Behave B. Huang
Internet-Draft H. Deng
Obsoletes: 3338, 2767 China Mobile
(if approved) T. Savolainen
Intended status: Standards Track Nokia
Expires: January 29, 2011 July 28, 2010
Dual Stack Hosts Using "Bump-in-the-Host" (BIH)
draft-huang-behave-bih-01
Abstract
This document describes the "Bump-In-the-Host" (BIH), a host based
protocol translation mechanism that allows a subset of applications
supporting only one IP address family to communicate with peers that
are reachable or supporting only the other address family.
This specification addresses scenarios where a host is provided dual
stack or IPv6 only network connectivity. In the dual stack network
case, single address family applications in the host sometime will
communicate directly with other hosts using the different address
family. In the case of IPv6 only network or IPv6 only destination,
IPv4 originated communications have to be translated into IPv6. The
BIH makes the IPv4 applications think they talk to IPv4 peers and
hence hides the IPv6 from those applications.
Acknowledgement of previous work
This document is an update to and directly derivative from Kazuaki
TSHUCHIYA, Hidemitsu HIGUCHI, and Yoshifumi ATARASHI [RFC2767] and
from Seungyun Lee, Myung-Ki Shin, Yong-Jin Kim, Alain Durand, and
Erik Nordmark's [RFC3338], which similarly provides a dual stack host
means to communicate with other IPv6 host using existing IPv4
appliations. This document combines and updates both [RFC2767] and
[RFC3338].
The changes in this document reflect five components
1. Supporting IPv6 only network connections
2. IPv4 address pool use private address instead of the
unassigned IPv4 addresses (0.0.0.1 - 0.0.0.255)
3. Extending ENR and address mapper to operate differently
4. Adding an alternative way to implement the ENR
Huang, et al. Expires January 29, 2011 [Page 1]
Internet-Draft BIH July 2010
5. Going for standards track instead of experimental/
informational
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 29, 2011.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Huang, et al. Expires January 29, 2011 [Page 2]
Internet-Draft BIH July 2010
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Components of the Bump-in-the-Host . . . . . . . . . . . . . . 6
2.1. Function Mapper . . . . . . . . . . . . . . . . . . . . . 7
2.2. Translator . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Extension Name Resolver . . . . . . . . . . . . . . . . . 8
2.3.1. Reverse DNS lookup . . . . . . . . . . . . . . . . . . 9
2.4. Address Mapper . . . . . . . . . . . . . . . . . . . . . . 9
3. Behavior and network Examples . . . . . . . . . . . . . . . . 12
4. Considerations . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1. Socket API Conversion . . . . . . . . . . . . . . . . . . 16
4.2. ICMP Message Handling . . . . . . . . . . . . . . . . . . 16
4.3. IPv4 Address Pool and Mapping Table . . . . . . . . . . . 16
4.4. Internally Assigned IPv4 Addresses . . . . . . . . . . . . 17
5. Considerations due ALG requirements . . . . . . . . . . . . . 18
6. Security Considerations . . . . . . . . . . . . . . . . . . . 19
7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 20
8. References . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1. Normative References . . . . . . . . . . . . . . . . . . . 21
8.2. Informative References . . . . . . . . . . . . . . . . . . 21
Appendix A. Implementation option for the ENR . . . . . . . . . . 22
Appendix B. API list intercepted by BIH . . . . . . . . . . . . . 23
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 25
Huang, et al. Expires January 29, 2011 [Page 3]
Internet-Draft BIH July 2010
1. Introduction
While IPv6 support is being widely introduced throughout the
Internet, a class of applications are going to remain IPv4-only.
This document describes a Bump-in-the-Host (BIH), successor and
combination of Bump-in-the-Stack (BIS) [RFC2767] and Bump-in-the-API
(BIA) [RFC3338] technologies, which enables accommodation of
significant set of the legacy IPv4-only applications in the IPv6-
world.
Bump-In-the-Host is not a general purpose translation solution. The
class of IPv4-only applications the described host-based NAT46
protocol translation solution provides Internet connectivity over
IPv6-only network access includes those applications that use DNS for
IP address resolution and that do not embed IP address literals in
protocol payloads. This includes essentially all DNS using legacy
client-server model applications, which are agnostic on IP address
family used by the destination, but not other classes of
applications. The transition towards IPv6-only Internet is made
easier by decreasing number of key applications that must be updated
to IPv6.
BIH technique includes two major implementation options: inserts a
protocol translator between the IPv4 and the IPv6 stacks of a host or
between the socket API module and the TCP/IP module. Essentially,
IPv4 is translated into IPv6 at the socket API level or at the IP
level.
When the BIH is implemented at the socket API layer, and IPv4
applications communicate with IPv6 peers, the API translator
intercepts the socket API functions from IPv4 applications and
invokes the IPv6 socket API functions to communicate with the IPv6
hosts, and vice versa.
When the BIH is implemented at the networking layer, the IPv4 packets
are intercepted and converted to IPv6 using the IP conversion
mechanism defined in SIIT [RFC2765]. The translation has the same
benefits and drawbacks as SIIT.
In order to support communication between IPv4 applications and the
target IPv6 hosts, pooled IPv4 addresses will be assigned through the
extension name resolver.
The BIH can be used whenever an IPv4-only application needs to
communicate with an IPv6 peer, independently of the address families
supported by the access network. Hence the access network can be
IPv6-only or dual-stack capable.
Huang, et al. Expires January 29, 2011 [Page 4]
Internet-Draft BIH July 2010
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] .
This document uses terms defined in [RFC2460] , [RFC2893] , [RFC2767]
and [RFC3338].
Huang, et al. Expires January 29, 2011 [Page 5]
Internet-Draft BIH July 2010
2. Components of the Bump-in-the-Host
Figure 1 shows the architecture of the host in which BIH is
implemented as socket API layer traslator, i.e. as the original
"Bump-in-the-API".
+----------------------------------------------+
| +------------------------------------------+ |
| | | |
| | IPv4 applications | |
| | | |
| +------------------------------------------+ |
| +------------------------------------------+ |
| | Socket API (IPv4, IPv6) | |
| +------------------------------------------+ |
| +-[ API translator]------------------------+ |
| | +-----------+ +---------+ +------------+ | |
| | | Ext. Name | | Address | | Function | | |
| | | Resolver | | Mapper | | Mapper | | |
| | +-----------+ +---------+ +------------+ | |
| +------------------------------------------+ |
| +--------------------+ +-------------------+ |
| | | | | |
| | TCP(UDP)/IPv4 | | TCP(UDP)/IPv6 | |
| | | | | |
| +--------------------+ +-------------------+ |
+----------------------------------------------+
Figure 1: Architecture of the dual stack host using BIH at socket
layer
Figure 2 shows the architecture of the host in which BIH is
implemented as network layer translator, i.e. as the original "Bump-
in-the-Stack".
Huang, et al. Expires January 29, 2011 [Page 6]
Internet-Draft BIH July 2010
+-------------------------------------------------------------+
| +-------------------------------------------------------+ |
| | IPv4 applications | |
| +-------------------------------------------------------+ |
| +-------------------------------------------------------+ |
| | TCP/IPv4 | |
| | +---------------------------------------------------+ |
| | | +-----------+ +---------+ +---------------+ |
| | | | extension | | address | | translator | |
| | | | name | | mapper | +---------------+ |
| | | | resolver | | | +---------------+ |
| | | | | | | | IPv6 | |
| +---+ +-----------+ +---------+ +---------------+ |
| +-------------------------------------------------------+ |
| | Network card drivers | |
| +-------------------------------------------------------+ |
+-------------------------------------------------------------+
+-------------------------------------------------------------+
| Network cards |
+-------------------------------------------------------------+
Figure 2: Architecture of the dual-stack host using BIH at network
layer
Dual stack hosts defined in RFC2893 [RFC2893] need applications,
TCP/IP modules and addresses for both IPv4 and IPv6. The proposed
hosts in this document have an API or network layer translator to
communicate with other IPv6 hosts using existing IPv4 applications.
The BIH translator consists of an entension name resolver, an address
mapper, and depending on implementation either a function mapper or
an protocol translator.
2.1. Function Mapper
Function mapper translates an IPv4 socket API function into an IPv6
socket API function, and vice versa.
When detecting the IPv4 socket API functions from IPv4 applications,
it intercepts the function call and invokes new IPv6 socket API
functions which correspond to the IPv4 socket API functions. Those
IPv6 API functions are used to communicate with the target IPv6
hosts. When detecting the IPv6 socket API functions from the data
received from the IPv6 hosts, it works symmetrically in relation to
the previous case.
Huang, et al. Expires January 29, 2011 [Page 7]
Internet-Draft BIH July 2010
2.2. Translator
Translator translates IPv4 into IPv6 and vice versa using the IP
conversion mechanism defined in SIIT [RFC2765].
When receiving IPv4 packets from IPv4 applications, translator
converts IPv4 packet headers into IPv6 packet headers, then, if
required, fragments the IPv6 packets (because header length of IPv6
is typically 20 bytes larger than that of IPv4), and sends them to
IPv6 networks. When receiving IPv6 packets from the IPv6 networks,
translator works symmetrically to the previous case, except that
there is no need to fragment the packets.
2.3. Extension Name Resolver
Extension Name Resolver returns a proper answer in response to the
IPv4 or IPv6 application's request.
In the case of socket API implementation option, when an IPv4
application in an IPv6 only network tries to do forward lookup to
resolve names via the resolver library (e.g. gethostbyname()), BIH
intercept the function call and instead calls the IPv6 equivalent
functions (e.g. getnameinfo()) that will resolve both A and AAAA
records.
If only AAAA record is available for the name queried, ENR requests
the address mapper to assign an IPv4 address corresponding to the
IPv6 address, creates an A record for the assigned IPv4 address, and
returns the A record to the IPv4 application.
If both A and AAAA record are available in the IPv6 only network, ENR
does not require address mapper to assign IPv4 address, but instead
asks address mapper to store relationship between the A and AAAA
records, and then directly passes the received A record to the IPv4
application.
Application | Network | ENR behaviour
query | response |
------------+----------+---------------------
A | A | <return A record>
A | AAAA | <synthesize A record>
A | A/AAAA | <return A record>
Figure 3: ENR behaviour illustration
NOTE: An implementation option is to have ENR support in host's
(stub) DNS resolver itself as described in [DNS64], in which case
record synthesis is not needed and advanced functions such as DNSSEC
Huang, et al. Expires January 29, 2011 [Page 8]
Internet-Draft BIH July 2010
are possible. If the ENR is implemented in network layer, same
limitations arise as when DNS record synthesis is done on network. A
host also has option to implement recursive DNS server by itself.
2.3.1. Reverse DNS lookup
When an application initiates a reverse DNS query for a PTR record,
to find a name for an IP address, the ENR MUST check whether the
queried IP address can be found in the cache of the Address Mapper
and is a local IP address. If an entry is found and queried address
is locally generated, the ENR must initiate corresponding reverse DNS
query for the real IP address.
For example, when application initiates reverse DNS query for a
synthesized locally valid IPv4 address, the ENR needs to intercept
that query query. The ENR shall do reverse query for the
destination's IPv6 address and return the name received as response
to IPv6 reverse query to application that initiated the IPv4 query.
2.4. Address Mapper
Address mapper ("the mapper" later on ), maintains an IPv4 address
pool in the case of dual stack network and IPv6 only network. The
pool consists of private IPv4 addresses as per [RFC1918]. Also,
mapper maintains a table consisting of pairs of these locally
selected IPv4 addresses and a destinations's IPv6 addresses.
When the extension name resolver, translator, or the function mapper
requests mapper to assign an IPv4 address corresponding to an IPv6
address, mapper selects and returns an IPv4 address out of the pool,
and registers a new entry into the table dynamically. The
registration occurs in the following 3 cases:
(1) When the extension name resolver gets only an 'AAAA' record for
the target host name in the dual stack or IPv6 only network and there
is not a mapping entry for the IPv6 address.
(2) When the extension name resolver gets both an 'A' record and an
'AAAA' record for the target host name in the IPv6 only network and
there is not a mapping entry for the IPv6 address. But it doesn't
need an IPv4 address out of the pool, just registers both IPv4 and
IPv6 address from 'A' and 'AAAA' records into a new entry into the
table.
(3) When the function mapper gets a socket API function call from the
data received and there is not a mapping entry for the IPv6 source
address.
Huang, et al. Expires January 29, 2011 [Page 9]
Internet-Draft BIH July 2010
When the resolver, translator, or the function mapper requests mapper
to assign an IPv4 address corresponding to an IPv6 address, mapper,
if required, selects and returns an IPv4 address out of the pool, and
registers a new entry into the table dynamically. The following
table describes how mappings are created into the table in each
possible scenario:
Mapping table | Access | Peer | Created
entry for |link type | support| address mapping
-------------------+-------------+-------------------------------
(1) real IPv4 |IPv4 or DS | v4 | < no mapping needed >
(2) real IPv6 |IPv6 or DS | v6 | < no mapping needed >
(3) real IPv4 |IPv6 | v4 & v6| real IPv4 -> real IPv6
(4) real IPv6 |IPv4 | v4 & v6| real IPv6 -> real IPv4
(5) local IPv4 |IPv6 or DS | v6 | local IPv4 -> real IPv6
(6) local IPv6 |IPv4 or DS | v4 | local IPv6 -> real IPv4
(7) real IPv4 |IPv6 | v4 | out of scope
(8) real IPv6 |IPv4 | v6 | out of scope
Figure 4: Address Mapper's mapping table illustration
Below are examples for all eight scenarios:
(1) When the resolver gets an 'A' reply for application's 'A' query
on access network supporting IPv4, there is no need to create mapping
(or just stub mapping real IPv4 -> real IPv4).
(2) When the resolver gets an 'AAAA' reply for application's 'AAAA'
query on access network supporting IPv6, there is no need to create
mapping (or just stub mapping real IPv6 -> real IPv6).
(3) When the resolver gets both 'A' and 'AAAA' replies for
application's 'A' query on IPv6-only access, there shall be mapping
for real IPv4 to real IPv6.
(4) When the resolver gets both 'A' and 'AAAA' replies for
application's 'AAAA' query on IPv4-only access, there shall be
mapping for real IPv6 to real IPv4.
(5) When the resolver gets only an 'AAAA' record for the target host
name for application's 'A' request on IPv6 only or DS access network,
a local IPv4 address will be given to application and mapping for
local IPv4 address to real IPv6 address is created.
(6) When the resolver gets only an 'A' record for the target host
name for application's 'AAAA' request on IPv4 only or DS access
network, a local IPv6 address will be given to application and
mapping for local IPv6 address to real IPv4 address is created.
Huang, et al. Expires January 29, 2011 [Page 10]
Internet-Draft BIH July 2010
(7) When the resolver gets only an 'A' record for the target host
name for application's 'A' request on IPv6 only access network, a
double translation would be required and thus is out of the scope of
this document.
(8) When the resolver gets only an 'AAAA' record for the target host
name for application's 'AAAA' request on IPv4 only access network, a
double translation would be required and thus is out of the scope of
this document.
NOTE: There is only one exception. When initializing the table,
mapper registers a pair of its own IPv4 address and IPv6 address into
the table statically.
Huang, et al. Expires January 29, 2011 [Page 11]
Internet-Draft BIH July 2010
3. Behavior and network Examples
Figure 5 illustrates the very basic network scenario. An IPv4-only
application is running on a host attached to IPv6-only Internet and
is talking to IPv6 enabled server. A communication is made possible
by bump in the host.
+----+ +-------------+
| H1 |----------- IPv6 Internet -------- | IPv6 server |
+----+ +-------------+
v4 only
application
Figure 5: Network Scenario #1
Figure 6 illustrates a possible network scenario where an IPv4-only
application is running on a host attached to a dual-stack network,
but the destination server is running on a private site that is
numbered with public IPv6 addresses and private IPv4 addresses
without port forwarding setup on NAT44. The only means to contact to
server is to use IPv6.
+----------------------+ +------------------------------+
| Dual Stack Internet | | IPv4 Private site (Net 10) |
| | | |
| | | +----------+ |
| | | | | |
| +----+ +---------+ | | |
| | H1 |-------- | NAT44 |-------------| Server | |
| +----+ +---------+ | | |
| v4 only | | +----------+ |
| application | | Dual Stack |
| | | etc. 10.1.1.1 |
| | | AAAA:2009::1 |
| | | |
+----------------------+ +------------------------------+
Figure 6: Network Scenario #2
Illustrations of host behavior in both implementation options are
given here. Figure 7 illustrates the setup where BIH is implemented
as a bump in the API, and figure 8 illustrates the setup where BIH is
implemented as a bump in the stack.
"dual stack" "host6"
IPv4 Socket | [ API Translator ] | TCP(UDP)/IP Name
appli- API | ENR Address Function| (v6/v4) Server
cation | Mapper Mapper |
Huang, et al. Expires January 29, 2011 [Page 12]
Internet-Draft BIH July 2010
| | | | | | | |
<<Resolve an IPv4 address for "host6".>> | | |
| | | | | | | |
|--------|------->| Query of 'A' records for host6. | |
| | | | | | | |
| | |--------|--------|---------|--------------|------>|
| | | Query of 'A' records and 'AAAA' for host6 |
| | | | | | | |
| | |<-------|--------|---------|--------------|-------|
| | | Reply with the 'AAAA' record. | |
| | | | | | |
| | |<<The 'AAAA' record is resolved.>> |
| | | | | | |
| | |+++++++>| Request one IPv4 address |
| | | | corresponding to the IPv6 address.
| | | | | | |
| | | |<<Assign one IPv4 address.>> |
| | | | | | |
| | |<+++++++| Reply with the IPv4 address. |
| | | | | | |
| | |<<Create 'A' record for the IPv4 address.>>
| | | | | | |
|<-------|--------| Reply with the 'A' record.| |
| | | | | | |
| | | | | | |
<<Call IPv4 Socket API function >> | | |
| | | | | | |
|========|========|========|=======>|An IPv4 Socket API function Call
| | | | | | |
| | | |<+++++++| Request IPv6 addresses|
| | | | | corresponding to the |
| | | | | IPv4 addresses. |
| | | | | | |
| | | |+++++++>| Reply with the IPv6 addresses.
| | | | | | |
| | | | |<<Translate IPv4 into IPv6.>>
| | | | | | |
| An IPv6 Socket API function call.|=========|=============>|
| | | | | | |
| | | | |<<Reply an IPv6 data |
| | | | | to dual stack.>> |
| | | | | | |
| An IPv6 Socket API function call.|<========|==============|
| | | | | | |
| | | | |<<Translate IPv6 into IPv4.>>
| | | | | | |
| | | |<+++++++| Request IPv4 addresses|
| | | | | corresponding to the |
Huang, et al. Expires January 29, 2011 [Page 13]
Internet-Draft BIH July 2010
| | | | | IPv6 addresses. |
| | | | | | |
| | | |+++++++>| Reply with the IPv4 addresses.
| | | | | | |
|<=======|========|========|========| An IPv4 Socket function call.
| | | | | | |
Figure 7: Example of BIH as API addition
"dual stack" "host6"
IPv4 TCP/ ENR address translator IPv6
appli- IPv4 mapper
cation
| | | | | | |
<<Resolve an IPv4 address for "host6".>> | |
| | | | | | |
|------|------>| Query of 'A' records for "host6". | Name
| | | | | | | Server
| | |---------|-------|-----------|---------|--->|
| | | Query of 'A' records and 'AAAA' for "host6"
| | | | | | | |
| | |<--------|-------|-----------|---------|----|
| | | Reply only with 'AAAA' record. |
| | | | | | |
| | |<<Only 'AAAA' record is resolved.>> |
| | | | | | |
| | |-------->| Request one IPv4 address |
| | | | corresponding to the IPv6 address.
| | | | | | |
| | | |<<Assign one IPv4 address.>> |
| | | | | | |
| | |<--------| Reply with the IPv4 address.
| | | | | | |
| | |<<Create 'A' record for the IPv4 address.>>
| | | | | | |
|<-----|-------| Reply with the 'A' record. | |
| | | | | | |
| | | | | | |
<<Send an IPv4 packet to "host6".>>| | |
| | | | | | |
|======|=======|=========|======>| An IPv4 packet. |
| | | | | | |
| | | |<------| Request IPv6 addresses
| | | | | corresponding to the IPv4
| | | | | addresses. |
| | | | | | |
| | | |------>| Reply with the IPv6|
Huang, et al. Expires January 29, 2011 [Page 14]
Internet-Draft BIH July 2010
| | | | | addresses. |
| | | | | | |
| | | | |<<Translate IPv4 into IPv6.>>
| | | | | | |
| | |An IPv6 packet. |===========|========>|
| | | | | | |
| | | | <<Reply an IPv6 packet to
| | | | "dual stack".>> |
| | | | | | |
| | |An IPv6 packet. |<==========|=========|
| | | | | | |
| | | | |<<Translate IPv6 into IPv4.>>
| | | | | | |
|<=====|=======|=========|=======| An IPv4 packet. |
| | | | | | |
Figure 8: Example of BIH at network layer
Huang, et al. Expires January 29, 2011 [Page 15]
Internet-Draft BIH July 2010
4. Considerations
Other considerations in [RFC3338] are still the same, here only
clarify the section of IPv4 Address Pool and Mapping Table and
Internally Assigned IPv4 or IPv6 Addresses to support private IPv4
address.
4.1. Socket API Conversion
IPv4 socket API functions are translated into semantically the same
IPv6 socket API functions and vice versa. IP addresses embedded in
application layer protocols (e.g., FTP) can be translated in API
functions. Its implementation depends on operating systems.
NOTE: Basically, IPv4 socket API functions are not fully compatible
with IPv6 since the IPv6 has new advanced features.
4.2. ICMP Message Handling
When an application needs ICMP messages values (e.g., Type, Code,
etc.) sent from a network layer, ICMPv4 message values MAY be
translated into ICMPv6 message values based on [SIIT], and vice
versa. It can be implemented using raw socket.
4.3. IPv4 Address Pool and Mapping Table
The address pool consists of the private IPv4 addresses as per
[RFC1918]. This pool can be implemented at different granularity in
the node e.g., a single pool per node, or at some finer granularity
such as per user or per process. However, if a number of IPv4
applications communicate with IPv6 hosts or IPv6 applications
communicate with IPv4 hosts, the available address spaces will be
exhausted. As a result, it will be impossible for IPv4 applications
to communicate with IPv6 nodes. It requires smart management
techniques for address pool. For example, it is desirable for the
mapper to free the oldest entry and reuse the IPv4 address or IPv6
address for creating a new entry. This issues is the same as [BIS].
In case of a per-node address mapping table, it MAY cause a larger
risk of running out of address.
The RFC1918 address space was chosen because generally legacy
applications understand that as a private address space. A new
dedicated address space would run a risk of not being understood by
applications as private. The RFC1918 addresses have a risk of
conflicting with other interfaces. The conflicts can be mitigated by
using least commonly used network number of the RFC1918 address space
(TO BE SELECTED) and, if possible, cease using BIH on IPv6-interface
after an IPv4-enabled interface is activated.
Huang, et al. Expires January 29, 2011 [Page 16]
Internet-Draft BIH July 2010
4.4. Internally Assigned IPv4 Addresses
The IPv4 addresses, which are internally assigned to IPv6 target
hosts out of the pool, are the private IPv4 addresses. IPv4
addresses, which are internally assigned to IPv6 target hosts out of
the spool, never flow out from the host, and so do not negatively
affect other hosts.
The internally assigned IPv4 address, which applications see as the
source address, MUST be from different subnet than the IPv4 addresses
used by the address synthesis function. This approach ensures legacy
applications realize they are not on the same link with their
destination node and if needed, will trigger NAT traversal procedures
such as keepalive message sending.
Huang, et al. Expires January 29, 2011 [Page 17]
Internet-Draft BIH July 2010
5. Considerations due ALG requirements
Support for IP-embedding applications, such as FTP and RTSP, requires
implementation of Application Layer Gateway functions. No ALG
functionality is specified herein as ALG design is generally not
encouraged for host based translation and as BIH is intented for
applications not including IP addresses in protocol payload.
Huang, et al. Expires January 29, 2011 [Page 18]
Internet-Draft BIH July 2010
6. Security Considerations
The security consideration of BIH mostly relies on that of [RFC2766].
In the socket layer implementation approach the differences are due
to the address translation occurring at the API and not in the
network layer. That is, since the mechanism uses the API translator
at the socket API level, hosts can utilize the security of the
network layer (e.g., IPsec) when they communicate with IPv6 hosts
using IPv4 applications via the mechanism. As well, there is no need
for DNS ALG as in NAT-PT, so there is no interference with DNSSEC
either.
In the network layer implementation approach hosts can not utilize
the security above network layer when they communicate with IPv6
hosts using IPv4 applications via BIH and encrypt embedded IP
addresses, or when the protocol data is encrypted using IP addresses
as keys. In these cases it is impossible for the mechanism to
translate the IPv4 data into IPv6 and vice versa. Therefore it is
highly desirable to upgrade to the applications modified into IPv6
for utilizing the security at communication with IPv6 hosts.
The use of address pooling may open a denial of service attack
vulnerability. So BIH should employ the same sort of protection tec
hniques as [NAT-PT] does.
Huang, et al. Expires January 29, 2011 [Page 19]
Internet-Draft BIH July 2010
7. Acknowledgments
The author thanks the discussion from Gang Chen, Dapeng Liu, Bo Zhou,
Hong Liu, Tao Sun, Zhen Cao, Feng Cao et al. in the development of
this document.
The efforts of Suresh Krishnan, Mohamed Boucadair, Yiu L. Lee, James
Woodyatt, Lorenzo Colitti, Qibo Niu, Pierrick Seite, Dean Cheng,
Christian Vogt, Jan M. Melen, in reviewing this document are
gratefully acknowledged.
Advice from Dan Wing, Dave Thaler and Magnus Westerlund are greatly
appreciated
The authors of RFC2767 acknowledged WIDE Project, Kazuhiko YAMAMOTO,
Jun MURAI, Munechika SUMIKAWA, Ken WATANABE, and Takahisa MIYAMOTO.
The authors of RFC3338 acknowledged implementation contributions by
Wanjik Lee (wjlee@arang.miryang.ac.kr) and i2soft Corporation
(www.i2soft.net).
Huang, et al. Expires January 29, 2011 [Page 20]
Internet-Draft BIH July 2010
8. References
8.1. Normative References
[RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
E. Lear, "Address Allocation for Private Internets",
BCP 5, RFC 1918, February 1996.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, December 1998.
[RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm
(SIIT)", RFC 2765, February 2000.
[RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
Translation - Protocol Translation (NAT-PT)", RFC 2766,
February 2000.
[RFC2767] Tsuchiya, K., HIGUCHI, H., and Y. Atarashi, "Dual Stack
Hosts using the "Bump-In-the-Stack" Technique (BIS)",
RFC 2767, February 2000.
[RFC2893] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
IPv6 Hosts and Routers", RFC 2893, August 2000.
[RFC3338] Lee, S., Shin, M-K., Kim, Y-J., Nordmark, E., and A.
Durand, "Dual Stack Hosts Using "Bump-in-the-API" (BIA)",
RFC 3338, October 2002.
8.2. Informative References
[RFC2553] Gilligan, R., Thomson, S., Bound, J., and W. Stevens,
"Basic Socket Interface Extensions for IPv6", RFC 2553,
March 1999.
Huang, et al. Expires January 29, 2011 [Page 21]
Internet-Draft BIH July 2010
Appendix A. Implementation option for the ENR
It is not necessary to implement the ENR at the kernel level, but it
can be implemented instead at the user space by setting the default
DNS server to point to 127.0.0.1. DNS queries would then always be
sent to the ENR, which furthermore ensures both A and AAAA queries
are sent to the actual DNS server and A queries are always answered
and required mappings created.
Huang, et al. Expires January 29, 2011 [Page 22]
Internet-Draft BIH July 2010
Appendix B. API list intercepted by BIH
The following functions are the API list which SHOULD be intercepted
by BIH module when implemented at socket layer.
The functions that the application uses to pass addresses into the
system are:
bind()
connect()
sendmsg()
sendto()
The functions that return an address from the system to an
application are:
accept()
recvfrom()
recvmsg()
getpeername()
getsockname()
The functions that are related to socket options are:
getsocketopt()
setsocketopt()
The functions that are used for conversion of IP addresses embedded
in application layer protocol (e.g., FTP, DNS, etc.) are:
recv()
send()
read()
write()
As well, raw sockets for IPv4 and IPv6 MAY be intercepted.
Huang, et al. Expires January 29, 2011 [Page 23]
Internet-Draft BIH July 2010
Most of the socket functions require a pointer to the socket address
structure as an argument. Each IPv4 argument is mapped into
corresponding an IPv6 argument, and vice versa.
According to [RFC2553], the following new IPv6 basic APIs and
structures are required.
IPv4 new IPv6
------------------------------------------------
AF_INET AF_INET6
sockaddr_in sockaddr_in6
gethostbyname() getaddrinfo()
gethostbyaddr() getnameinfo()
inet_ntoa()/inet_addr() inet_pton()/inet_ntop()
INADDR_ANY in6addr_any
Figure 9
BIH MAY intercept inet_ntoa() and inet_addr() and use the address
mapper for those. Doing that enables BIH to support literal IP
addresses.
The gethostbyname() call return a list of addresses. When the name
resolver function invokes getaddrinfo() and getaddrinfo() returns
multiple IP addresses, whether IPv4 or IPv6, they SHOULD all be
represented in the addresses returned by gethostbyname(). Thus if
getaddrinfo() returns multiple IPv6 addresses, this implies that
multiple address mappings will be created; one for each IPv6 address.
Huang, et al. Expires January 29, 2011 [Page 24]
Internet-Draft BIH July 2010
Authors' Addresses
Bill Huang
China Mobile
53A,Xibianmennei Ave.,
Xuanwu District,
Beijing 100053
China
Email: bill.huang@chinamobile.com
Hui Deng
China Mobile
53A,Xibianmennei Ave.,
Xuanwu District,
Beijing 100053
China
Email: denghui02@gmail.com
Teemu Savolainen
Nokia
Hermiankatu 12 D
FI-33720 TAMPERE
Finland
Email: teemu.savolainen@nokia.com
Huang, et al. Expires January 29, 2011 [Page 25]