INTERNET-DRAFT                                    Donald E. Eastlake 3rd
Obsoletes RFC 2929, Updates RFC 1183               Motorola Laboratories
Expires: December 2005                                         June 2005



              Domain Name System (DNS) IANA Considerations
              ------ ---- ------ ----- ---- --------------
                 <draft-eastlake-dnsext-2929bis-01.txt>



Status of This Document

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Distribution of this draft, which is intended to become a Best
   Current Practice, is unlimited. Comments should be sent to the DNS
   Working Group mailing list <namedroppers@ops.ietf.org> or to the
   author.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than a "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/1id-abstracts.html

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html



Abstract

   Internet Assigned Number Authority (IANA) parameter assignment
   considerations are given for the allocation of Domain Name System
   (DNS) classes, RR types, operation codes, error codes, RR header
   bits, and AFSDB subtypes.







D. Eastlake 3rd                                                 [Page 1]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


Table of Contents

      Status of This Document....................................1
      Abstract...................................................1

      Table of Contents..........................................2

      1. Introduction............................................3
      1.1 The DNS Special Allocation Policy......................3
      2. DNS Query/Response Headers..............................4
      2.1 One Spare Bit?.........................................4
      2.2 Opcode Assignment......................................5
      2.3 RCODE Assignment.......................................5
      3. DNS Resource Records....................................6
      3.1 RR TYPE IANA Considerations............................8
      3.1.1 Special Note on the OPT RR...........................9
      3.1.2 The AFSDB RR Subtype Field...........................9
      3.2 RR CLASS IANA Considerations...........................9
      3.3 RR NAME Considerations................................11
      4. Security Considerations................................11
      Appendix: Changes from RFC 2929...........................11

      Copyright and Disclaimer..................................13
      Normative References......................................13
      Informative References....................................14

      Authors Addresses.........................................16
      Expiration and File Name..................................16
























D. Eastlake 3rd                                                 [Page 2]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


1. Introduction

   The Domain Name System (DNS) provides replicated distributed secure
   hierarchical databases which hierarchically store "resource records"
   (RRs) under domain names.

   This data is structured into CLASSes and zones which can be
   independently maintained.  See [RFC 1034, 1035, 2136, 2181, 4033]
   familiarity with which is assumed.

   This document provides, either directly or by reference, general IANA
   parameter assignment considerations applying across DNS query and
   response headers and all RRs.  There may be additional IANA
   considerations that apply to only a particular RR type or
   query/response opcode.  See the specific RFC defining that RR type or
   query/response opcode for such considerations if they have been
   defined except for AFSDB considerations [RFC 1183] which are included
   herein. This RFC replaces [RFC 2929].

   IANA currently maintains a web page of DNS parameters.  See
   <http://www.iana.org/numbers.htm>.

   "IETF Standards Action", "IETF Consensus", "Specification Required",
   and "Private Use" are as defined in [RFC 2434].



1.1 The DNS Special Allocation Policy

   Many DNS parameters are allocated by IANA based on the DNS special
   policy. This policy authorizes IANA allocation base on meeting any of
   the following three criteria:

   1. An IETF Standards Action.

   2. Approval as an Experimental Protocol.

   3. As provided in [RFC 4020] for Early Allocation except that all the
   criteria in Section 2 of [RFC 4020] are replaced by the following:

   3.a: The format, semantics, processing, and other rules related to
        handling the protocol entities defined by the code points (the
        "specifications") are adequately described in an Internet draft
        that is intended to become Standards Track or Experimental.

   3.b: There is sufficient interest in early (pre-RFC) implementation
        and deployment in the community as determined by working group
        consensus.




D. Eastlake 3rd                                                 [Page 3]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


2. DNS Query/Response Headers

   The header for DNS queries and responses contains field/bits in the
   following diagram taken from [RFC 2136, 2929]:

                                              1  1  1  1  1  1
                0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
               +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
               |                      ID                       |
               +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
               |QR|   Opcode  |AA|TC|RD|RA| Z|AD|CD|   RCODE   |
               +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
               |                QDCOUNT/ZOCOUNT                |
               +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
               |                ANCOUNT/PRCOUNT                |
               +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
               |                NSCOUNT/UPCOUNT                |
               +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
               |                    ARCOUNT                    |
               +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

   The ID field identifies the query and is echoed in the response so
   they can be matched.

   The QR bit indicates whether the header is for a query or a response.

   The AA, TC, RD, RA, AD, and CD bits are each theoretically meaningful
   only in queries or only in responses, depending on the bit.  However,
   many DNS implementations copy the query header as the initial value
   of the response header without clearing bits.  Thus any attempt to
   use a "query" bit with a different meaning in a response or to define
   a query meaning for a "response" bit is dangerous given existing
   implementation.  Such meanings may only be assigned by an IETF
   Standards Action.

   The unsigned fields query count (QDCOUNT), answer count (ANCOUNT),
   authority count (NSCOUNT), and additional information count (ARCOUNT)
   express the number of records in each section for all opcodes except
   Update.  These fields have the same structure and data type for
   Update but are instead the counts for the zone (ZOCOUNT),
   prerequisite (PRCOUNT), update (UPCOUNT), and additional information
   (ARCOUNT) sections.



2.1 One Spare Bit?

   There have been ancient DNS implementations for which the Z bit being
   on in a query meant that only a response from the primary server for
   a zone is acceptable.  It is believed that current DNS


D. Eastlake 3rd                                                 [Page 4]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


   implementations ignore this bit.

   Assigning a meaning to the Z bit requires an IETF Standards Action.



2.2 Opcode Assignment

   Currently DNS OpCodes are assigned as follows:

          OpCode Name                      Reference

           0     Query                     [RFC 1035]
           1     IQuery  (Inverse Query, Obsolete) [RFC 3425]
           2     Status                    [RFC 1035]
           3     available for assignment
           4     Notify                    [RFC 1996]
           5     Update                    [RFC 2136]
          6-15   available for assignment

   New OpCode assignments require an IETF Standards Action modified by
   [RFC 4020].



2.3 RCODE Assignment

   It would appear from the DNS header above that only four bits of
   RCODE, or response/error code are available.  However, RCODEs can
   appear not only at the top level of a DNS response but also inside
   OPT RRs [RFC 2671], TSIG RRs [RFC 2845], and TKEY RRs [RFC 2930].
   The OPT RR provides an eight bit extension resulting in a 12 bit
   RCODE field and the TSIG and TKEY RRs have a 16 bit RCODE field.

   Error codes appearing in the DNS header and in these three RR types
   all refer to the same error code space with the single exception of
   error code 16 which has a different meaning in the OPT RR from its
   meaning in other contexts.  See table below.














D. Eastlake 3rd                                                 [Page 5]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


        RCODE   Name    Description                        Reference
        Decimal
          Hexadecimal
         0    NoError   No Error                           [RFC 1035]
         1    FormErr   Format Error                       [RFC 1035]
         2    ServFail  Server Failure                     [RFC 1035]
         3    NXDomain  Non-Existent Domain                [RFC 1035]
         4    NotImp    Not Implemented                    [RFC 1035]
         5    Refused   Query Refused                      [RFC 1035]
         6    YXDomain  Name Exists when it should not     [RFC 2136]
         7    YXRRSet   RR Set Exists when it should not   [RFC 2136]
         8    NXRRSet   RR Set that should exist does not  [RFC 2136]
         9    NotAuth   Server Not Authoritative for zone  [RFC 2136]
        10    NotZone   Name not contained in zone         [RFC 2136]
        11 - 15         Available for assignment
        16    BADVERS   Bad OPT Version                    [RFC 2671]
        16    BADSIG    TSIG Signature Failure             [RFC 2845]
        17    BADKEY    Key not recognized                 [RFC 2845]
        18    BADTIME   Signature out of time window       [RFC 2845]
        19    BADMODE   Bad TKEY Mode                      [RPC 2930]
        20    BADNAME   Duplicate key name                 [RPF 2930]
        21    BADALG    Algorithm not supported            [RPF 2930]
        22 - 3,840      Available for assignment
          0x0016 - 0x0F00
        3,841 - 4,095   Private Use
          0x0F01 - 0x0FFF
        4,096 - 5,7343  Available for assignment
          0x1000 - 0xDFFF
        57,344 - 65,534 Specification Required
          0xE000 - 0xFFFE
        65,535          Reserved
          0xFFFF

   Assignment of new RCODE listed above as "Available for assignment"
   requires an IETF Standards Action modified by [RFC 4020]. Assignment
   of RCODE 65,535 requires an IETF Standards Action.



3. DNS Resource Records

   All RRs have the same top level format shown in the figure below
   taken from [RFC 1035]:









D. Eastlake 3rd                                                 [Page 6]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


                                       1  1  1  1  1  1
         0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                                               |
       /                                               /
       /                      NAME                     /
       |                                               |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                      TYPE                     |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                     CLASS                     |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                      TTL                      |
       |                                               |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
       |                   RDLENGTH                    |
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
       /                     RDATA                     /
       /                                               /
       +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

   NAME is an owner name, i.e., the name of the node to which this
   resource record pertains.  NAMEs are specific to a CLASS as described
   in section 3.2.  NAMEs consist of an ordered sequence of one or more
   labels each of which has a label type [RFC 1035, 2671].

   TYPE is a two octet unsigned integer containing one of the RR TYPE
   codes.  See section 3.1.

   CLASS is a two octet unsigned integer containing one of the RR CLASS
   codes.  See section 3.2.

   TTL is a four octet (32 bit) bit unsigned integer that specifies the
   number of seconds that the resource record may be cached before the
   source of the information should again be consulted.  Zero is
   interpreted to mean that the RR can only be used for the transaction
   in progress.

   RDLENGTH is an unsigned 16 bit integer that specifies the length in
   octets of the RDATA field.

   RDATA is a variable length string of octets that constitutes the
   resource.  The format of this information varies according to the
   TYPE and in some cases the CLASS of the resource record.








D. Eastlake 3rd                                                 [Page 7]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


3.1 RR TYPE IANA Considerations

   There are three subcategories of RR TYPE numbers: data TYPEs, QTYPEs,
   and MetaTYPEs.

   Data TYPEs are the primary means of storing data.  QTYPES can only be
   used in queries.  Meta-TYPEs designate transient data associated with
   an particular DNS message and in some cases can also be used in
   queries.  Thus far, data TYPEs have been assigned from 1 upwards plus
   the block from 100 through 103 while Q and Meta Types have been
   assigned from 255 downwards (except for the OPT Meta-RR which is
   assigned TYPE 41).  There have been DNS implementations which made
   caching decisions based on the top bit of the bottom byte of the RR
   TYPE.

   There are currently three Meta-TYPEs assigned: OPT [RFC 2671], TSIG
   [RFC 2845], and TKEY [RFC 2930].

   There are currently five QTYPEs assigned: * (all), MAILA, MAILB,
   AXFR, and IXFR.

   Considerations for the allocation of new RR TYPEs are as follows:

     Decimal
   Hexadecimal

     0
   0x0000 - TYPE zero is used as a special indicator for the SIG RR [RFC
          2535] and in other circumstances and must never be allocated
          for ordinary use.

     1 - 127
   0x0001 - 0x007F - remaining TYPEs in this range are assigned for data
          TYPEs by the DNS Special Allocation Policy.

     128 - 255
   0x0080 - 0x00FF - remaining TYPEs in this rage are assigned for Q and
          Meta TYPEs by the DNS Special Allocation Policy.

     256 - 32,767
   0x0100 - 0x7FFF - assigned for data, Q, or Meta TYPE use by the DNS
          Special Allocation Policy.

     32,768 - 65,279
   0x8000 - 0xFEFF - Specification Required as defined in [RFC 2434].

     65280 - 65534
   0xFF00 - 0xFFFE - Private Use.




D. Eastlake 3rd                                                 [Page 8]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


     65,535
   0xFFFF - can only be assigned by an IETF Standards Action.



3.1.1 Special Note on the OPT RR

   The OPT (OPTion) RR, number 41, is specified in [RFC 2671].  Its
   primary purpose is to extend the effective field size of various DNS
   fields including RCODE, label type, OpCode, flag bits, and RDATA
   size.  In particular, for resolvers and servers that recognize it, it
   extends the RCODE field from 4 to 12 bits.



3.1.2 The AFSDB RR Subtype Field

   The AFSDB RR [RFC 1183] is a CLASS insensitive RR that has the same
   RDATA field structure as the MX RR but the 16 bit unsigned integer
   field at the beginning of the RDATA is interpreted as a subtype as
   follows:

     Decimal
   Hexadecimal

     0
   0x0000 -  Allocation requires IETF Standards Action.

     1
   0x0001 - Andrews File Service v3.0 Location Service [RFC 1183].

     2
   0x0002 - DCE/NCA root cell directory node [RFC 1183].

     3 - 65,534
   0x0003 - 0xFFFE - Allocation by the DNS Special Allocation Policy.

     65,535
   0xFFFF - Allocation requires IETF Standards Action.



3.2 RR CLASS IANA Considerations

   DNS CLASSes have been little used but constitute another dimension of
   the DNS distributed database.  In particular, there is no necessary
   relationship between the name space or root servers for one CLASS and
   those for another CLASS.  The same name can have completely different
   meanings in different CLASSes although the label types are the same
   and the null label is usable only as root in every CLASS.  However,


D. Eastlake 3rd                                                 [Page 9]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


   as global networking and DNS have evolved, the IN, or Internet, CLASS
   has dominated DNS use.

   There are two subcategories of DNS CLASSes: normal data containing
   classes and QCLASSes that are only meaningful in queries or updates.

   The current CLASS assignments and considerations for future
   assignments are as follows:

     Decimal
   Hexadecimal

     0
   0x0000 - assignment requires an IETF Standards Action.

     1
   0x0001 - Internet (IN).

     2
   0x0002 - available for assignment by the DNS Special Allocation
          Policy as a data CLASS.

     3
   0x0003 - Chaos (CH) [Moon 1981].

     4
   0x0004 - Hesiod (HS) [Dyer 1987].

     5 - 127
   0x0005 - 0x007F - available for assignment by the DNS Special
          Allocation Policy for data CLASSes only.

     128 - 253
   0x0080 - 0x00FD - available for assignment by the DNS Special
          Allocation Policy for QCLASSes only.

     254
   0x00FE - QCLASS None [RFC 2136].

     255
   0x00FF - QCLASS Any [RFC 1035].

     256 - 32767
   0x0100 - 0x7FFF - assigned by the DNS Special Allocation Policy.

     32768 - 65280
   0x8000 - 0xFEFF - assigned based on Specification Required as defined
          in [RFC 2434].




D. Eastlake 3rd                                                [Page 10]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


     65280 - 65534
   0xFF00 - 0xFFFE - Private Use.

     65535
   0xFFFF - can only be assigned by an IETF Standards Action.



3.3 RR NAME Considerations

   DNS NAMEs are sequences of labels [RFC 1035].  The last label in each
   NAME is "ROOT" which is the zero length label.  By definition, the
   null or ROOT label can not be used for any other NAME purpose.

   At the present time, there are two categories of label types, data
   labels and compression labels.  Compression labels are pointers to
   data labels elsewhere within an RR or DNS message and are intended to
   shorten the wire encoding of NAMEs.  The two existing data label
   types are sometimes referred to as Text and Binary.  Text labels can,
   in fact, include any octet value including zero value octets but most
   current uses involve only [US-ASCII].  For retrieval, Text labels are
   defined to treat ASCII upper and lower case letter codes as matching
   [insensitive].  Binary labels are bit sequences [RFC 2673]. The
   Binary label type is Experimental [RFC 3363].

   IANA considerations for label types are given in [RFC 2671].

   NAMEs are local to a CLASS.  The Hesiod [Dyer 1987] and Chaos [Moon
   1981] CLASSes are essentially for local use.  The IN or Internet
   CLASS is thus the only DNS CLASS in global use on the Internet at
   this time.

   A somewhat out-of-date description of name allocation in the IN Class
   is given in [RFC 1591].  Some information on reserved top level
   domain names is in Best Current Practice 32 [RFC 2606].



4. Security Considerations

   This document addresses IANA considerations in the allocation of
   general DNS parameters, not security.  See [RFC 4033, 4034, 4035] for
   secure DNS considerations.



Appendix: Changes from RFC 2929

   RFC Editor: This section should be deleted for publication.



D. Eastlake 3rd                                                [Page 11]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


   Changes from RFC 2929 to this draft:

   1. Changed many "IETF Consensus" and some "IETF Standards Action"
   allocation requirements changed to be "DNS Special Allocation Policy"
   and add the specification of that policy. Change most remaining "IETF
   Standards Action" allocation requirements to say "as modified by [RFC
   4020]".

   2. Updated various RFC references.

   3. Mentioned that the Binary label type is now Experimental and
   IQuery is Obsolete..

   4. Changed allocation status of RR Type 0xFFFF and RCODE 0xFFFF to be
   IETF Standards Action required.

   5. Change allocation status of the upper one eighth of the current
   RCODE space (except 0xFFFF) to be Specification Required.

   6. Add allocation policy for the AFSDB RR Subtype field.

   7. Addition of reference to case insensitive draft.






























D. Eastlake 3rd                                                [Page 12]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


Copyright and Disclaimer

   Copyright (C) The Internet Society (2005).  This document is subject to
   the rights, licenses and restrictions contained in BCP 78, and except
   as set forth therein, the authors retain all their rights.


   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.



Normative References

   [RFC 1034] - Mockapetris, P., "Domain Names - Concepts and
   Facilities", STD 13, RFC 1034, November 1987.

   [RFC 1035] - Mockapetris, P., "Domain Names - Implementation and
   Specifications", STD 13, RFC 1035, November 1987.

   [RFC 1183] - Everhart, C., Mamakos, L., Ullmann, R., and P.
   Mockapetris, "New DNS RR Definitions", RFC 1183, October 1990.

   [RFC 1996] - Vixie, P., "A Mechanism for Prompt Notification of Zone
   Changes (DNS NOTIFY)", RFC 1996, August 1996.

   [RFC 2136] - Vixie, P., Thomson, S., Rekhter, Y. and J. Bound,
   "Dynamic Updates in the Domain Name System (DNS UPDATE)", RFC 2136,
   April 1997.

   [RFC 2181] - Elz, R. and R. Bush, "Clarifications to the DNS
   Specification", RFC 2181, July 1997.

   [RFC 2434] - Narten, T. and H. Alvestrand, "Guidelines for Writing an
   IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

   [RFC 2671] - Vixie, P., "Extension mechanisms for DNS (EDNS0)", RFC
   2671, August 1999.

   [RFC 2673] - Crawford, M., "Binary Labels in the Domain Name System",
   RFC 2673, August 1999.

   [RFC 2845] - Vixie, P., Gudmundsson, O., Eastlake, D. and B.
   Wellington, "Secret Key Transaction Authentication for DNS (TSIG)",
   RFC 2845, May 2000.


D. Eastlake 3rd                                                [Page 13]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


   [RFC 2930] - Eastlake, D., "Secret Key Establishment for DNS (TKEY
   RR)", September 2000.

   [RFC 3363] - Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T.
   Hain, "Representing Internet Protocol version 6 (IPv6) Addresses in
   the Domain Name System (DNS)", RFC 3363, August 2002.

   [RFC 3425] - Lawrence, D., "Obsoleting IQUERY", RFC 3425, November
   2002.

   [RFC 4020] - Kompella, K. and A. Zinin, "Early IANA Allocation of
   Standards Track Code Points", BCP 100, RFC 4020, February 2005.

   [RFC 4033] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
   Rose, "DNS Security Introduction and Requirements", RFC 4033, March
   2005.

   [RFC 4034] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
   Rose, "Resource Records for the DNS Security Extensions", RFC 4034,
   March 2005.

   [RFC 4044] - Arends, R., Austein, R., Larson, M., Massey, D., and S.
   Rose, "Protocol Modifications for the DNS Security Extensions", RFC
   4035, March 2005.

   [US-ASCII] - ANSI, "USA Standard Code for Information Interchange",
   X3.4, American National Standards Institute: New York, 1968.



Informative References

   [Dyer 1987] - Dyer, S., and F. Hsu, "Hesiod", Project Athena
   Technical Plan - Name Service, April 1987,

   [Moon 1981] - D. Moon, "Chaosnet", A.I. Memo 628, Massachusetts
   Institute of Technology Artificial Intelligence Laboratory, June
   1981.

   [RFC 1591] - Postel, J., "Domain Name System Structure and
   Delegation", RFC 1591, March 1994.

   [RFC 2929] - Eastlake 3rd, D., Brunner-Williams, E., and B. Manning,
   "Domain Name System (DNS) IANA Considerations", BCP 42, RFC 2929,
   September 2000.

   [RFC 2606] - Eastlake, D. and A. Panitz, "Reserved Top Level DNS
   Names", RFC 2606, June 1999.

   [insensitive] - Eastlake, D., "Domain Name System (DNS) Case


D. Eastlake 3rd                                                [Page 14]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


   Insensitivity Clarification", draft-ietf-dnsext-insensitive-*.txt,
   work in progress.


















































D. Eastlake 3rd                                                [Page 15]


INTERNET-DRAFT           DNS IANA Considerations               June 2005


Authors Addresses

   Donald E. Eastlake 3rd
   Motorola Laboratories
   155 Beaver Street
   Milford, MA 01757 USA

   Telephone:   +1-508-786-7554 (w)
   email:       Donald.Eastlake@motorola.com



Expiration and File Name

   This draft expires December 2005.

   Its file name is draft-eastlake-dnsext-2929bis-01.txt.



































D. Eastlake 3rd                                                [Page 16]