Network Working Group                                         P. Hoffman
Internet-Draft                                            VPN Consortium
Intended status: Experimental                         September 01, 2014
Expires: March 5, 2015


                   Representing DNS Messages in JSON
                    draft-hoffman-dns-in-json-01

Abstract

   Some applications use DNS messages, or parts of DNS messages, as
   data.  For example, a system that captures DNS queries and responses
   might want to be able to easily search those without having to decode
   the messages each time.  Another example is a system that puts
   together DNS queries and responses from message parts.  This document
   fully describes a standardized format for DNS message data in JSON.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 5, 2015.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of




Hoffman                   Expires March 5, 2015                 [Page 1]


Internet-Draft                 DNS in JSON                September 2014


   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Design of the Format  . . . . . . . . . . . . . . . . . .   3
     1.2.  [[ Maybe More Than Messages? ]] . . . . . . . . . . . . .   4
   2.  JSON Format for DNS Messages  . . . . . . . . . . . . . . . .   4
     2.1.  Message Object Members  . . . . . . . . . . . . . . . . .   4
     2.2.  Resource Record Object Members  . . . . . . . . . . . . .   5
       2.2.1.  RDATA Object Members  . . . . . . . . . . . . . . . .   6
     2.3.  The Message and Its Parts as Octets . . . . . . . . . . .  13
     2.4.  Additional Message Object Members . . . . . . . . . . . .  14
     2.5.  Representing Domain Names . . . . . . . . . . . . . . . .  14
   3.  JSON Format for Streams of DNS Messages . . . . . . . . . . .  15
   4.  JSON Format for a Paired DNS Query and Response . . . . . . .  15
   5.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  15
     5.1.  Example of the Format of a DNS Query  . . . . . . . . . .  15
     5.2.  Example of the Format of a Paired DNS Query and Response   16
   6.  Local Format Policy . . . . . . . . . . . . . . . . . . . . .  17
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  17
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  17
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  17
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  18
     10.2.  Informative References . . . . . . . . . . . . . . . . .  18
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  18

1.  Introduction

   The DNS message format is defined in [RFC1035].  DNS queries and DNS
   responses have exactly the same structure.  Many of the field names
   and data type names given in RFC 1035 are commonly used in
   discussions of DNS.  For example, it is common to hear things like
   "the query had a QNAME of 'example.com'" or "the RDATA has a simple
   structure".

   There are hundreds of data interchange formats for serializing
   structured data.  Currently, JSON [RFC7159] is quite popular for many
   types of data, particularly data that has named sub-fields and
   optional parts.

   This document uses JSON to describe DNS messages.  It also defines
   how to describe a stream of DNS queries or a stream of DNS responses,
   and how to describe a paired DNS query and response; these are useful
   for logging on a DNS server.




Hoffman                   Expires March 5, 2015                 [Page 2]


Internet-Draft                 DNS in JSON                September 2014


1.1.  Design of the Format

   There are many ways to design a data format.  This document uses a
   specific design methodology based on the DNS format.

   o  The format is based on JSON objects in order to allow a writer to
      include or exclude parts of the format at will.  No object members
      are ever required.

   o  All values that are eight bits or shorter (even booleans) are
      represented by JSON integers.

   o  Many values that can have non-ASCII data in them have names that
      end in "*" and are stored in base16 encoding (hex with uppercase
      letters) defined in [RFC4648].

   o  Some values will be very long and implementations might care about
      the size of the records on the wire.  Values that are expected to
      be long (the entire record, some resource records such as those
      with cryptographic keys, and so on) have names that end in "!" and
      are stored in base64url encoding defined in [RFC4648].

   o  Domain names apprear in many places, and there is a desire to show
      fields with domain names in a mostly-human-readable form.  Names
      that end in "&" are domain names that have escaping for some
      characters, as described in Section 2.5.

   o  All field names used in RFC 1035 are used in this format as-is.
      Names not defined in RFC 1035 use "camel case" with the first
      letter lowercase.

   o  Because domain names that follow the host name rules are so
      common, there are additional members for domain names that are
      also host names and can be shown as unencoded strings.  See
      [RFC1123] for the host name rules.

   o  The same data may be represented in multiple object members
      multiple times.  For example, there is a member for the octets of
      the DNS message header, and there are members for each named part
      of the header.  A message object can thus inadvertently have
      inconsistent data, such as a header member whose value does not
      match the value of the first bits in the entire message member.

   o  The design explicitly allows for the description of malformed DNS
      messages.  This is important for systems that are logging messages
      seen on the wire, particularly messages that might be used as part
      of an attack.  For example, an RR might have an RDLENGTH of 4 but
      an RDATA whose length is longer than 4 (if it is the last RR in a



Hoffman                   Expires March 5, 2015                 [Page 3]


Internet-Draft                 DNS in JSON                September 2014


      message); a DNS message whose QDCOUNT is 0; a DNS message whose
      length is less than 12 octets, meaning it doesn't even have a full
      header; and so on.

   o  An object in this format can have zero or more of the members
      defined here; that is, no members are required by the format
      itself.  Instead, profiles that use this format might have
      requirements for mandatory members, optional members, and
      prohibited members from the format.  Also, this format does not
      prohibit members that are not defined in this format; profiles of
      the format are free to add new members in the profile.

1.2.  [[ Maybe More Than Messages? ]]

   After some people requested that the RDATA be able to be defined as
   objects with defined members for all known RTYPEs, this format is
   just _this close_ to also being able to define zone file contents.
   My use for the format is for DNS messages, but others might want to
   be able to describe zone files in JSON.  If so, I can extend this
   document a little and rename it.

2.  JSON Format for DNS Messages

   The following gives all of the members defined for a DNS message.  It
   is organized approximately by levels of the DNS message.

2.1.  Message Object Members

   o  ID - Integer whose value is 0 to 65535

   o  QR - Integer whose value is 0 or 1

   o  Opcode - Integer whose value is 0 to 15

   o  AA - Integer whose value is 0 or 1

   o  TC - Integer whose value is 0 or 1

   o  RD - Integer whose value is 0 or 1

   o  RA - Integer whose value is 0 or 1

   o  AD - Integer whose value is 0 or 1

   o  CD - Integer whose value is 0 or 1

   o  RCODE - Integer whose value is 0 to 15




Hoffman                   Expires March 5, 2015                 [Page 4]


Internet-Draft                 DNS in JSON                September 2014


   o  QDCOUNT - Integer whose value is 0 to 65535

   o  ANCOUNT - Integer whose value is 0 to 65535

   o  NSCOUNT - Integer whose value is 0 to 65535

   o  ARCOUNT - Integer whose value is 0 to 65535

   o  QNAME* - The octets of the QNAME of the first Question section of
      the message

   o  QNAME& - The octets of the QNAME of the first Question section of
      the message

   o  hostQNAME - The host name of the domain name in the QNAME, or an
      empty string if the QNAME is not a host name

   o  QTYPE - Integer whose value is 0 to 65535, of the QTYPE of the
      first Question section of the message

   o  QCLASS - Integer whose value is 0 to 65535, of the QCLASS of the
      first Question section of the message

   o  questionRRs - Array of zero or more resource records in the
      Question section

   o  answerRRs - Array of zero or more resource records in the Answer
      section

   o  authorityRRs - Array of zero or more resource records in the
      Authority section

   o  additionalRRs - Array of zero or more resource records in the
      Additional section

2.2.  Resource Record Object Members

   A resource record is represented as an object with the following
   members.

   o  NAME* - The octets of the NAME field of the resource record

   o  NAME& - The octets of the NAME field of the resource record

   o  hostNAME - The host name of the domain name in the NAME, or an
      empty string if the NAME is not a host name





Hoffman                   Expires March 5, 2015                 [Page 5]


Internet-Draft                 DNS in JSON                September 2014


   o  expandedNAME* - The octets of the NAME field after RFC 1035
      removing name compression

   o  TYPE - Integer whose value is 0 to 65535

   o  CLASS - Integer whose value is 0 to 65535

   o  TTL - Integer whose value is 0 to 4294967295

   o  RDLENGTH - Integer whose value is 0 to 65535

   o  RDATA - An object that contains members representing the type of
      data for the class, described below

   o  RDATA* - The octets of the RDATA field of the resource record

   o  RDATA! - The octets of the RDATA field of the resource record

   The values of the NAME* and hostNAME and expandedNAME* members might
   all be the same, or could be different.

   A Question section can be expressed as a resource record.  When doing
   so, the TTL, RDLENGTH, and RDATA* members make no sense.

2.2.1.  RDATA Object Members

   The rdata object in a resource record has different members depending
   on the type.  These types will be registered in an IANA registry so
   that programs might be able to automatically handle new resource
   record types.  The types defined here are listed below.

   [[ Many of the items below represent domain names.  They will be
   changed to use the same name form as is chosen for QNAME and NAME
   above.  The are marked with a $ below, but the listing might be
   incomplete; I need to do another pass over the obscure types. ]]

   A (1)
      ipv4Address (string)

   NS (2)
      nsdname (string) $

   MD (3)
      madname (string) $

   MF (4)
      madname (string) $




Hoffman                   Expires March 5, 2015                 [Page 6]


Internet-Draft                 DNS in JSON                September 2014


   CNAME (5)
      cname (string) $

   SOA (6)
      mname (string) $
      rname (string) $
      serial (number)
      refresh (number)
      refresh (number)
      retry (number)
      expire (number)

   MB (7)
      madname (string) $

   MG (8)
      mgmname (string) $

   MR (9)
      newname (string) $

   NULL (10)
      anything (string)

   WKS (11)
      address (string) $
      protocol (number)
      bitmap (string)

   PTR (12)
      ptrdname (string) $

   HINFO (13)
      cpu (string)
      os (string)

   MINFO (14)
      rmailbx (string)
      emailbx (string)

   MX (15)
      preference (number)
      exchange (string) $

   TXT (16)
      txtStrings (array) which contains zero or more strings

   RP (17)



Hoffman                   Expires March 5, 2015                 [Page 7]


Internet-Draft                 DNS in JSON                September 2014


      mboxDname (string)
      txtDname (string)

   AFSDB (18)
      subtype (number)
      hostname (string) $

   X25 (19)
      psdnAddress (string)

   ISDN (20)
      isdnAddress (string)
      sa (string)

   RT (21)
      preference (number)
      intermediateHost (string) $

   NSAP (22)
      nsap (string)

   SIG (24)
      sigNOWOBSOLETE (string)

   KEY (25)
      keyNOWOBSOLETE (string)

   PX (26)
      preference (number)
      map822 (string)
      mapx400 (string)

   GPOS (27)
      longitude (string)
      latitude (string)
      altitude (string)

   AAAA (28)
      ipv6Address (string)

   LOC (29)
      version (number)
      size (number)
      horizPre (number)
      vertPre (number)
      latitude (number)
      longitude (number)
      altitude (number)



Hoffman                   Expires March 5, 2015                 [Page 8]


Internet-Draft                 DNS in JSON                September 2014


   NXT (30)
      nxtNOWOBSOLETE (string)

   EID (31)
      eid (string)

   NIMLOC (32)
      nimloc (string)

   SRV (33)
      priority (number)
      weight (number)
      port (number)
      target (string) $

   ATMA (34)
      format (number)
      address (string)

   NAPTR (35)
      order (number)
      preference (number)
      flags (string)
      service (string)
      regexp (string)
      replacement (string) $

   KX (36)
      preference (number)
      exchanger (string) $

   CERT (37)
      type (number)
      keyTag (number)
      algorithm (number)
      certificateOrCRL (string)

   A6 (38)
      a6NOWOBSOLETE (string)

   DNAME (39)
      target (string) $

   SINK (40)
      sink (string)

   OPT (41)
      options (array). Each element of the array is two-element array,



Hoffman                   Expires March 5, 2015                 [Page 9]


Internet-Draft                 DNS in JSON                September 2014


      where each sub-array is an option code (number) followed by an
      option data (string).

   APL (42)
      addressFamily (number)
      prefix (number)
      n (number)
      afdpart (string)

   DS (43)
      keyTag (number)
      algorithm (number)
      digestType (number)
      digest (string)

   SSHFP (44)
      algorithm (number)
      fpType (number)
      fingerprint (string)

   IPSECKEY (45)
      algorithm (number)
      gatewayType (number)
      precedence (number)
      gateway (string) $
      publicKey (string)

   RRSIG (46)
      typeCovered (number)
      algorithm (number)
      labels (number)
      originalTTL (number)
      signatureExpiration (number)
      signatureInception (number)
      keyTag (number)
      signersName (string)
      signature (string)

   NSEC (47)
      nextDomainName (string) $
      typeBitMaps (string)

   DNSKEY (48)
      flags (number)
      protocol (number)
      algorithm (number)
      publicKey (string)




Hoffman                   Expires March 5, 2015                [Page 10]


Internet-Draft                 DNS in JSON                September 2014


   DHCID (49)
      dhcidOpaque (string)

   NSEC3 (50)
      hashAlgorithm (number)
      flags (number)
      iterations (number)
      saltLength (number)
      salt (string)
      hashLength (number)
      nextHashedOwnerName (string) $
      typeBitMaps (string)

   NSEC3PARAM (51)
      hashAlgorithm (number)
      flags (number)
      iterations (number)
      saltLength (number)
      salt (string)

   TLSA (52)
      certificateUsage (number)
      selector (number)
      matchingType (number)
      certificateAssociationData (string).

   HIP (55)
      hitLength (number)
      pkAlgorithm (number)
      pkLength (number)
      hit (string)
      publicKey (string)
      rendezvousServers (string)

   NINFO (56)
      ninfo (string)

   RKEY (57)
      rkey (string)

   TALINK (58)
      talink (string)

   CDS (59)
      cds (string)

   SPF (99)
      text (string)



Hoffman                   Expires March 5, 2015                [Page 11]


Internet-Draft                 DNS in JSON                September 2014


   UINFO (100)
      uinfo (string)

   UID (101)
      uid (string)

   GID (102)
      gid (string)

   UNSPEC (103)
      unspec (string)

   NID (104)
      preference (number)
      nodeID (string)

   L32 (105)
      preference (number)
      locator32MSBS (string)
      locator64LSBS (string)

   L64 (106)
      preference (number)
      locator64 (string)

   LP (107)
      preference (number)
      fqdn (string)

   TKEY (249)
      algorithm (string)
      inception (number)
      expiration (number)
      mode (number)
      error (number)
      keyData (string)
      otherData (string)

   TSIG (250)
      algorithm (string)
      timeSigned (string)
      fudge (number)
      mac (string)
      originalID (number)
      error (number)
      otherData (string)

   IXFR (251)



Hoffman                   Expires March 5, 2015                [Page 12]


Internet-Draft                 DNS in JSON                September 2014


      zones (string)

   AXFR (252)
      zones (string)

   MAILB (253)
      mailb-unknown (string)

   MAILA (254)
      maila-unknown (string)

   URI (256)
      priority (number)
      weight (number)
      target (string) $

   CAA (257)
      flags (number)
      tag (string)
      value (string)

   TA (32768)
      ta (string)

   DLV (32769)
      Identical to DS (43)

2.3.  The Message and Its Parts as Octets

   The following can be members of a message object.

   o  messageOctets* - The octets of the message

   o  messageOctets! - The octets of the message

   o  headerOctets* - The first 12 octets of the message (or fewer, if
      the message is truncated)

   o  questionOctets* - The octets of the Question section

   o  answerOctets* - The octets of the Answer section

   o  answerOctets! - The octets of the Answer section

   o  authorityOctets* - The octets of the Authority section

   o  additionalOctets* - The octets of the Additional section




Hoffman                   Expires March 5, 2015                [Page 13]


Internet-Draft                 DNS in JSON                September 2014


   The following can be a member of a resource record object.

   o  rrOctets* - The octets of a particular resource record

   o  rrOctets! - The octets of a particular resource record

2.4.  Additional Message Object Members

   The following are members that might appear in a message object:

   o  dateString - The date that the message was sent or received, given
      as a string in the standard format described in [RFC3339], as
      refined by Section 3.3 of [RFC4287]

   o  dateSeconds - The date that the message was sent or received,
      given as the number of seconds since 1970-01-01T00:00Z in UTC
      time; this number can be fractional

   o  comment - An unstructured comment as a string.

2.5.  Representing Domain Names

   The QNAME member (and the NAME member of RRs below, as well as some
   of the members in the RDATA fields) represent a domain name, not just
   a host name.  There are many different ways to represent domain
   names, and different profiles of this format will want to represent
   them in different ways.  The most important thing to remember when
   considering which way a profile wants to represent the name is that
   names are actually octets, not strings.

   There is a desire to show doamin names that have just a few octets
   that are not in the hostname repertoire in a friendly fashion.

   This becomes a difficult task for JSON because JSON strings are
   Unicode characters, some of which are escaped.  One cannot just say
   "let my JSON encoder handle whatever I give it" for at least two
   reasons.  A label that is the three octets 0x41 0x7F 0x42 would be
   represented as an "A" followed by a DEL character followed by a "B".
   That is, DEL characters are not escaped in JSON.  Further, JSON
   encoders assume that inputs to strings are encoded Unicode strings,
   usually encoded with UTF-8.  In such an encoder, a label that has two
   octets 0xC2 0xB5 would be interpreted as the "MICRO SIGN" character
   (U+00B5) because those two octets are the UTF-8 serialization of that
   character.  Another complication is that 0x2E is represented as a
   ".", so a single-label domain name that consists of 0x41 0x2E 0x2E
   would display as "A..".





Hoffman                   Expires March 5, 2015                [Page 14]


Internet-Draft                 DNS in JSON                September 2014


   Given this, there are many possible choices for how to represent
   domain names in JSON in a human-readable fashion.  In this list,
   exampes are given for the label that has six octets 0x4341743A7FB52E
   under the TLD "example".  Some examples are:

   o  Show the character for all octets that are ASCII displayable
      characters (0x21 to 0x7E, but not 0x2E), and the RFC 1035 "\DDD"
      escaping for all other octets: "CAt:\D127\D181\D046.example."

   o  Show the character for all octets that are ASCII displayable
      characters (0x21 to 0x7E, but not 0x2E), and the normal JSON
      escaping for all other octets: "CAt:&u007f&u00b5&u002e.example."

   Making a decision on this topic is important because many RRtypes
   have domain names for their RDATA.  While having three or four
   choices of format for QNAME and NAME may make sense, having three or
   four for all those RDATA types seems ungainly.

   [[ Possibly ugly but usable design thought: all names default to one
   of the format types, but the outer record object can have a
   "nameFormat" member whose value is "hex", "1035escape", "uplus", and
   so on. ]]

3.  JSON Format for Streams of DNS Messages

   A strem of DNS messages is represented as an array of zero or more
   message objects.

4.  JSON Format for a Paired DNS Query and Response

   A paired DNS query and response is represented as an object.  Two
   optional members of this object are names "queryRecord" and
   "responseRecord", and each has a value that is an message object.
   This design was chosen (as compared to the more obvious array of two
   values) so that a paired DNS query and response could be
   differentiated from a stream of DNS messages whose length happens to
   be two.

5.  Examples

5.1.  Example of the Format of a DNS Query

   The following is an example of a query for the A record of
   example.com.







Hoffman                   Expires March 5, 2015                [Page 15]


Internet-Draft                 DNS in JSON                September 2014


   { "ID": 19678, "QR": 0, "Opcode": 0,
     "AA": 0, "TC": 0, "RD": 0, "RA": 0, "AD": 0, "CD": 0, "RCODE": 0,
     "QDCOUNT": 1, "ANCOUNT": 0, "NSCOUNT": 0, "ARCOUNT": 0,
     "QNAME*": "076578616D706C6503636F6D00", "QTYPE": 1, "QCLASS": 1
   }

   As stated earlier, all members of an object are optional.  This
   example object could have one or more of the following members as
   well:

   "answerRRs": []
   "authorityOctets*": ""
   "comment": "Something pithy goes here"
   "dateSeconds": 1408504748.657783
   "headerOctets*": "4CDE00000001000000000000"
   "QNAME&": "example.com."
   "hostQNAME": "example.com."
   "messageOctets*":
        "4CDE00000001000000000000076578616D706C6503636F6D0000010001"
   "messageOctets!": "TN4AAAABAAAAAAAAB2V4YW1wbGUDY29tAAABAAE="
   "questionOctets*": "076578616D706C6503636F6D0000010001"
   "questionRRs": [ { "NAME*": "076578616D706C6503636F6D00", "TYPE": 1,
                      "CLASS": 1, "hostNAME" : "example.com." } ]
   "questionRRs": [ { "NAME&": "example.com.", "TYPE": 1,
                      "CLASS": 1, } ]

5.2.  Example of the Format of a Paired DNS Query and Response

   The following is a paired DNS query and response for a query for the
   A record of example.com.

   {
     "queryRecord": { "ID": 32784, "QR": 0, "Opcode": 0, "AA": 0,
                      "TC": 0, "RD": 0, "RA": 0, "AD": 0, "CD": 0,
                      "RCODE": 0, "QDCOUNT": 1, "ANCOUNT": 0,
                      "NSCOUNT": 0, "ARCOUNT": 0,
                      "QNAME&": "example.com.",
                      "QTYPE": 1, "QCLASS": 1 },
     "responseRecord": { "ID": 32784, "QR": 1, "AA": 1, "RCODE": 0,
                         "QDCOUNT": 1, "ANCOUNT": 1, "NSCOUNT": 1,
                         "ARCOUNT": 0,
       "answerRRs": [ { "NAME&": "example.com.", "TYPE": 1, "CLASS": 1,
                        "TTL": 3600, "RDLENGTH": 4,
                        "RDATA*": "16212C37" } ],
       "authorityRRs": [ { "NAME&": "ns.example.com.", "TYPE": 1,
                           "CLASS": 1, "TTL": 28800, "RDLENGTH": 4,
                           "RDATA*": "A5E3F903" } ] }
   }



Hoffman                   Expires March 5, 2015                [Page 16]


Internet-Draft                 DNS in JSON                September 2014


6.  Local Format Policy

   Systems using this format in this document will likely have policy
   about what must be in the objects.  Those policies are outside the
   scope of this document.

   For example, private DNS systems such as those described in
   [I-D.dulaunoy-kaplan-passive-dns-cof] covers just DNS responses.
   Such a system might have a policy that makes QNAME*, QTYPE, and
   answerRRs mandatory.  That document also describes two mandatory
   times that are not in this format, so the policy would possibly also
   define those members and make them mandatory.  The policy could also
   define additional members that might appear in a record.

   As another example, a program that uses this format for configuring
   what a test client sends on the wire might have a policy of "each
   record object can have as few members as it wants; all unstated
   members are filled in from previous records".

7.  IANA Considerations

   This document has no effect on IANA registries.

8.  Security Considerations

   As described in Section 1.1, a message object can have inconsistent
   data, such as a message with an ANCOUNT of 1 but that has either an
   empty answerRRs array or an answerRRs array that has 2 or more RRs.
   Other examples of inconsistent data would be resource records whose
   RDLENGTH does not match the length of the decoded value in the RDATA*
   member, or a record whose various header fields do not match the
   value in headerOctets*, and so on.  A reader of this format must
   never assume that all of the data in an object are all consistent
   with each other.

   Numbers in JSON do not have any bounds checking.  Thus, integer
   values in a record might have invalid values, such as an ID value
   that is negative, or greater than or equal to 2^16, or has a
   fractional part.

9.  Acknowledgements

   Some of the ideas in this document were inspired by
   [I-D.dulaunoy-kaplan-passive-dns-cof].  The document was also
   inspired by early ideas from Stephane Bortzmeyer.  There was earlier,
   abandoned work on encoding DNS messages in XML ([I-D.daley-dnsxml]
   and [I-D.mohan-dns-query-xml], to name just two).




Hoffman                   Expires March 5, 2015                [Page 17]


Internet-Draft                 DNS in JSON                September 2014


10.  References

10.1.  Normative References

   [RFC1035]  Mockapetris, P., "Domain names - implementation and
              specification", STD 13, RFC 1035, November 1987.

   [RFC1123]  Braden, R., "Requirements for Internet Hosts - Application
              and Support", STD 3, RFC 1123, October 1989.

   [RFC7159]  Bray, T., "The JavaScript Object Notation (JSON) Data
              Interchange Format", RFC 7159, March 2014.

10.2.  Informative References

   [I-D.daley-dnsxml]
              Daley, J., Morris, S., and J. Dickinson, "dnsxml - A
              standard XML representation of DNS data", draft-daley-
              dnsxml-00 (work in progress), July 2013.

   [I-D.dulaunoy-kaplan-passive-dns-cof]
              Dulaunoy, A., Kaplan, A., Vixie, P., and H. Stern,
              "Passive DNS - Common Output Format", draft-dulaunoy-
              kaplan-passive-dns-cof-02 (work in progress), March 2014.

   [I-D.mohan-dns-query-xml]
              Parthasarathy, M. and P. Vixie, "Representing DNS messages
              using XML", draft-mohan-dns-query-xml-00 (work in
              progress), September 2011.

   [RFC3339]  Klyne, G., Ed. and C. Newman, "Date and Time on the
              Internet: Timestamps", RFC 3339, July 2002.

   [RFC4287]  Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
              Syndication Format", RFC 4287, December 2005.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, October 2006.

Author's Address

   Paul Hoffman
   VPN Consortium

   Email: paul.hoffman@vpnc.org






Hoffman                   Expires March 5, 2015                [Page 18]