priority Pi of all of the component links of the TE
   link.

   o Unreserved TS at Pi (12 bits): Indicates the number of unreserved
   TSs at priority Pi inside all the component links of the TE link.

   All the reserved fields must be set to zero and should be ignored
   when received.


6.  Compatibility Considerations

   The legacy nodes that do not implement the extensions defined in this
   document are able to ignore the LSA containing an OTN-ISCD sub-TLV.
   They will continue to flood the LSA to other neighbors, but will not
   use the information carried in this LSA.





Ceccarelli, et al.      Expires September 9, 2010              [Page 11]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


7.  Example

   Based on the sub-TLVs defined in [RFC 3630], [RFC 4203] and this
   document, a G.709 digital TE link can be described as follows.




                      +------+ component link 1 +------+
                      |      +------------------+      |
                      |  N1  +------------------+  N2  |
                      |      | component link 2 |      |
                      +--+---+                  +---+--+


                             Figure 3: Example

   This picture shows a simple example of an OTN network.  The link type
   of the two component links are OTU2 and OTU3 respectively.  The
   former have the capability of carrying ODU0, ODU1 and ODUflex client
   signals, while the latter, ODU1, ODU2, ODU3 and ODUflex.  The TS type
   is 1.25Gbps and all the possible priorities are supported (0~7).

   The two component links can be bundled as a TE link but it is also
   possible to consider each of them as a separate TE link.

   If the two component links are bundled together, N1 and N2 should
   assign a link local ID to the TE link and then N1 get the link remote
   ID automatically or manually.

   N1 can generate an LSA to describe the above attributes of the TE
   link.  Suppose the link IDs are unnumbered, the LSA should carry a
   link TLV with the following nested minimal sub-TLVs:



   < G.709 Digital Link > ::=  < Link Type > < Link ID > < Link
   Local/Remote Identifiers > < OTN Interface Switching Capability Descriptor >


   o Link Type sub-TLV: Defined in [RFC 3630], G.709 digital links are
   always type 1 - Point-to-point link.

   o Link ID sub-TLV: Defined in [RFC 3630], for point-to-point link,
   indicates the remote router ID.

   o Link Local/Remote Identifiers sub-TLV: Defined in [RFC 4203],
   indicates the local link ID and the remote link ID.



Ceccarelli, et al.      Expires September 9, 2010              [Page 12]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


   o OTN Interface Switching Capability Descriptor sub-TLV: Defined in
   this document, carries the characteristic of this G.709 digital TE
   link.

   Just after the creation of the TE Link comprising the two component
   links, the two ISCDs would be as follows:


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Res|T=0|OTk =2 |  Reserved     |   Signal Flags  |1|0|0|0|0|1|1|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P0 =8     |       Unreserved TS at p0 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P1 =8     |       Unreserved TS at p1 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P2 =8     |       Unreserved TS at p2 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P3 =8     |       Unreserved TS at p3 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P4 =8     |       Unreserved TS at p4 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P5 =8     |       Unreserved TS at p5 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P6 =8     |       Unreserved TS at p6 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Max lsp TS at P7 =8     |       Unreserved TS at p7 =8  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                 Figure 4: Example - OTN-ISCD OTU2 LC (to)

















Ceccarelli, et al.      Expires September 9, 2010              [Page 13]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Res|T=0|OTk =3 |  Reserved     |   Signal Flags  |1|0|0|1|1|1|0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P0 =32     |     Unreserved TS at p0 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P1 =32     |     Unreserved TS at p1 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P2 =32     |     Unreserved TS at p2 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P3 =32     |     Unreserved TS at p3 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P4 =32     |     Unreserved TS at p4 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P5 =32     |     Unreserved TS at p5 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P6 =32     |     Unreserved TS at p6 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P7 =32     |     Unreserved TS at p7 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                 Figure 5: Example - OTN-ISCD OTU3 LC (to)

   Suppose that at time t1 an LSP is created allocating 35 Gbps at
   priority 3.  The OTN-ISCD referring to the OTU2 component link is
   unmodified (Figure 4 and the OTN-ISCD referring to the OTU3 component
   link is modified as illustrated in Figure 6):




















Ceccarelli, et al.      Expires September 9, 2010              [Page 14]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Res|T=0|OTk =3 |  Reserved     |   Signal Flags  |1|0|0|1|1|1|0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P0 =32     |     Unreserved TS at p0 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P1 =32     |     Unreserved TS at p1 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P2 =32     |     Unreserved TS at p2 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P3 =4      |     Unreserved TS at p3 =4    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P4 =4      |     Unreserved TS at p4 =4    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P5 =4      |     Unreserved TS at p5 =4    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P6 =4      |     Unreserved TS at p6 =4    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P7 =4      |     Unreserved TS at p7 =4    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                 Figure 6: Example - OTN-ISCD OTU3 LC (t1)

   The last example shows how the prehemption is managed.  In
   particular, if a time t2 a new 15 GBps LSP with priority 1 is
   created, the LSP with priority 3 is prehempted and its resouces (or
   part of them) are allocated to the LSP with higher priority.  The
   OTN-ISCD sub-TLV related to component link 2 is updated accordingly
   to Figure 7:


















Ceccarelli, et al.      Expires September 9, 2010              [Page 15]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Res|T=0|OTk =3 |  Reserved     |   Signal Flags  |1|0|0|1|1|1|0|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P0 =32     |     Unreserved TS at p0 =32   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P1 =20     |     Unreserved TS at p1 =20   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P2 =20     |     Unreserved TS at p2 =20   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P3 =20     |     Unreserved TS at p3 =20   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P4 =20     |     Unreserved TS at p4 =20   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P5 =20     |     Unreserved TS at p5 =20   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P6 =20     |     Unreserved TS at p6 =20   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Max lsp TS at P7 =20     |     Unreserved TS at p7 =20   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


                 Figure 7: Example - OTN-ISCD OTU3 LC (t2)


8.  Security Considerations

   This document specifies the contents of Opaque LSAs in OSPFv2.  As
   Opaque LSAs are not used for SPF computation or normal routing, the
   extensions specified here have no direct effect on IP routing.
   Tampering with GMPLS TE LSAs may have an effect on the underlying
   transport (optical and/or SONET-SDH) network.  [RFC3630] suggests
   mechanisms such as [RFC2154] to protect the transmission of this
   information, and those or other mechanisms should be used to secure
   and/or authenticate the information carried in the Opaque LSAs.


9.  IANA Considerations

   TBD


10.  Contributors





Ceccarelli, et al.      Expires September 9, 2010              [Page 16]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


      Xiaobing Zi

      Huawei Technologies

      F3-5-B R&D Center, Huawei Base

      Bantian, Longgang District

      Shenzhen 518129 P.R.China

      Email: zixiaobing@huawei.com



      Francesco Fondelli

      Ericsson

      Via Negrone 1/A

      Genova - 16145

      Email: francesco.fondelli@ericsson.com



      Marco Corsi

      Altran Italia

      Via Negrone 1/A

      Genova - 16145

      EMail: marco.corsi@altran.it


11.  Acknowledgements

   The authors would like to thank Eric Gray for his precious comments
   and advices.


12.  References







Ceccarelli, et al.      Expires September 9, 2010              [Page 17]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


12.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2154]  Murphy, S., Badger, M., and B. Wellington, "OSPF with
              Digital Signatures", RFC 2154, June 1997.

   [RFC2370]  Coltun, R., "The OSPF Opaque LSA Option", RFC 2370,
              July 1998.

   [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
              (TE) Extensions to OSPF Version 2", RFC 3630,
              September 2003.

   [RFC4201]  Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
              in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.

   [RFC4203]  Kompella, K. and Y. Rekhter, "OSPF Extensions in Support
              of Generalized Multi-Protocol Label Switching (GMPLS)",
              RFC 4203, October 2005.

   [RFC5250]  Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The
              OSPF Opaque LSA Option", RFC 5250, July 2008.

12.2.  Informative References

   [G.709]    ITU-T, "Interface for the Optical Transport Network
              (OTN)", G.709 Recommendation (and Amendment 1),
              February 2001.

   [G.709-v3]
              ITU-T, "Draft revised G.709, version 3", consented
              by ITU-T on Oct 2009.

   [Gsup43]   ITU-T, "Proposed revision of G.sup43 (for agreement)",
              December 2008.














Ceccarelli, et al.      Expires September 9, 2010              [Page 18]


Internet-Draft     OSPF-TE extensions for OTN support         March 2010


Authors' Addresses

   Daniele Ceccarelli
   Ericsson
   Via A. Negrone 1/A
   Genova - Sestri Ponente
   Italy

   Email: daniele.ceccarelli@ericsson.com


   Diego Caviglia
   Ericsson
   Via A. Negrone 1/A
   Genova - Sestri Ponente
   Italy

   Email: diego.caviglia@ericsson.com


   Fatai Zhang
   Huawei Technologies
   F3-5-B R&D Center, Huawei Base
   Shenzhen 518129 P.R.China  Bantian, Longgang District
   Phone: +86-755-28972912

   Email: zhangfatai@huawei.com


   Dan Li
   Huawei Technologies
   F3-5-B R&D Center, Huawei Base
   Shenzhen 518129 P.R.China  Bantian, Longgang District
   Phone: +86-755-28973237

   Email: danli@huawei.com


   Yunbin Xu
   CATR
   11 Yue Tan Nan Jie
   Beijing
   P.R.China

   Email: xuyunbin@mail.ritt.com.cn






Ceccarelli, et al.      Expires September 9, 2010              [Page 19]