TSVWG A. Custura
Internet-Draft G. Fairhurst
Intended status: Informational R. Secchi
Expires: December 16, 2021 University of Aberdeen
June 14, 2021
Considerations for Assigning a new Recommended DiffServ Codepoint (DSCP)
draft-custura-tsvwg-dscp-considerations-02
Abstract
This document discusses considerations for assigning a new
recommended DiffServ Code Point (DSCP). It considers the common
remarking behaviours that the Diffserv field might be subjected to
along an Internet path. It also notes some implications of using a
specific DSCP.
This individual draft aims to seek comments and contributions from
the TSVWG working group.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on December 16, 2021.
Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
Custura, et al. Expires December 16, 2021 [Page 1]
Internet-Draft Considerations for assigning a DSCPs June 2021
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3
3. Current usage of DSCPs . . . . . . . . . . . . . . . . . . . 4
3.1. IP-Layer Semantics . . . . . . . . . . . . . . . . . . . 4
3.2. Network Control Traffic . . . . . . . . . . . . . . . . . 5
4. Remarking the DSCP . . . . . . . . . . . . . . . . . . . . . 5
4.1. Bleaching the DSCP Field . . . . . . . . . . . . . . . . 6
4.2. IP Type of Service manipulations . . . . . . . . . . . . 6
4.2.1. Impact of ToS Precedence Bleaching . . . . . . . . . 6
4.2.2. Impact of ToS Precedence Remarking . . . . . . . . . 7
4.3. Remarking to a Particular DSCP . . . . . . . . . . . . . 7
5. Interpretation of the IP DSCP at Lower Layers . . . . . . . . 8
5.1. Mapping Specified for IEEE 802.11 . . . . . . . . . . . . 8
5.2. Mappings Specified for MPLS . . . . . . . . . . . . . . . 9
5.2.1. Mappings Specified for MPLS Short Pipe . . . . . . . 10
5.3. Mapping Specified for Mobile Networks . . . . . . . . . . 11
5.4. Mappings Specified for Carrier Ethernet . . . . . . . . . 12
5.5. Remarking as a Side-effect of Another Policy . . . . . . 12
5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 12
6. Considerations for DSCP Selection . . . . . . . . . . . . . . 12
6.1. Effect of Bleaching . . . . . . . . . . . . . . . . . . . 12
6.2. Where the proposed DSCP > 0x07 (7) . . . . . . . . . . . 12
6.3. Where the proposed DSCP < 0x07 (7) . . . . . . . . . . . 13
6.3.1. Where the proposed DSCP&&0x07=0x01 . . . . . . . . . 13
6.4. Impact on deployed infrastructure . . . . . . . . . . . . 13
6.5. Questions to guide discussion of a proposed new DSCP . . 13
7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 14
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14
9. Security Considerations . . . . . . . . . . . . . . . . . . . 14
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.1. Normative References . . . . . . . . . . . . . . . . . . 15
10.2. Informative References . . . . . . . . . . . . . . . . . 16
Appendix A. Revision Notes . . . . . . . . . . . . . . . . . . . 17
Appendix B. Table of DSCP Values . . . . . . . . . . . . . . . . 17
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 18
1. Introduction
The Differentiated Services (DiffServ) architecture has been deployed
in many networks. It provides differentiated traffic forwarding
Custura, et al. Expires December 16, 2021 [Page 2]
Internet-Draft Considerations for assigning a DSCPs June 2021
based on the value of the Diffserv field [RFC2474] carried in the IP
packet header.
Internet traffic can be associated with a service class, and
categorised into Behavior Aggregates [RFC4594]. In IP networks,
these are associated with a DiffServ Code Point (DCSP) [RFC2474].
Each DSCP is mapped to a Per Hop Behaviour (PHB). A treatment
aggregate is concerned only with the forwarding treatment of the
aggregated traffic, which could be marked with multiple DSCPs
[RFC5127]. Treatment differentiation can be realised using a variety
of schedulers and queues, and also by algorithms that implement
access to the physical media.
Application -> Service
Traffic Class
|
Behavior -> DiffServ -> Per Hop
Aggregate Codepoint Behavior
|
Treatment -> Schedule
Aggregate Queue, Drop
Figure showing the role of DSCPs in classifying IP traffic for
differential network treatment.
This document discusses considerations for assigning a new DSCP. It
considers some commonly observed DSCP remarking behaviours that might
be expected to be experienced along an Internet path. It also notes
some packet forwarding treatments that a packet can receive as a
packet with a specific DSCP is forwarded across a link or subnetwork.
The document is motivated by new opportunities to use DiffServ end-
to-end across multiple domains, such as [I-D.ietf-tsvwg-nqb],
proposals to build mechanisms using DSCPs in other standards-setting
organisations, and the desire to use a common set of DSCPs across a
range of infrastructure (e.g., [RFC8622], [I-D.ietf-tsvwg-nqb],
[I-D.learmonth-rfc1226-bis]).
2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
Custura, et al. Expires December 16, 2021 [Page 3]
Internet-Draft Considerations for assigning a DSCPs June 2021
3. Current usage of DSCPs
This section describes current usage of DSCPs.
3.1. IP-Layer Semantics
The DiffServ architecture specifies use of the Diffserv field in the
IPv4 and IPv6 packet headers to carry one of 64 distinct DSCP values.
Within a given administrative boundary, each DSCP value can be mapped
to a distinct PHB[RFC2474]. When a new PHB is standardized, a
recommended DSCP value among those 64 values is normally reserved for
that PHB.
The DSCP space is divided into three pools for the purpose of
assignment and management [DSCP-registry]. The pools are defined in
the following table (where 'x' refers to either a bit position with
value '0' or '1').
DSCP Pool 1 A pool of 32 codepoints with a format 0bxxxxx0, to be
assigned by IANA Standards Action [RFC8126].
DSCP Pool 2 A pool of 16 codepoints with a format 0bxxxx11, reserved
for experimental or local (private) use by network operators (see
sections 4.1 and 4.2 of [RFC8126].
DSCP Pool 3 A pool of 16 codepoints with a 0bxxxx01. This was
initially available for experimental or local use, but which was
originally specified to be preferentially utilised for
standardized assignments if Pool 1 is ever exhausted. Pool 3
codepoints are now utilised for standardized assignments and are
no longer available for experimental or local use [RFC8436].
The DiffServ architecture allows forwarding treatments to be
associated with each DSCP, and the RFC series describes some of these
as PHBs. Although DSCPs are intended to identify specific treatment
requirements, multiple DSCPs might also be mapped (aggregated) to the
same forwarding treatment. Several IP standards map treatment
aggregates to DSCPs, that might result in remarking: RFC5160
[RFC5160] suggests Meta-QoS-Classes to help enable deployment of
standardized end-to-end QoS classes.
Note: A DSCP is sometimes referred to by name, such as "CS1", and
sometimes by a decimal, hex, or binary value [DSCP-registry].
Custura, et al. Expires December 16, 2021 [Page 4]
Internet-Draft Considerations for assigning a DSCPs June 2021
3.2. Network Control Traffic
Network Control Traffic is defined as packet flows that are essential
for stable operation of the administered network (see [RFC4594],
Section 3). This traffic is marked using a set of Class Selector
(CS) DSCPs. Such network control traffic is often a special case
within a provider network, and ingress traffic with these DSCP
markings can be remarked.
DSCP CS2 is recommended for the OAM (Operations, Administration, and
Maintenance) service class (see [RFC4594], Section 3.3).
The DCSP CS6 is recommended for local network control traffic. This
includes routing protocols and OAM traffic that are essential to
network operation administration, control and management.
Section 3.2 of RFC4594 [RFC4594] recommends that "CS6 marked packet
flows from untrusted sources (for example, end user devices) SHOULD
be dropped or remarked at ingress to the DiffServ network".
DSCP CS7 is reserved for future use by network control traffic. "CS7
marked packets SHOULD NOT be sent across peering points" [RFC4594].
4. Remarking the DSCP
It is a feature of the DiffServ architecture that the Diffserv field
of packets can be remarked at domain boundaries (see section 2.3.4.2
of RFC2475 [RFC2475]). A DSCP can be remarked at the ingress of a
DiffServ domain. This can be with or without restoring the initial
DSCP marking at the egress of the same domain. The Diffserv field
can also be re-marked based upon common semantics and agreements
between providers at an exchange point.
If packets are received that are marked with an unknown or an
unexpected DSCP, RFC2474 [RFC2474] recommends forwarding the packet
using a default (best effort) treatment, but without changing the
DSCP. This seeks to support incremental DiffServ deployment in
existing networks as well as preserving DSCP markings by routers that
have not been configured to support DiffServ. (See also
Section 4.3).
Reports measuring existing deployments have categorised DSCP
remarking [Custura] [Barik] into the following five behaviours:
Bleach: bleaches all traffic (sets the DSCP to zero);
Bleach-ToS-Precedence: set the first three bits of the DCSP field to
0b000 (reset the 3 bits of the former ToS Precedence field) ;
Custura, et al. Expires December 16, 2021 [Page 5]
Internet-Draft Considerations for assigning a DSCPs June 2021
Remark-ToS: set the first three bits of the DCSP field to any value
different than 0b000 (replace the 3 bits of the former ToS
Precedence field);
Bleach-low: set the last three bits of the DCSP field to 0b000;
Bleach-some-low: set the last three bits of the DSCP field to 0b000,
unless the first two bits of the DSCP field are 0b11;
Remark: remarks all traffic to one or more particular (non-zero)
DSCP values.
4.1. Bleaching the DSCP Field
A specific form of remarking occurs when the DiffServ field is re-
assigned to the default treatment, CS0 (0x00). This results in
traffic being forwarded using the BE PHB. For example, AF31 (0x1a)
would be bleached to CS0.
Resetting all the bits of the DiffServ field to 0 is more prevalent
at the edge of the network, and rather less common in core networks
[Custura].
4.2. IP Type of Service manipulations
The IETF first defined ToS precedence for IP packets [RFC0791],
updated by specification as a part of the ToS Field RFC1349
[RFC1349]. Since 1998, this practice has been deprecated by RFC2474
[RFC2474]. RFC 2474 defines codepoints 0x xxx000 as the Class
Selector codepoints, where PHBs selected by these codepoints MUST
meet the Class Selector PHB Requirements" described in Sec. 4.2.2.2
of that RFC.
However, practices based on ToS semantics have not yet been
eliminated from Internet, and need to still be considered when making
new DCSP assignments.
4.2.1. Impact of ToS Precedence Bleaching
ToS Precedence Bleaching (/Bleach-ToS-Precedence/) is a practice that
resets to zero the upper 3 bits of the DSCP field (the former ToS
Precedence field), leaving the lower bits unchanged (see section
4.2.1 of RFC2474 [RFC2474]). This behaviour is distinctive of non-
DiffServ aware routers and one of the more common manipulations of
the DiffServ field.
Custura, et al. Expires December 16, 2021 [Page 6]
Internet-Draft Considerations for assigning a DSCPs June 2021
+-+-+-+-+-+-+
|0 0 0|x x x|
+-+-+-+-+-+-+
Figure showing the ToS Precedence Bleaching (/Bleach-ToS-Precedence/)
pathology, based on Section 3 of RFC1349 [RFC1349].
If ToS Precedence Bleaching occurs, packets with a DSCP 'x' would be
remarked and then would be treated according to the PHB specified for
'x' & 0x07. For example, AF31 (0x1a) would be remarked to DSCP 2
(0x02).
A variation of this behaviour clears the top three bits of a DSCP,
unless these have values 0b110 or 0b111 (corresponding to the CS6 and
CS7 codepoints). As a result, a DSCP value greater than 48 decimal
(0x30) is less likely to be impacted by ToS Precedence Bleaching.
4.2.2. Impact of ToS Precedence Remarking
Practices based on ToS Precedence Remarking (/Remark-ToS/) RFC1349
[RFC1349] were deprecated by RFC2474 [RFC2474]. These practices
based on ToS semantics have not yet been eliminated from deployed
networks.
+-+-+-+-+-+-+
|0 0 1|x x x|
+-+-+-+-+-+-+
Figure showing the ToS Remarking (/Remark/) pathology, based on
Section 3 of RFC1349 [RFC1349].
A less common behaviour, ToS precedence remarking sets the upper
three bits of the DSCP field to a non-zero value corresponding to a
CS PHB. This behaviour is distinctive of non-DiffServ aware routers.
If remarking occurs, packets are treated using the PHB specified for
the resulting codepoint. For example, the AF31 DSCP (0x1a) could be
remarked to either AF11 or AF21.
4.3. Remarking to a Particular DSCP
A network device might remark the Diffserv field of an IP packet
based on a local policy with a specific (set of) DSCPs, /Remark/.
This is sometimes performed using a Multi-Field (MF) classifier
[RFC2475] [RFC3290] [RFC4594]. For example, a common behaviour is to
mark all traffic to a single DSCP, thus removing any traffic
Custura, et al. Expires December 16, 2021 [Page 7]
Internet-Draft Considerations for assigning a DSCPs June 2021
differentiation (see Section 4.1). Bleaching (/Bleach/) is a
specific example of this that remarks to a zero codepoint.
In another example, some networks do not follow the recommendation in
RFC2475 [RFC2475], and instead remark packets with an unknown or
unexpected DSCP to the default class, CS0 (0x00) to ensure that
appropriate DSCPs are used within a DiffServ domain. (e.g., see
[RFC8100]).
5. Interpretation of the IP DSCP at Lower Layers
Transmission systems and subnetworks can, and do, utilise the
Diffserv field in an IP packet to select a lower layer forwarding
treatment. In many cases, this use is constrained by designs that
utilise fewer than 6 bits to express the service class, and therefore
infer mappings to a smaller L2 QoS field, for example, WiFi or Multi-
Protocol Label Switching (MPLS).
5.1. Mapping Specified for IEEE 802.11
<< This section is currently seeking more input. >>
A 3-bit Priority Code Point (PCP) is specified in the IEEE 802.1Q tag
to mark Ethernet frames to one of eight priority values. The value
zero indicates the default best effort treatment, and the value one
indicates a background traffic class. The remaining values indicate
increasing priority. Internet control traffic can be marked as six,
and network control is marked as seven.
Section 6 of RFC 8325 RFC 8325 [RFC8325] provides a brief overview of
IEEE 802.11 QoS. The IEEE 802.11 standards [IEEE-802-11] provides
MAC functions to support QoS in WLANs using Access Classes (AC). The
upstream User Priority (UP) in the 802.11 header has a 3-bit QoS
value. A DSCP can be mapped to the UP. Most existing WiFi
implementations [RFC8325] use a default mapping that utilises the
three most significant bits of the DiffServ Field to the 802.11 UP.
This is then in turn mapped to the four WiFi Multimedia (WMM) Access
Categories.
RFC 8325 [RFC8325] proposes several recommendations for mapping a
DSCP to an IEEE 802.11 UP for wired-to-wireless interconnection. The
DSCP value of a downstream IP packet can be used (e.g., the Control
And Provisioning of Wireless Access Points (CAPWAP) protocol,
RFC5415, maps an IP packet Diffserv field to the Diffserv field of
outer IP headier in a CAPWAP tunnel).
Custura, et al. Expires December 16, 2021 [Page 8]
Internet-Draft Considerations for assigning a DSCPs June 2021
Some current constraints of WiFi mapping are discussed in section 2
of RFC 8325 [RFC8325]. A QoS profile can be used to limit the
maximum DSCP value used for the upstream and downstream traffic.
+-+-+-+-+-+-+
|x x x|. . .|
+-+-+-+-+-+-+
Figure showing the DSCP bits commonly mapped to the UP in 802.11.
This UP mapping can result in a specific DSCP remarking pathology.
In the upstream direction, some Access Points (APs) currently use a
default UP-to-DSCP mapping RFC8325 [RFC8325], wherein "DSCP values
are derived from the layer 2 UP values by multiplying the UP values
by eight (i.e., shifting the three UP bits to the left and adding
three additional zeros to generate a 6 bit DSCP value). This derived
DSCP value is then used for QoS treatment between the wireless AP and
the nearest classification and marking policy enforcement point
(which may be the centralized wireless LAN controller, relatively
deep within the network). Alternatively, in the case where there is
no other classification and marking policy enforcement point, then
this derived DSCP value will be used on the remainder of the Internet
path." This behaviour can result in remarking /Reset-low/.
RFC8325 [RFC8325] notes inconsistencies that can result from such
remarking, and recommends how to perform this remarking.
+-+-+-+-+-+-+
|x x x|0 0 0|
+-+-+-+-+-+-+
Figure showing the DSCP bits commonly mapped to the UP in 802.11.
5.2. Mappings Specified for MPLS
<< This section is currently seeking more input. >>
Multi-Protocol Label Switching (MPLS) specified eight MPLS Traffic
Classes (TCs), which restricts the number of different treatments
(e.g., see [RFC5129]). RFC 5127 describes aggregation of DiffServ
TCs [RFC5127], and introduces four DiffServ Treatment Aggregates.
Traffic marked with multiple DSCPs can be forwarded in a single MPLS
TC.
Custura, et al. Expires December 16, 2021 [Page 9]
Internet-Draft Considerations for assigning a DSCPs June 2021
5.2.1. Mappings Specified for MPLS Short Pipe
<< This section is currently seeking more input. >>
ITU-T Y.1566 [ITU-T-Y-1566] further defined a set of four common QoS
classes and four auxiliary classes to which a DSCP can be mapped when
interconnecting Ethernet, IP and MPLS networks. RFC8100 [RFC8100]
proposes four treatment aggregates for interconnection with four
defined DSCPs. This was motivated by the requirements of MPLS
network operators that use Short-Pipe tunnels, but can be applicable
to other networks, both MPLS and non-MPLS.
RFC8100 recommends preserving the notion of end-to-end service
classes, and recommends that the original DSCP marking is not changed
when treatment aggregates are used. The key requirement is that the
DSCP at the network ingress is restored at the network egress. This
is only feasible in general for a small number of DSCPs. In this
design, packets marked with other DSCPs can be re-marked (This can
result in the /Remark/ behaviour) or dealt with via an additional
agreement(s) among the operators of the interconnected networks. Use
of the MPLS Short Pipe Model favours re-marking unexpected DSCP
values to zero in the absence of an additional agreement(s), as
explained in RFC8100 [RFC8100]. This can result in the Bleaching
(/Bleach/).
+---------------+-------+
| RFC8100 | PHB |
| Agg. Class | |
+---------------+-------+
|Conversational | EF |
+---------------+-------+
| Streaming | AF41 |
+---------------+-------+
| Interactive | AF31 |
+ +-------+
| (ordered by | AF32 |
+ priority, +-------+
| AF3 highest) | AF21 |
+ +-------+
| | AF11 |
+---------------+-------+
| Background | CS0 |
+---------------+-------+
Figure showing the MPLS mapping from RFC 8100.
Custura, et al. Expires December 16, 2021 [Page 10]
Internet-Draft Considerations for assigning a DSCPs June 2021
5.3. Mapping Specified for Mobile Networks
<< This section is currently seeking more input. >>
Mobile LTE and 5G standards have evolved from older UMTS standards,
and are Diffserv aware. LTE (4G) and 5G standards [SA-5G] identify
traffic classes at the interface between User Equipment (UE) and the
mobile Packet Core;network by QCI (QoS Class Identifiers) and 5QI (5G
QoS Identifier). The 3GPP standards do not define or recommend any
specific mappings between each QCI or 5QI and Diffserv (and mobile
QCIs are based on several criteria service class definitions). The
way packets are mapped at the Packet Gateway (P-GW) boundary is
determined by operators. However, TS 23.107 (version 16.0.0, applies
to LTE and below) mandates that "Differentiated Services defined by
IETF shall be used" to interoperate with IP backbone networks.
The GSM Association (GSMA) has defined four aggregated classes and
seven associated PHBs in their guidelines for IPX Provider networks
GSMA IR.34 [GSMA-IR-34]. This was previously specified as the Inter-
Service Provider IP Backbone Guidelines, and provides a mobile ISP to
ISP QoS mapping mechanism, and interconnection with other IP networks
in the general Internet. This describes the case where the DSCP
marking from a Service Provider cannot be trusted (depending on the
agreement between the Service Provider and its IPX Provider),
allowing the IPX Provider to correct the DSCP value to a static
default value.
+---------------+-------+
| GSMA IR.34 | PHB |
| Agg. Class | |
+---------------+-------+
|Conversational | EF |
+---------------+-------+
| Streaming | AF41 |
+---------------+-------+
| Interactive | AF31 |
+ +-------+
| (ordered by | AF32 |
+ priority, +-------+
| AF3 highest) | AF21 |
+ +-------+
| | AF11 |
+---------------+-------+
| Background | CS0 |
+---------------+-------+
Figure showing the PHB mapping from GSMA IR.34 [GSMA-IR-34].
Custura, et al. Expires December 16, 2021 [Page 11]
Internet-Draft Considerations for assigning a DSCPs June 2021
5.4. Mappings Specified for Carrier Ethernet
<< This section is currently seeking more input on Metro Ethernet
Forum mapping is currently incomplete. >>
Metro Ethernet Forum (MEF) provides mappings of DSCP codepoints at
the IP layer to quality of service markings in the Ethernet frame
headers {{Ref to MEF23.1 ??}}.
5.5. Remarking as a Side-effect of Another Policy
The result of applying a QoS policy (such as matching the IP address,
or traffic reaching a rate limit) could also result in a packet being
remarked to a different DSCP (/Remark/) when it is not admitted to a
service. Traffic marked with an EF and VA DSCP are often policed by
such policies.
Policies and L2 procedures can also result in remarking traffic as a
side-effect of other functions (e.g., in response to DDos).
5.6. Summary
<< This section might contain a summary table >>
6. Considerations for DSCP Selection
This section provides advice for the assignment of a new DSCP value.
It identifies known issues that might influence the finally assigned
DSCP, followed by a summary of considerations for assignment of a new
DSCP.
6.1. Effect of Bleaching
New DSCP assignments should consider the impact of bleaching, which
can limit the ability to provide the expected treatment end-to-end.
This is particularly important for cases where the codepoint is
intended to result in lower than best effort treatment, as was the
case when defining the LE PHB [RFC8622]. In this case, bleaching, or
remarking to "CS0" would result in elevating the lower effort traffic
to the default class. This is an example of priority inversion.
6.2. Where the proposed DSCP > 0x07 (7)
Although the IETF specifications require systems to use DSCP marking
semantics in place of methods based on the former ToS field, the
current recommendation is that any new assignment where the codepoint
is greater than 0x07 should consider the semantics associated with
the resulting DSCP when ToS precedence bleaching is experienced. For
Custura, et al. Expires December 16, 2021 [Page 12]
Internet-Draft Considerations for assigning a DSCPs June 2021
example, it can be desirable to avoid choosing a DSCP that could be
remarked to LE, Lower Effort [RFC8622], which could otherwise
potentially result in a priority inversion in the treatment.
6.3. Where the proposed DSCP < 0x07 (7)
ToS bleaching can unintentionally result in extra traffic aggregated
to the same DSCP. For example, after experiencing ToS Bleaching, all
traffic marked AF11, AF21, AF31 and AF41 would be aggregated with
traffic marked with DSCP 2 (0x02), increasing the volume of traffic
which receives the treatment associated with DSCP 2. New DiffServ
codepoint assignments should consider unexpected consequences arising
from ToS bleaching.
6.3.1. Where the proposed DSCP&&0x07=0x01
As a consequence of assigning the LE PHB [RFC8622], the IETF
allocated the DSCP 000001b from Pool 3.
When making assignments where the DSCP has a format: xxx 001b, the
case of ToS Precedence Bleaching (/Bleach-ToS-Precedence/) of a DSCP
to a value of 0x01 needs to be considered. ToS Precedence Bleaching
will result in demoting the traffic to the lower effort traffic
class. Care should be taken to consider the implications that a DSCP
in this category could be remarked as LE.
6.4. Impact on deployed infrastructure
Behaviour of deployed PHBs and conditioning treatments also needs to
be considered when assigning a new DSCP. In some domains, a network
operator can provide transparent transport of unknown or unassigned
DSCPs across their domain. In other domains, policing can ensure
that only traffic that matches a policy is permitted to use a
specific DSCP (e.g., as in MPLS TC).
6.5. Questions to guide discussion of a proposed new DSCP
A series of questions emerge that need to be answered when
considering a proposal to the IETF that requests a new assignment.
These questions include:
o How is the proposed service class characterised? - What are the
characteristics of the traffic to be carried? What are the
expectations for treatment?
o Service Classes that can utilise existing PHBs should use assigned
DSCPs to mark their traffic: Could the request be met by using an
Custura, et al. Expires December 16, 2021 [Page 13]
Internet-Draft Considerations for assigning a DSCPs June 2021
existing IETF DSCP? How would the proposed new DSCP be used to
map traffic to a new or existing PHB?
o Diffserv domains can use the codepoints in Pool 2 for local or
experimental use, without any IETF specification for the DSCP or
associated PHB: Could the request be met by using a DSCP chosen
from Pool 2?
o This documents describes some observed marking behaviors (see also
below): What is the expected effect of currently-deployed
remarking on the end-to-end service?
o Many DiffServ domains support only a small number of treatment
aggregates: What are the effects of treatment aggregation on the
proposed method?
o This documents describes some observed treatments by layers below
IP: What are the implications of using the proposed DSCP on the
expected lower layers over which the traffic may be forwarded?
If approved, new IETF assignments are normally made by IANA in Pool
1, but the IETF can request assignments to be made from Pool 3
[RFC8436].
XXX Note: Is it possible to assign a DSCP without defining a new PHB?
7. Acknowledgments
The authors acknowledge the helpful discussions and analysis by Greg
White and Thomas Fossati in a draft concerning NQB. We look forward
to further comments and review.
8. IANA Considerations
This memo provides information to assist in considering new
assignments to the IANA DSCP registry
(https://www.iana.org/assignments/dscp-registry/dscp-registry.xhtml).
This memo includes no request to IANA, or update to the IANA
procedures.
9. Security Considerations
The security considerations are discussed in the security
considerations of each cited RFC.
Custura, et al. Expires December 16, 2021 [Page 14]
Internet-Draft Considerations for assigning a DSCPs June 2021
10. References
10.1. Normative References
[DSCP-registry]
IANA, "Differentiated Services Field Codepoints (DSCP)
Registry".
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", RFC 2474,
DOI 10.17487/RFC2474, December 1998,
<https://www.rfc-editor.org/info/rfc2474>.
[RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
and W. Weiss, "An Architecture for Differentiated
Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
<https://www.rfc-editor.org/info/rfc2475>.
[RFC3290] Bernet, Y., Blake, S., Grossman, D., and A. Smith, "An
Informal Management Model for Diffserv Routers", RFC 3290,
DOI 10.17487/RFC3290, May 2002,
<https://www.rfc-editor.org/info/rfc3290>.
[RFC4594] Babiarz, J., Chan, K., and F. Baker, "Configuration
Guidelines for DiffServ Service Classes", RFC 4594,
DOI 10.17487/RFC4594, August 2006,
<https://www.rfc-editor.org/info/rfc4594>.
[RFC5129] Davie, B., Briscoe, B., and J. Tay, "Explicit Congestion
Marking in MPLS", RFC 5129, DOI 10.17487/RFC5129, January
2008, <https://www.rfc-editor.org/info/rfc5129>.
[RFC8100] Geib, R., Ed. and D. Black, "Diffserv-Interconnection
Classes and Practice", RFC 8100, DOI 10.17487/RFC8100,
March 2017, <https://www.rfc-editor.org/info/rfc8100>.
[RFC8436] Fairhurst, G., "Update to IANA Registration Procedures for
Pool 3 Values in the Differentiated Services Field
Codepoints (DSCP) Registry", RFC 8436,
DOI 10.17487/RFC8436, August 2018,
<https://www.rfc-editor.org/info/rfc8436>.
Custura, et al. Expires December 16, 2021 [Page 15]
Internet-Draft Considerations for assigning a DSCPs June 2021
10.2. Informative References
[Barik] Barik, R., Welzl, M., Elmokashfi, A., Dreibholz, T., and
S. Gjessing, "Can WebRTC QoS Work? A DSCP Measurement
Study", ITC 30, September 2018.
[Custura] Custura, A., Venne, A., and G. Fairhurst, "Exploring DSCP
modification pathologies in mobile edge networks", TMA ,
2017.
[GSMA-IR-34]
GSM Association, "IR.34 Guidelines for IPX Provider
networks (Previously Inter-Service Provider IP Backbone
Guidelines)", IR 34, 2017.
[I-D.ietf-tsvwg-nqb]
White, G. and T. Fossati, "A Non-Queue-Building Per-Hop
Behavior (NQB PHB) for Differentiated Services", draft-
ietf-tsvwg-nqb-03 (work in progress), November 2020.
[I-D.learmonth-rfc1226-bis]
Learmonth, I., "Internet Protocol Encapsulation of AX.25
Frames", draft-learmonth-rfc1226-bis-03 (work in
progress), May 2020.
[IEEE-802-11]
IEEE, "Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications", IEEE 802.11, 2007.
[ITU-T-Y-1566]
ITU-T, "Quality of Service Mapping and Interconnection
Between Ethernet, Internet Protocol and Multiprotocol
Label Switching Networks", ITU-T Y.1566, 2012.
[RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
DOI 10.17487/RFC0791, September 1981,
<https://www.rfc-editor.org/info/rfc791>.
[RFC1349] Almquist, P., "Type of Service in the Internet Protocol
Suite", RFC 1349, DOI 10.17487/RFC1349, July 1992,
<https://www.rfc-editor.org/info/rfc1349>.
[RFC5127] Chan, K., Babiarz, J., and F. Baker, "Aggregation of
Diffserv Service Classes", RFC 5127, DOI 10.17487/RFC5127,
February 2008, <https://www.rfc-editor.org/info/rfc5127>.
Custura, et al. Expires December 16, 2021 [Page 16]
Internet-Draft Considerations for assigning a DSCPs June 2021
[RFC5160] Levis, P. and M. Boucadair, "Considerations of Provider-
to-Provider Agreements for Internet-Scale Quality of
Service (QoS)", RFC 5160, DOI 10.17487/RFC5160, March
2008, <https://www.rfc-editor.org/info/rfc5160>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8325] Szigeti, T., Henry, J., and F. Baker, "Mapping Diffserv to
IEEE 802.11", RFC 8325, DOI 10.17487/RFC8325, February
2018, <https://www.rfc-editor.org/info/rfc8325>.
[RFC8622] Bless, R., "A Lower-Effort Per-Hop Behavior (LE PHB) for
Differentiated Services", RFC 8622, DOI 10.17487/RFC8622,
June 2019, <https://www.rfc-editor.org/info/rfc8622>.
[SA-5G] 3GPP, "System Architecture for 5G", TS 23.501, 2019.
Appendix A. Revision Notes
Note to RFC-Editor: please remove this entire section prior to
publication.
o Individual draft -00
o Individual draft -01; Comments from Martin Duke; Brian Carpenter;
Ruediger Geib, and revisions to improve language consistency.
o Individual draft -02; Revisions to improve language consistency.
Appendix B. Table of DSCP Values
This table may help in the discussion of DSCP remarking. The current
assignments are at: Section 8.
Custura, et al. Expires December 16, 2021 [Page 17]
Internet-Draft Considerations for assigning a DSCPs June 2021
+-------+------+------+------+------+------+------+------+------+
|Hi \ Lo|0b 000|0b 001|0b 010|0b 011|0b 100|0b 101|0b 110|0b 111|
+-------+------+------+------+------+------+------+------+------+
| 0b 000|BE/DE |LE | CU |Pool 3| CU | CU | CU |Pool 3|
| | CSO | | |LU/EXP| | | |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
| 0b 001|CS1 | CU |AF11 |LU/EXP|AF12 | CU |AF13 |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
| 0b 010|CS2 | CU |AF21 |LU/EXP|AF22 | CU |AF23 |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
| 0b 011|CS3 | CU |AF31 |LU/EXP|AF32 | CU |AF33 |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
| 0b 100|CS4 | CU |AF41 |LU/EXP|AF42 | CU |AF43 |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
| 0b 101|CS5 | CU | CU |LU/EXP|VA | CU |EF |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
| 0b 110|CS6 | CU | CU |LU/EXP| CU | CU | CU |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
| 0b 111|CS7 | CU | CU |LU/EXP| CU | CU | CU |LU/EXP|
+-------+------+------+------+------+------+------+------+------+
LU/EXP - Local or Experimental Use
CU - Currenty Unassigned (reserved for IANA allocation)
Table: Summary of Currently Assigned DSCP Values
Authors' Addresses
Ana Custura
University of Aberdeen
School of Engineering
Fraser Noble Building
Aberdeen AB24 3UE
UK
Email: ana@erg.abdn.ac.uk
Godred Fairhurst
University of Aberdeen
School of Engineering
Fraser Noble Building
Aberdeen AB24 3UE
UK
Email: gorry@erg.abdn.ac.uk
Custura, et al. Expires December 16, 2021 [Page 18]
Internet-Draft Considerations for assigning a DSCPs June 2021
Raffaello Secchi
University of Aberdeen
School of Engineering
Fraser Noble Building
Aberdeen AB24 3UE
UK
Email: r.secchi@abdn.ac.uk
Custura, et al. Expires December 16, 2021 [Page 19]