Internet Engineering Task Force                         V. Dolmatov, Ed.
Internet-Draft                                      JSC "NPK Kryptonite"
Updates: 5830 (if approved)                          D. Eremin-Solenikov
Intended status: Informational                               Auriga, Inc
Expires: December 27, 2019                                 June 26, 2019


                GOST R 34.12-2015: Block Cipher "Magma"
                        draft-dolmatov-magma-01

Abstract

   This document is intended to be a source of information about updated
   version of the block cipher with block length of n=64 bits and key
   length k=256 bits (RFC5830), which is also referred as "Magma" and is
   described in the Russian Federal standard GOST R 34.12-2015,
   containing also the description of block cipher "Kuznechik"
   (RFC7801).  These algorithms are from the set of Russian
   cryptographic standard algorithms (called GOST algorithms).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 27, 2019.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must



Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 1]


Internet-Draft              Abbreviated Title                  June 2019


   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  General Information . . . . . . . . . . . . . . . . . . . . .   3
   3.  Definitions and Notations . . . . . . . . . . . . . . . . . .   3
     3.1.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   3
     3.2.  Notations . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Description of Kuznechik cipher . . . . . . . . . . . . . . .   5
   5.  Parameter Values  . . . . . . . . . . . . . . . . . . . . . .   5
     5.1.  Nonlinear Bijection . . . . . . . . . . . . . . . . . . .   5
     5.2.  Transformations . . . . . . . . . . . . . . . . . . . . .   6
     5.3.  Key schedule  . . . . . . . . . . . . . . . . . . . . . .   6
   6.  Basic encryption algorithm  . . . . . . . . . . . . . . . . .   7
     6.1.  Encryption  . . . . . . . . . . . . . . . . . . . . . . .   7
     6.2.  Decryption  . . . . . . . . . . . . . . . . . . . . . . .   7
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   7
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .   7
     9.2.  Informative References  . . . . . . . . . . . . . . . . .   8
   Appendix A.  Test Examples  . . . . . . . . . . . . . . . . . . .   8
     A.1.  Transformation t  . . . . . . . . . . . . . . . . . . . .   8
     A.2.  Transformation g  . . . . . . . . . . . . . . . . . . . .   8
     A.3.  Key schedule  . . . . . . . . . . . . . . . . . . . . . .   9
     A.4.  Test Encryption . . . . . . . . . . . . . . . . . . . . .  10
     A.5.  Test Decryption . . . . . . . . . . . . . . . . . . . . .  11
   Appendix B.  Background . . . . . . . . . . . . . . . . . . . . .  12
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

   The Russian Federal standard [GOSTR3412-2015] specifies basic block
   ciphers used as cryptographic techniques for information processing
   and information protection including the provision of
   confidentiality, authenticity, and integrity of information during
   information transmission, processing and storage in computer-aided
   systems.

   The cryptographic algorithms specified in this Standard are designed
   both for hardware and software implementation.  They comply with
   modern cryptographic requirements, and put no restrictions on the
   confidentiality level of the protected information.





Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 2]


Internet-Draft              Abbreviated Title                  June 2019


2.  General Information

   The Russian Federal standard [GOSTR3412-2015] was developed by the
   Center for Information Protection and Special Communications of the
   Federal Security Service of the Russian Federation with participation
   of the Open Joint-Stock company "Information Technologies and
   Communication Systems" (InfoTeCS JSC).  GOST R 34.12-2015 was
   approved and introduced by Decree #749 of the Federal Agency on
   Technical Regulating and Metrology on 19.06.2015.

   Terms and concepts in the standard comply with the following
   international standards:

   o  ISO/IEC 10116 [ISO-IEC10116],

   o  series of standards ISO/IEC 18033 [ISO-IEC18033-1],
      [ISO-IEC18033-3].

3.  Definitions and Notations

   The following terms and their corresponding definitions are used in
   the standard.

3.1.  Definitions

   Definitions

      encryption algorithm: process which transforms plaintext into
      ciphertext (Clause 2.19 of [ISO-IEC18033-1]),

      decryption algorithm: process which transforms ciphertext into
      plaintext (Clause 2.14 of [ISO-IEC18033-1]),

      basic block cipher: block cipher which for a given key provides a
      single invertible mapping of the set of fixed-length plaintext
      blocks into ciphertext blocks of the same length,

      block: string of bits of a defined length (Clause 2.6 of
      [ISO-IEC18033-1]),

      block cipher: symmetric encipherment system with the property that
      the encryption algorithm operates on a block of plaintext, i.e. a
      string of bits of a defined length, to yield a block of ciphertext
      (Clause 2.7 of [ISO-IEC18033-1]),

         Note: In GOST R 34.12-2015, it is established that the terms
         "block cipher" and "block encryption algorithm" are synonyms.




Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 3]


Internet-Draft              Abbreviated Title                  June 2019


      encryption: reversible transformation of data by a cryptographic
      algorithm to produce ciphertext, i.e., to hide the information
      content of the data (Clause 2.18 of [ISO-IEC18033-1]),

      round key: sequence of symbols which is calculated from the key
      and controls a transformation for one round of a block cipher,

      key: sequence of symbols that controls the operation of a
      cryptographic transformation (e.g., encipherment, decipherment)
      (Clause 2.21 of [ISO-IEC18033-1]),

         Note: In GOST R 34.12-2015, the key must be a binary sequence.

      plaintext: unencrypted information (Clause 3.11 of
      [ISO-IEC10116]),

      key schedule: calculation of round keys from the key,

      decryption: reversal of a corresponding encipherment (Clause 2.13
      of [ISO-IEC18033-1]),

      symmetric cryptographic technique: cryptographic technique that
      uses the same secret key for both the originator's and the
      recipient's transformation (Clause 2.32 of [ISO-IEC18033-1]),

      cipher: alternative term for encipherment system (Clause 2.20 of
      [ISO-IEC18033-1]),

      ciphertext: data which has been transformed to hide its
      information content (Clause 3.3 of [ISO-IEC10116]).

3.2.  Notations

   The following notations are used in the standard:

         V*  the set of all binary vector-strings of a finite length
      (hereinafter referred to as the strings) including the empty
      string,

        V_s  the set of all binary strings of length s, where s is a
      non-negative integer; substrings and string components are
      enumerated from right to left starting from zero,

      U[*]W  direct (Cartesian) product of two set U and W,

        |A|  the number of components (the length) of a string A
      belonging to V* (if A is an empty string, then |A| = 0),




Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 4]


Internet-Draft              Abbreviated Title                  June 2019


       A||B  concatenation of strings A and B both belonging to V*,
      i.e., a string from V_(|A|+|B|), where the left substring from
      V_|A| is equal to A and the right substring from V_|B| is equal to
      B,

   A<<<_11  cyclic rotation of string A belonging to V_32 by 11
      components in the direction of components having greater indices

    Z_(2^n)  ring of residues modulo 2^n,

      (xor)  exclusive-or of the two binary strings of the same length,

   [+]  addition in the ring Z_(2^32)

   Vec_s: Z_(2^s) -> V_s  bijective mapping which maps an element from
      ring Z_(2^s) into its binary representation, i.e., for an element
      z of the ring Z_(2^s), represented by the residue z_0 + (2*z_1) +
      ... + (2^(s-1)*z_(s-1)), where z_i in {0, 1}, i = 0, ..., n-1, the
      equality Vec_s(z) = z_(s-1)||...||z_1||z_0 holds,

   Int_s: V_s -> Z_(2^s)  the mapping inverse to the mapping Vec_s,
      i.e., Int_s = Vec_s^(-1),

         PS  composition of mappings, where the mapping S applies first,

        P^s  composition of mappings P^(s-1) and P, where P^1=P,

4.  Description of Kuznechik cipher

   This section corresponds to "Kuznechik" cipher and is described in
   [RFC7801]

5.  Parameter Values

5.1.  Nonlinear Bijection

   The bijective nonlinear mapping is a set of substitutions:

   Pi_i = Vec_4 Pi'_i Int_4: V_4 -> V_4,

   where

   Pi'_i: Z_(2^4) -> Z_(2^4), i = 0, 1, ..., 7.

   The values of the substitution Pi' are specified below as arrays






Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 5]


Internet-Draft              Abbreviated Title                  June 2019


   Pi'_i = (Pi'_i(0), Pi'_i(1), ... , Pi'_i(15)), i = 0, 1, ..., 7:

   Pi'_0 = (12, 4, 6, 2, 10, 5, 11, 9, 14, 8, 13, 7, 0, 3, 15, 1);
   Pi'_1 = (6, 8, 2, 3, 9, 10, 5, 12, 1, 14, 4, 7, 11, 13, 0, 15);
   Pi'_2 = (11, 3, 5, 8, 2, 15, 10, 13, 14, 1, 7, 4, 12, 9, 6, 0);
   Pi'_3 = (12, 8, 2, 1, 13, 4, 15, 6, 7, 0, 10, 5, 3, 14, 9, 11);
   Pi'_4 = (7, 15, 5, 10, 8, 1, 6, 13, 0, 9, 3, 14, 11, 4, 2, 12);
   Pi'_5 = (5, 13, 15, 6, 9, 2, 12, 10, 11, 7, 8, 1, 4, 3, 14, 0);
   Pi'_6 = (8, 14, 2, 5, 6, 9, 1, 12, 15, 4, 11, 0, 13, 10, 3, 7);
   Pi'_7 = (1, 7, 14, 13, 0, 5, 8, 3, 4, 15, 10, 6, 9, 12, 11, 2);

5.2.  Transformations

   The following transformations are applicable for encryption and
   decryption algorithms:

   t: V_32 -> V_32  t(a) = t(a_7||...||a_0) = Pi_7(a_7)||...||Pi_0(a_0),
      where a=a_7||...||a_0 belongs to V_32, a_i belongs to V_4, i=0, 1,
      ..., 7;

   g[k]: V_32 -> V_32  g[k](a) = (t(Vec_32(Int_32(a) [+] Int_32(k))))
      <<<_11, where k, a belong to V_32;

   G[k]: V_32[*]V_32 -> V_32[*]V_32  G[k](a_1, a_0) = (a_0, g[k](a_0)
      (xor) a_1), where k, a_0, a_1 belong to V_32;

   G^*[k]: V_32[*]V_32 -> V_64  G^*[k](a_1, a_0) = (g[k](a_0) (xor)
      a_1) || a_0, where k, a_0, a_1 belong to V_32.

5.3.  Key schedule

   Round keys K_i belonging to V_32, i=1, 2, ..., 32 are derived from
   key K=k_255||...||k_0 belonging to V_256, k_i belongs to V_1, i=0, 1,
   ..., 255, as follows:

   K_1=k_255||...||k_224;
   K_2=k_223||...||k_192;
   K_3=k_191||...||k_160;
   K_4=k_159||...||k_128;
   K_5=k_127||...||k_96;
   K_6=k_95||...||k_64;
   K_7=k_63||...||k_32;
   K_8=k_31||...||k_0;
   K_(i+8)=K_i, i = 1, 2, ..., 8;
   K_(i+16)=K_i, i = 1, 2, ..., 8;
   K_(i+24)=K_(9-i), i = 1, 2, ..., 8.





Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 6]


Internet-Draft              Abbreviated Title                  June 2019


6.  Basic encryption algorithm

6.1.  Encryption

   Depending on the values of round keys K_1,...,K_32, the encryption
   algorithm is a substitution E_(K_1,...,K_32) defined as follows:

   E_(K_1,...,K_32)(a)=G^*[K_32]G[K_31]...G[K_2]G[K_1](a_1, a_0),

   where a=(a_1, a_0) belongs to V_64, and a_0, a_1 belong to V_32.

6.2.  Decryption

   Depending on the values of round keys K_1,...,K_32, the decryption
   algorithm is a substitution D_(K_1,...,K_32) defined as follows:

   D_(K_1,...,K_32)(a)=G^*[K_1]G[K_2]...G[K_31]G[K_32](a_1, a_0),

   where a=(a_1, a_0) belongs to V_64, and a_0, a_1 belong to V_32.

7.  IANA Considerations

   This memo includes no request to IANA.

8.  Security Considerations

   This entire document is about security considerations.

9.  References

9.1.  Normative References

   [GOSTR3412-2015]
              Federal Agency on Technical Regulating and Metrology,
              "Information technology. Cryptographic data security.
              Block ciphers. GOST R 34.12-2015", 2015.

   [RFC5830]  Dolmatov, V., Ed., "GOST 28147-89: Encryption, Decryption,
              and Message Authentication Code (MAC) Algorithms",
              RFC 5830, DOI 10.17487/RFC5830, March 2010,
              <https://www.rfc-editor.org/info/rfc5830>.

   [RFC7801]  Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
              "Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
              <https://www.rfc-editor.org/info/rfc7801>.






Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 7]


Internet-Draft              Abbreviated Title                  June 2019


   [RFC7836]  Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,
              Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines
              on the Cryptographic Algorithms to Accompany the Usage of
              Standards GOST R 34.10-2012 and GOST R 34.11-2012",
              RFC 7836, DOI 10.17487/RFC7836, March 2016,
              <https://www.rfc-editor.org/info/rfc7836>.

9.2.  Informative References

   [GOST28147-89]
              Government Committee of the USSR for Standards,
              ""Cryptographic Protection for Data Processing System",
              GOST 28147-89, Gosudarstvennyi Standard of USSR", 1989.

   [ISO-IEC10116]
              ISO-IEC, "Information technology - Security techniques -
              Modes of operation for an n-bit block cipher, ISO-IEC
              10116", 2006.

   [ISO-IEC18033-1]
              ISO-IEC, "Information technology - Security techniques -
              Encryption algorithms - Part 1: General, ISO-IEC 18033-1",
              2013.

   [ISO-IEC18033-3]
              ISO-IEC, "Information technology - Security techniques -
              Encryption algorithms - Part 3: Block ciphers, ISO-IEC
              18033-3", 2010.

Appendix A.  Test Examples

   This section is for information only and is not a normative part of
   the standard.

A.1.  Transformation t

   t(fdb97531) = 2a196f34,
   t(2a196f34) = ebd9f03a,
   t(ebd9f03a) = b039bb3d,
   t(b039bb3d) = 68695433.

A.2.  Transformation g

   g[87654321](fedcba98) = fdcbc20c,
   g[fdcbc20c](87654321) = 7e791a4b,
   g[7e791a4b](fdcbc20c) = c76549ec,
   g[c76549ec](7e791a4b) = 9791c849.




Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 8]


Internet-Draft              Abbreviated Title                  June 2019


A.3.  Key schedule

   With key set to

   K = ffeeddccbbaa99887766554433221100f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff,

   following round keys are generated:

   K_1 = ffeeddcc,
   K_2 = bbaa9988,
   K_3 = 77665544,
   K_4 = 33221100,
   K_5 = f0f1f2f3,
   K_6 = f4f5f6f7,
   K_7 = f8f9fafb,
   K_8 = fcfdfeff,

   K_9 = ffeeddcc,
   K_10 = bbaa9988,
   K_11 = 77665544,
   K_12 = 33221100,
   K_13 = f0f1f2f3,
   K_14 = f4f5f6f7,
   K_15 = f8f9fafb,
   K_16 = fcfdfeff,

   K_17 = ffeeddcc,
   K_18 = bbaa9988,
   K_19 = 77665544,
   K_20 = 33221100,
   K_21 = f0f1f2f3,
   K_22 = f4f5f6f7,
   K_23 = f8f9fafb,
   K_24 = fcfdfeff,

   K_25 = fcfdfeff,
   K_26 = f8f9fafb,
   K_27 = f4f5f6f7,
   K_28 = f0f1f2f3,
   K_29 = 33221100,
   K_30 = 77665544,
   K_31 = bbaa9988,
   K_32 = ffeeddcc.








Dolmatov & Eremin-SoleniExpires December 27, 2019               [Page 9]


Internet-Draft              Abbreviated Title                  June 2019


A.4.  Test Encryption

   In this test example, encryption is performed on the round keys
   specified in clause A.3.  Let the plaintext be

   a = fedcba9876543210,

   then

   (a_1, a_0) = (fedcba98, 76543210),
   G[K_1](a_1, a_0) = (76543210, 28da3b14),
   G[K_2]G[K_1](a_1, a_0) = (28da3b14, b14337a5),
   G[K_3]...G[K_1](a_1, a_0) = (b14337a5, 633a7c68),
   G[K_4]...G[K_1](a_1, a_0) = (633a7c68, ea89c02c),
   G[K_5]...G[K_1](a_1, a_0) = (ea89c02c, 11fe726d),
   G[K_6]...G[K_1](a_1, a_0) = (11fe726d, ad0310a4),
   G[K_7]...G[K_1](a_1, a_0) = (ad0310a4, 37d97f25),
   G[K_8]...G[K_1](a_1, a_0) = (37d97f25, 46324615),
   G[K_9]...G[K_1](a_1, a_0) = (46324615, ce995f2a),
   G[K_10]...G[K_1](a_1, a_0) = (ce995f2a, 93c1f449),
   G[K_11]...G[K_1](a_1, a_0) = (93c1f449, 4811c7ad),
   G[K_12]...G[K_1](a_1, a_0) = (4811c7ad, c4b3edca),
   G[K_13]...G[K_1](a_1, a_0) = (c4b3edca, 44ca5ce1),
   G[K_14]...G[K_1](a_1, a_0) = (44ca5ce1, fef51b68),
   G[K_15]...G[K_1](a_1, a_0) = (fef51b68, 2098cd86)
   G[K_16]...G[K_1](a_1, a_0) = (2098cd86, 4f15b0bb),
   G[K_17]...G[K_1](a_1, a_0) = (4f15b0bb, e32805bc),
   G[K_18]...G[K_1](a_1, a_0) = (e32805bc, e7116722),
   G[K_19]...G[K_1](a_1, a_0) = (e7116722, 89cadf21),
   G[K_20]...G[K_1](a_1, a_0) = (89cadf21, bac8444d),
   G[K_21]...G[K_1](a_1, a_0) = (bac8444d, 11263a21),
   G[K_22]...G[K_1](a_1, a_0) = (11263a21, 625434c3),
   G[K_23]...G[K_1](a_1, a_0) = (625434c3, 8025c0a5),
   G[K_24]...G[K_1](a_1, a_0) = (8025c0a5, b0d66514),
   G[K_25]...G[K_1](a_1, a_0) = (b0d66514, 47b1d5f4),
   G[K_26]...G[K_1](a_1, a_0) = (47b1d5f4, c78e6d50),
   G[K_27]...G[K_1](a_1, a_0) = (c78e6d50, 80251e99),
   G[K_28]...G[K_1](a_1, a_0) = (80251e99, 2b96eca6),
   G[K_29]...G[K_1](a_1, a_0) = (2b96eca6, 05ef4401),
   G[K_30]...G[K_1](a_1, a_0) = (05ef4401, 239a4577),
   G[K_31]...G[K_1](a_1, a_0) = (239a4577, c2d8ca3d).

   Then the ciphertext is

   b = G^*[K_32]G[K_31]...G[K_1](a_1, a_0) = 4ee901e5c2d8ca3d.






Dolmatov & Eremin-SoleniExpires December 27, 2019              [Page 10]


Internet-Draft              Abbreviated Title                  June 2019


A.5.  Test Decryption

   In this test example, decryption is performed on the round keys
   specified in clause A.3.  Let the ciphertext be

   b = 4ee901e5c2d8ca3d,

   then

   (b_1, b_0) = (4ee901e5, c2d8ca3d),
   G[K_32](b_1, b_0) = (c2d8ca3d, 239a4577),
   G[K_31]G[K_32](b_1, b_0) = (239a4577, 05ef4401),
   G[K_30]...G[K_32](b_1, b_0) = (05ef4401, 2b96eca6),
   G[K_29]...G[K_32](b_1, b_0) = (2b96eca6, 80251e99),
   G[K_28]...G[K_32](b_1, b_0) = (80251e99, c78e6d50),
   G[K_27]...G[K_32](b_1, b_0) = (c78e6d50, 47b1d5f4),
   G[K_26]...G[K_32](b_1, b_0) = (47b1d5f4, b0d66514),
   G[K_25]...G[K_32](b_1, b_0) = (b0d66514, 8025c0a5),
   G[K_24]...G[K_32](b_1, b_0) = (8025c0a5, 625434c3),
   G[K_23]...G[K_32](b_1, b_0) = (625434c3, 11263a21),
   G[K_22]...G[K_32](b_1, b_0) = (11263a21, bac8444d),
   G[K_21]...G[K_32](b_1, b_0) = (bac8444d, 89cadf21),
   G[K_20]...G[K_32](b_1, b_0) = (89cadf21, e7116722),
   G[K_19]...G[K_32](b_1, b_0) = (e7116722, e32805bc),
   G[K_18]...G[K_32](b_1, b_0) = (e32805bc, 4f15b0bb),
   G[K_17]...G[K_32](b_1, b_0) = (4f15b0bb, 2098cd86),
   G[K_16]...G[K_32](b_1, b_0) = (2098cd86, fef51b68),
   G[K_15]...G[K_32](b_1, b_0) = (fef51b68, 44ca5ce1),
   G[K_14]...G[K_32](b_1, b_0) = (44ca5ce1, c4b3edca),
   G[K_13]...G[K_32](b_1, b_0) = (c4b3edca, 4811c7ad),
   G[K_12]...G[K_32](b_1, b_0) = (4811c7ad, 93c1f449),
   G[K_11]...G[K_32](b_1, b_0) = (93c1f449, ce995f2a),
   G[K_10]...G[K_32](b_1, b_0) = (ce995f2a, 46324615),
   G[K_9]...G[K_32](b_1, b_0) = (46324615, 37d97f25),
   G[K_8]...G[K_32](b_1, b_0) = (37d97f25, ad0310a4),
   G[K_7]...G[K_32](b_1, b_0) = (ad0310a4, 11fe726d),
   G[K_6]...G[K_32](b_1, b_0) = (11fe726d, ea89c02c),
   G[K_5]...G[K_32](b_1, b_0) = (ea89c02c, 633a7c68),
   G[K_4]...G[K_32](b_1, b_0) = (633a7c68, b14337a5),
   G[K_3]...G[K_32](b_1, b_0) = (b14337a5, 28da3b14),
   G[K_2]...G[K_32](b_1, b_0) = (28da3b14, 76543210).

   Then the plaintext is

   a = G^*[K_1]G[K_2]...G[K_32](b_1, b_0) = fedcba9876543210.






Dolmatov & Eremin-SoleniExpires December 27, 2019              [Page 11]


Internet-Draft              Abbreviated Title                  June 2019


Appendix B.  Background

   Algoritmically Magma is a variation of block cipher defined in
   [RFC5830] ([GOST28147-89]) with the following clarifications and
   minor modifications:

   1.  S-BOX set is fixed at id-tc26-gost-28147-param-Z (See Appendix C
       of [RFC7836]);

   2.  key is parsed as a single big-endian integer (compared to little-
       endian approach used in [GOST28147-89]), which results in
       different subkey values being used;

   3.  data are also parsed as single big-endian integer (instead of
       being parsed as little-endian integer).

Authors' Addresses

   Vasily Dolmatov (editor)
   JSC "NPK Kryptonite"
   Spartakovskaya sq., 14, bld 2, JSC "NPK Kryptonite"
   Moscow  105082
   Russian Federation

   Email: vdolmatov@gmail.com


   Dmitry Eremin-Solenikov
   Auriga, Inc
   Torfyanaya Doroga, 7F, office 1410
   Saint-Petersburg  197374
   Russia

   Email: dbaryshkov@gmail.com

















Dolmatov & Eremin-SoleniExpires December 27, 2019              [Page 12]