Network Working Group                                       P. Faltstrom
Internet-Draft                                                    Netnod
Intended status: Standards Track                            F. Ljunggren
Expires: September 14, 2021                                        Kirei
                                                            D. van Gulik
                                                              Webweaving
                                                          March 13, 2021


                        The Base45 Data Encoding
                       draft-faltstrom-base45-02

Abstract

   This document describes the base 45 encoding scheme which is built
   upon the base 64, base 32 and base 16 encoding schemes.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 14, 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.



Faltstrom, et al.      Expires September 14, 2021               [Page 1]


Internet-Draft                   Base45                       March 2021


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Conventions Used in This Document . . . . . . . . . . . . . .   2
   3.  Interpretation of Encoded Data  . . . . . . . . . . . . . . .   2
   4.  The Base 45 Encoding  . . . . . . . . . . . . . . . . . . . .   2
     4.1.  Encoding example  . . . . . . . . . . . . . . . . . . . .   3
     4.2.  Decoding example  . . . . . . . . . . . . . . . . . . . .   3
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   4
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   4
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   4
   8.  Normative References  . . . . . . . . . . . . . . . . . . . .   4
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   5

1.  Introduction

   When using QR or Aztec codes a different encoding scheme is needed
   than the already established base 64, base 32 and base 16 encoding
   schemes that are described in RFC 4648 [RFC4648].  The difference
   from those and base 45 is the key table and that the padding with '='
   is not required.

2.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Interpretation of Encoded Data

   Encoded data is to be interpreted as described in RFC 4648 [RFC4648]
   with the exception that a different alphabet is selected.

4.  The Base 45 Encoding

   A 45-character subset of US-ASCII is used, the 45 characters that can
   be used in a QR or Aztec code.  If we look at Base 64, it encodes 3
   bytes in 4 characters.  Base 45 encodes 2 bytes in 3 characters.

   The two bytes [A, B] are turned into [ C, D, E] where (A*256) + B = C
   + (D*45) + (E*45*45).  The values C, D and E are then looked up in
   Table 1 to produce a three character string and the reverse when
   decoding.

   If the number of octets are not dividable by two, the last remaining
   byte is represented by two characters.  [A] is turned into [ C, D]
   where A = C + (D*45).




Faltstrom, et al.      Expires September 14, 2021               [Page 2]


Internet-Draft                   Base45                       March 2021


                  Table 1: The Base 45 Alphabet

   Value Encoding  Value Encoding  Value Encoding  Value Encoding
      00 0            12 C            24 O            36 Space
      01 1            13 D            25 P            37 $
      02 2            14 E            26 Q            38 %
      03 3            15 F            27 R            39 *
      04 4            16 G            28 S            40 +
      05 5            17 H            29 T            41 -
      06 6            18 I            30 U            42 .
      07 7            19 J            31 V            43 /
      08 8            20 K            32 W            44 :
      09 9            21 L            33 X
      10 A            22 M            34 Y
      11 B            23 N            35 Z

4.1.  Encoding example

   A series of bytes is turned into groups of two.  Each such 16 bit
   value is turned into a series of three values calculated by doing
   successive calculations modulo 45.  The values are in turned looked
   up in what is displayed in Table 1.

   Encoding example 1: The string "AB" is the byte sequence [65 66].
   The 16 bit value is 65 * 256 + 66 = 16706. 16706 equals 11 + 45 * 11
   + 45 * 45 * 8 so the sequence in base 45 is [11 11 8].  By looking up
   these values in the table we get the encoded string "BB8".

   Encoding example 2: The string "Hello!!" is the byte sequence [72 101
   108 108 111 33 33].  If we look at each 16 bit value, it is [18533
   27756 28449 33].  Note the 33 for the last byte.  When looking at the
   values modulo 45, we get [[38 6 9] [36 31 13] [9 2 14] [33 0]] where
   the last byte is represented by two.  By looking up these values in
   the table we get the encoded string "%69 VD92EX0".

   Encoding example 3: The string "base-45" is the byte sequence [98 97
   115 101 45 52 53].  If we look at each 16 bit value, it is [25185
   29541 11572 53].  Note the 53 for the last byte.  When looking at the
   values modulo 45, we get [[30 19 12] [21 26 14] [7 32 5] [8 1]] where
   the last byte is represented by two.  By looking up these values in
   the table we get the encoded string "UJCLQE7W581".

4.2.  Decoding example

   The series of characters are lookup up in Table 1, and the indices
   three and three are interpreted as the numbers





Faltstrom, et al.      Expires September 14, 2021               [Page 3]


Internet-Draft                   Base45                       March 2021


   Decoding example 1: The string "QED8WEX0" represents when lookup in
   Table 1 the values [26 14 13 8 32 14 33 0].  We look at the numbers
   in three number sequences (except last) and get [[26 14 13] [8 32 14]
   [33 0]].  In base 45 we get [26981 29798 33] where the bytes are
   [[105 101] [116 102] [33]].  If we look at the ascii values we get
   the string "ietf!".

5.  IANA Considerations

   There are no considerations for IANA in this document.

6.  Security Considerations

   When implementing encoding and decoding it is important to be very
   careful so that buffer overflow does not take place, or anything
   similar.  This includes of course the calculations of modulo 45 and
   lookup in the table of characters.  Decoder also must be robust
   regarding input, including proper handling of the NUL character
   (ASCII 0).

   Specifically it should be noted that Base 64 (for example) pad the
   string so that the encoding has the correct number of characters.
   This is something that Base 45 does not do, i.e. Base 45 do not
   include padding.  Because of this, special care is to be taken when
   odd number of octets are to be encoded which results not in N*3
   characters, but (N-1)*3+2 characters in the encoded string and vice
   versa, when the number of encoded characters are not divisible by 3.

7.  Acknowledgements

   The authors thank Alan Barrett, Tomas Harreveld, Anders Lowinger and
   Jakob Schlyter for the feedback.  Also everyone that have been
   working with Base64 during the years that have proven the
   implementions are stable.

8.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
              <https://www.rfc-editor.org/info/rfc4648>.






Faltstrom, et al.      Expires September 14, 2021               [Page 4]


Internet-Draft                   Base45                       March 2021


Authors' Addresses

   Patrik Faltstrom
   Netnod

   Email: paf@netnod.se


   Fredrik Ljunggren
   Kirei

   Email: fredrik@kirei.se


   Dirk-Willem van Gulik
   Webweaving

   Email: dirkx@webweaving.org

































Faltstrom, et al.      Expires September 14, 2021               [Page 5]