Network Working Group D. Mills
Internet-Draft University of Deleware
Intended status: Historic B. Haberman, Ed.
Expires: April 20, 2017 JHU
October 17, 2016
Control Messages Protocol for Use with Network Time Protocol Version 4
draft-haberman-ntpwg-mode-6-cmds-02
Abstract
This document describes the structure of the control messages used
with the Network Time Protocol. These control messages can be used
to monitor and control the Network Time Protocol application running
on any IP network attached computer. The information in this
document was originally described in Appendix B of RFC 1305. The
goal of this document is to provide a historic description of the
control messages.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 20, 2017.
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
Mills & Haberman Expires April 20, 2017 [Page 1]
Internet-Draft NTP Control Messages October 2016
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Control Message Overview . . . . . . . . . . . . . . . . 2
2. NTP Control Message Format . . . . . . . . . . . . . . . . . 4
3. Status Words . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1. System Status Word . . . . . . . . . . . . . . . . . . . 6
3.2. Peer Status Word . . . . . . . . . . . . . . . . . . . . 8
3.3. Clock Status Word . . . . . . . . . . . . . . . . . . . . 9
3.4. Error Status Word . . . . . . . . . . . . . . . . . . . . 10
4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
6. Security Considerations . . . . . . . . . . . . . . . . . . . 12
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 14
8. Normative References . . . . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 14
1. Introduction
RFC 1305 [RFC1305] described a set of control messages for use within
the Network Time Protocol (NTP) when a comprehensive network
management solution was not available. The definitions of these
control messages were not promulgated to RFC 5905 [RFC5905] when NTP
version 4 was documented. These messages were intended for use only
in systems where no other management facilities were available or
appropriate, such as in dedicated-function bus peripherals. Support
for these messages is not required in order to conform to RFC 5905
[RFC5905]. The control messages are described here as a historical
record given their use within NTPv4.
1.1. Control Message Overview
The NTP Control Message has the value 6 specified in the mode field
of the first octet of the NTP header and is formatted as shown in
Figure 1. The format of the data field is specific to each command
or response; however, in most cases the format is designed to be
constructed and viewed by humans and so is coded in free-form ASCII.
This facilitates the specification and implementation of simple
management tools in the absence of fully evolved network-management
facilities. As in ordinary NTP messages, the authenticator field
follows the data field. If the authenticator is used the data field
is zero-padded to a 32-bit boundary, but the padding bits are not
considered part of the data field and are not included in the field
count.
Mills & Haberman Expires April 20, 2017 [Page 2]
Internet-Draft NTP Control Messages October 2016
IP hosts are not required to reassemble datagrams larger than 576
octets; however, some commands or responses may involve more data
than will fit into a single datagram. Accordingly, a simple
reassembly feature is included in which each octet of the message
data is numbered starting with zero. As each fragment is transmitted
the number of its first octet is inserted in the offset field and the
number of octets is inserted in the count field. The more-data (M)
bit is set in all fragments except the last.
Most control functions involve sending a command and receiving a
response, perhaps involving several fragments. The sender chooses a
distinct, nonzero sequence number and sets the status field and R and
E bits to zero. The responder interprets the opcode and additional
information in the data field, updates the status field, sets the R
bit to one and returns the three 32-bit words of the header along
with additional information in the data field. In case of invalid
message format or contents the responder inserts a code in the status
field, sets the R and E bits to one and, optionally, inserts a
diagnostic message in the data field.
Some commands read or write system variables and peer variables for
an association identified in the command. Others read or write
variables associated with a radio clock or other device directly
connected to a source of primary synchronization information. To
identify which type of variable and association a 16-bit association
identifier is used. System variables are indicated by the identifier
zero. As each association is mobilized a unique, nonzero identifier
is created for it. These identifiers are used in a cyclic fashion,
so that the chance of using an old identifier which matches a newly
created association is remote. A management entity can request a
list of current identifiers and subsequently use them to read and
write variables for each association. An attempt to use an expired
identifier results in an exception response, following which the list
can be requested again.
Some exception events, such as when a peer becomes reachable or
unreachable, occur spontaneously and are not necessarily associated
with a command. An implementation may elect to save the event
information for later retrieval or to send an asynchronous response
(called a trap) or both. In case of a trap the IP address and port
number is determined by a previous command and the sequence field is
set as described below. Current status and summary information for
the latest exception event is returned in all normal responses. Bits
in the status field indicate whether an exception has occurred since
the last response and whether more than one exception has occurred.
Commands need not necessarily be sent by an NTP peer, so ordinary
access-control procedures may not apply; however, the optional mask/
Mills & Haberman Expires April 20, 2017 [Page 3]
Internet-Draft NTP Control Messages October 2016
match mechanism suggested elsewhere in this document provides the
capability to control access by mode number, so this could be used to
limit access for control messages (mode 6) to selected address
ranges.
2. NTP Control Message Format
The format of the NTP Control Message header, which immediately
follows the UDP header, is shown in Figure 1. Following is a
description of its fields. Bit positions marked as zero are reserved
and should always be transmitted as zero.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|0| VN |Mode |R|E|M| OpCode | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | Association ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Offset | Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ Data (up to 468 bytes) /
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
/ Authenticator (optional, 96 bytes) /
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: NTP Control Message Header
Version Number (VN): This is a three-bit integer indicating the NTP
version number, currently four (4).
Mode: This is a three-bit integer indicating the mode. The value 6
indicates an NTP control message.
Response Bit (R): Set to zero for commands, one for responses.
Error Bit (E): Set to zero for normal response, one for error
response.
More Bit (M): Set to zero for last fragment, one for all others.
Operation Code (OpCode): This is a five-bit integer specifying the
command function. Values currently defined include the following:
Mills & Haberman Expires April 20, 2017 [Page 4]
Internet-Draft NTP Control Messages October 2016
+-------+--------------------------------------------------+
| Code | Meaning |
+-------+--------------------------------------------------+
| 0 | reserved |
| 1 | read status command/response |
| 2 | read variables command/response |
| 3 | write variables command/response |
| 4 | read clock variables command/response |
| 5 | write clock variables command/response |
| 6 | set trap address/port command/response |
| 7 | trap response |
| 8-31 | reserved |
+-------+--------------------------------------------------+
Sequence Number: This is a 16-bit integer indicating the sequence
number of the command or response.
Status: This is a 16-bit code indicating the current status of the
system, peer or clock, with values coded as described in following
sections.
Association ID: This is a 16-bit integer identifying a valid
association.
Offset: This is a 16-bit integer indicating the offset, in octets, of
the first octet in the data area.
Count: This is a 16-bit integer indicating the length of the data
field, in octets.
Data: This contains the message data for the command or response.
The maximum number of data octets is 468.
Authenticator (optional): When the NTP authentication mechanism is
implemented, this contains the authenticator information defined in
Appendix C of RFC 1305.
3. Status Words
Status words indicate the present status of the system, associations
and clock. They are designed to be interpreted by network-monitoring
programs and are in one of four 16-bit formats shown in Figure 2 and
described in this section. System and peer status words are
associated with responses for all commands except the read clock
variables, write clock variables and set trap address/port commands.
The association identifier zero specifies the system status word,
while a nonzero identifier specifies a particular peer association.
The status word returned in response to read clock variables and
Mills & Haberman Expires April 20, 2017 [Page 5]
Internet-Draft NTP Control Messages October 2016
write clock variables commands indicates the state of the clock
hardware and decoding software. A special error status word is used
to report malformed command fields or invalid values.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LI| Clock Src | Count | Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
System Status Word
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | SEL | Count | Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Peer Status Word
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Clock Status | Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Radio Status Word
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Code | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Error Status Word
Figure 2: Status Word Formats
3.1. System Status Word
The system status word appears in the status field of the response to
a read status or read variables command with a zero association
identifier. The format of the system status word is as follows:
Leap Indicator (LI): This is a two-bit code warning of an impending
leap second to be inserted/deleted in the last minute of the current
day, with bit 0 and bit 1, respectively, coded as follows:
+------+------------------------------------------------------------+
| LI | Meaning |
+------+------------------------------------------------------------+
| 00 | no warning |
| 01 | read status command/response |
| 10 | read variables command/response |
| 11 | write variables command/response |
+------+------------------------------------------------------------+
Mills & Haberman Expires April 20, 2017 [Page 6]
Internet-Draft NTP Control Messages October 2016
Clock Source (Clock Src): This is a six-bit integer indicating the
current synchronization source, with values coded as follows:
+-------+-----------------------------------------------------------+
| Code | Meaning |
+-------+-----------------------------------------------------------+
| 0 | unspecified or unknown |
| 1 | Calibrated atomic clock (e.g.,, HP 5061) |
| 2 | VLF (band 4) or LF (band 5) radio (e.g.,, OMEGA,, WWVB) |
| 3 | HF (band 7) radio (e.g.,, CHU,, MSF,, WWV/H) |
| 4 | UHF (band 9) satellite (e.g.,, GOES,, GPS) |
| 5 | local net (e.g.,, DCN,, TSP,, DTS) |
| 6 | UDP/NTP |
| 7 | UDP/TIME |
| 8 | eyeball-and-wristwatch |
| 9 | telephone modem (e.g.,, NIST) |
| 10-63 | reserved |
+-------+-----------------------------------------------------------+
System Event Counter (Count): This is a four-bit integer indicating
the number of system exception events occurring since the last time
the system status word was returned in a response or included in a
trap message. The counter is cleared when returned in the status
field of a response and freezes when it reaches the value 15.
System Event Code (Code): This is a four-bit integer identifying the
latest system exception event, with new values overwriting previous
values, and coded as follows:
+------+-----------------------------------------------------------+
| Code | Meaning |
+------+-----------------------------------------------------------+
| 0 | unspecified |
| 1 | system restart |
| 2 | system or hardware fault |
| 3 | system new status word (leap bits or |
| | synchronization change) |
| 4 | system new synchronization source or stratum (sys.peer or |
| | sys.stratum change) |
| 5 | system clock reset (offset correction exceeds CLOCK.MAX) |
| 6 | system invalid time or date (see NTP specification) |
| 7 | system clock exception (see system clock status word) |
| 8-15 | reserved |
+------+-----------------------------------------------------------+
Mills & Haberman Expires April 20, 2017 [Page 7]
Internet-Draft NTP Control Messages October 2016
3.2. Peer Status Word
A peer status word is returned in the status field of a response to a
read status, read variables or write variables command and appears
also in the list of association identifiers and status words returned
by a read status command with a zero association identifier. The
format of a peer status word is as follows:
Peer Status (Status): This is a five-bit code indicating the status
of the peer determined by the packet procedure, with bits assigned as
follows:
+-------------+---------------------------------------------------+
| Peer Status | Meaning |
+-------------+---------------------------------------------------+
| 0 | configured (peer.config) |
| 1 | authentication enabled (peer.authenable) |
| 2 | authentication okay (peer.authentic) |
| 3 | reachability okay (peer.reach <F128M>?F255D> 0) |
| 4 | reserved |
+-------------+---------------------------------------------------+
Peer Selection (SEL): This is a three-bit integer indicating the
status of the peer determined by the clock-selection procedure, with
values coded as follows:
+-----+-------------------------------------------------------------+
| Sel | Meaning |
+-----+-------------------------------------------------------------+
| 0 | rejected |
| 1 | passed receive sanity checks |
| 2 | passed correctness check (intersection algorithm |
| 3 | passed candidate checks (if limit check implemented) |
| 4 | passed outlyer checks (cluster algorithm |
| 5 | current synchronization source; max distance exceeded |
| | (if limit check implemented) |
| 6 | current synchronization source; max distance okay |
| 7 | reserved |
+-----+-------------------------------------------------------------+
Peer Event Counter (Count): This is a four-bit integer indicating the
number of peer exception events that occurred since the last time the
peer status word was returned in a response or included in a trap
message. The counter is cleared when returned in the status field of
a response and freezes when it reaches the value 15.
Mills & Haberman Expires April 20, 2017 [Page 8]
Internet-Draft NTP Control Messages October 2016
Peer Event Code (Code): This is a four-bit integer identifying the
latest peer exception event, with new values overwriting previous
values, and coded as follows:
+-------+---------------------------------------------------------+
| Peer | |
| Event | Meaning |
| Code | |
+-------+---------------------------------------------------------+
| 0 | unspecified |
| 1 | peer IP error |
| 2 | peer authentication failure (peer.authentic bit 1 --> 0 |
| 3 | peer unreachable (peer.reach was nonzero now zero) |
| 4 | peer reachable (peer.reach was zero now nonzero) |
| 5 | peer clock exception (see peer clock status word) |
| 6-15 | reserved |
+-------+---------------------------------------------------------+
3.3. Clock Status Word
There are two ways a reference clock can be attached to a NTP service
host, as an dedicated device managed by the operating system and as a
synthetic peer managed by NTP. As in the read status command, the
association identifier is used to identify which one, zero for the
system clock and nonzero for a peer clock. Only one system clock is
supported by the protocol, although many peer clocks can be
supported. A system or peer clock status word appears in the status
field of the response to a read clock variables or write clock
variables command. This word can be considered an extension of the
system status word or the peer status word as appropriate. The
format of the clock status word is as follows:
Clock Status: This is an eight-bit integer indicating the current
clock status, with values coded as follows:
+--------------+--------------------------------------------------+
| Clock Status | Meaning |
+--------------+--------------------------------------------------+
| 0 | clock operating within nominals |
| 1 | reply timeout |
| 2 | bad reply format |
| 3 | hardware or software fault |
| 4 | propagation failure |
| 5 | bad date format or value |
| 6 | bad time format or value |
| 7-255 | reserved |
+--------------+--------------------------------------------------+
Mills & Haberman Expires April 20, 2017 [Page 9]
Internet-Draft NTP Control Messages October 2016
Clock Event Code (Code): This is an eight-bit integer identifying the
latest clock exception event, with new values overwriting previous
values. When a change to any nonzero value occurs in the radio
status field, the radio status field is copied to the clock event
code field and a system or peer clock exception event is declared as
appropriate.
3.4. Error Status Word
An error status word is returned in the status field of an error
response as the result of invalid message format or contents. Its
presence is indicated when the E (error) bit is set along with the
response (R) bit in the response. It consists of an eight-bit
integer coded as follows:
+--------------+--------------------------------------------------+
| Error Status | Meaning |
+--------------+--------------------------------------------------+
| 0 | unspecified |
| 1 | authentication failure |
| 2 | invalid message length or format |
| 3 | invalid opcode |
| 4 | unknown association identifier |
| 5 | unknown variable name |
| 6 | invalid variable value |
| 7 | administratively prohibited |
| 8-255 | reserved |
+--------------+--------------------------------------------------+
4. Commands
Commands consist of the header and optional data field shown in
Figure 2. When present, the data field contains a list of
identifiers or assignments in the form
<<identifier>>[=<<value>>],<<identifier>>[=<<value>>],... where
<<identifier>> is the ASCII name of a system or peer variable
specified in RFC 5905 and <<value>> is expressed as a decimal,
hexadecimal or string constant in the syntax of the C programming
language. Where no ambiguity exists, the <169>sys.<170> or
<169>peer.<170> prefixes can be suppressed. Whitespace (ASCII
nonprinting format effectors) can be added to improve readability for
simple monitoring programs that do not reformat the data field.
Internet addresses are represented as four octets in the form
[n.n.n.n], where n is in decimal notation and the brackets are
optional. Timestamps, including reference, originate, receive and
transmit values, as well as the logical clock, are represented in
units of seconds and fractions, preferably in hexadecimal notation,
while delay, offset, dispersion and distance values are represented
Mills & Haberman Expires April 20, 2017 [Page 10]
Internet-Draft NTP Control Messages October 2016
in units of milliseconds and fractions, preferably in decimal
notation. All other values are represented as-is, preferably in
decimal notation.
Implementations may define variables other than those described in
RFC 5905. Called extramural variables, these are distinguished by
the inclusion of some character type other than alphanumeric or
<169>.<170> in the name. For those commands that return a list of
assignments in the response data field, if the command data field is
empty, it is expected that all available variables defined in RFC
5905 will be included in the response. For the read commands, if the
command data field is nonempty, an implementation may choose to
process this field to individually select which variables are to be
returned.
Commands are interpreted as follows:
Read Status (1): The command data field is empty or contains a list
of identifiers separated by commas. The command operates in two ways
depending on the value of the association identifier. If this
identifier is nonzero, the response includes the peer identifier and
status word. Optionally, the response data field may contain other
information, such as described in the Read Variables command. If the
association identifier is zero, the response includes the system
identifier (0) and status word, while the data field contains a list
of binary-coded pairs <<association identifier>> <<status word>>, one
for each currently defined association.
Read Variables (2): The command data field is empty or contains a
list of identifiers separated by commas. If the association
identifier is nonzero, the response includes the requested peer
identifier and status word, while the data field contains a list of
peer variables and values as described above. If the association
identifier is zero, the data field contains a list of system
variables and values. If a peer has been selected as the
synchronization source, the response includes the peer identifier and
status word; otherwise, the response includes the system identifier
(0) and status word.
Write Variables (3): The command data field contains a list of
assignments as described above. The variables are updated as
indicated. The response is as described for the Read Variables
command.
Read Clock Variables (4): The command data field is empty or contains
a list of identifiers separated by commas. The association
identifier selects the system clock variables or peer clock variables
in the same way as in the Read Variables command. The response
Mills & Haberman Expires April 20, 2017 [Page 11]
Internet-Draft NTP Control Messages October 2016
includes the requested clock identifier and status word and the data
field contains a list of clock variables and values, including the
last timecode message received from the clock.
Write Clock Variables (5): The command data field contains a list of
assignments as described above. The clock variables are updated as
indicated. The response is as described for the Read Clock Variables
command.
Set Trap Address/Port (6): The command association identifier, status
and data fields are ignored. The address and port number for
subsequent trap messages are taken from the source address and port
of the control message itself. The initial trap counter for trap
response messages is taken from the sequence field of the command.
The response association identifier, status and data fields are not
significant. Implementations should include sanity timeouts which
prevent trap transmissions if the monitoring program does not renew
this information after a lengthy interval.
Trap Response (7): This message is sent when a system, peer or clock
exception event occurs. The opcode field is 7 and the R bit is set.
The trap counter is incremented by one for each trap sent and the
sequence field set to that value. The trap message is sent using the
IP address and port fields established by the set trap address/port
command. If a system trap the association identifier field is set to
zero and the status field contains the system status word. If a peer
trap the association identifier field is set to that peer and the
status field contains the peer status word. Optional ASCII-coded
information can be included in the data field.
5. IANA Considerations
This document makes no request of IANA.
Note to RFC Editor: this section may be removed on publication as an
RFC.
6. Security Considerations
A number of security vulnerabilities have been identified with these
control messages.
NTP's control query interface allows reading and writing of system,
peer, and clock variables remotely from arbitrary IP addresses using
commands mentioned in Section 4. Traditionally, overwriting these
variables, but not reading them, requires authentication by default.
However, this document argues that an NTP host must authenticate all
control queries and not just ones that overwrite these variables.
Mills & Haberman Expires April 20, 2017 [Page 12]
Internet-Draft NTP Control Messages October 2016
Alternatively, the host can use a whitelist to explicitly list IP
addresses that are allowed to control query the clients. These
access controls are required for the following reasons:
o NTP as a Distributed Denial-of-Service (DDoS) vector. NTP timing
query and response packets (modes 1-2, 3-4, 5) are usually short
in size. However, some NTP control queries generate a very long
packet in response to a short query. As such, there is a history
of use of NTP's control queries, which exhibit such behavior, to
perform DDoS attacks. These off-path attacks exploit the large
size of NTP control queries to cause UDP-based amplification
attacks (e.g., mode 7 monlist command generates a very long packet
in response to a small query (CVE-2013-5211)). These attacks only
use NTP as a vector for DoS atacks on other protocols, but do not
affect the time service on the NTP host itself.
o Time-shifting attacks through information leakage/overwriting.
NTP hosts save important system and peer state variables. An off-
path attacker who can read these variables remotely can leverage
the information leaked by these control queries to perform time-
shifting and DoS attacks on NTP clients. These attacks do affect
time synchronization on the NTP hosts. For instance,
* In the client/server mode, the client stores its local time
when it sends the query to the server in its xmt peer variable.
This variable is used to perform TEST2 to non-cryptographically
authenticate the server, i.e., if the origin timestamp field in
the corresponding server response packet matches the xmt peer
variable, then the client accepts the packet. An off-path
attacker, with the ability to read this variable can easily
spoof server response packets for the client, which will pass
TEST2, and can deny service or shift time on the NTP client.
CVE-2015-8139 describes the specific attack.
* The client also stores its local time when the server response
is received in its rec peer variable. This variable is used
for authentication in interleaved-pivot mode. An off-path
attacker with the ability to read this state variable can
easily shift time on the client by passing this test. CVE-
2016-1548 describes the attack.
o Fast-Scanning. NTP mode 6 control messages are usually small UDP
packets. Fast-scanning tools like ZMap can be used to spray the
entire (potentially reachable) Internet with these messages within
hours to identify vulnerable hosts. To make things worse, these
attacks can be extremely low-rate, only requiring a control query
for reconnaissance and a spoofed response to shift time on
vulnerable clients. CVE-2016-1548 is one such example.
Mills & Haberman Expires April 20, 2017 [Page 13]
Internet-Draft NTP Control Messages October 2016
NTP best practices recommend configuring ntpd with the no-query
parameter. The no-query parameter blocks access to all remote
control queries. However, sometimes the nosts do not want to block
all queries and want to give access for certain control queries
remotely. This could be for the purpose of remote management and
configuration of the hosts in certain scenarios. Such hosts tend to
use firewalls or other middleboxes to blacklist certain queries
within the network.
Recent work (reference needed) shows that significantly fewer hosts
respond to mode 7 monlist queries as compared to other control
queries because it is a well-known and exploited control query.
These queries are likely blocked using blacklists on firewalls and
middleboxes rather than the no-query option on NTP hosts. The
remaining control queries that can be exploited likely remain out of
the blacklist because they are undocumented in the current NTP
specification [RFC5905].
This document describes all of the mode 6 control queries allowed by
NTP and can help administrators make informed decisions on security
measures to protect NTP devices from harmful queries and likely make
those systems less vulnerable.
7. Acknowledgements
Tim Plunkett created the original version of this document. Aanchal
Malhotra provided the initial version of the Security Considerations
section.
8. Normative References
[RFC1305] Mills, D., "Network Time Protocol (Version 3)
Specification, Implementation and Analysis", RFC 1305,
DOI 10.17487/RFC1305, March 1992,
<http://www.rfc-editor.org/info/rfc1305>.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms
Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
<http://www.rfc-editor.org/info/rfc5905>.
Authors' Addresses
Dr. David L. Mills
University of Deleware
Email: mills@udel.edu
Mills & Haberman Expires April 20, 2017 [Page 14]
Internet-Draft NTP Control Messages October 2016
Brian Haberman (editor)
JHU
Email: brian@innovationslab.net
Mills & Haberman Expires April 20, 2017 [Page 15]