Network Working Group D. Thaler, Ed.
Internet-Draft Microsoft
Obsoletes: 3484 (if approved) R. Draves
Intended status: Standards Track Microsoft Research
Expires: August 26, 2012 T. Chown
University of Southampton
February 23, 2012
Default Address Selection for Internet Protocol version 6 (IPv6)
draft-ietf-6man-rfc3484bis-00.txt
Abstract
This document describes two algorithms, for source address selection
and for destination address selection. The algorithms specify
default behavior for all Internet Protocol version 6 (IPv6)
implementations. They do not override choices made by applications
or upper-layer protocols, nor do they preclude the development of
more advanced mechanisms for address selection. The two algorithms
share a common context, including an optional mechanism for allowing
administrators to provide policy that can override the default
behavior. In dual stack implementations, the destination address
selection algorithm can consider both IPv4 and IPv6 addresses -
depending on the available source addresses, the algorithm might
prefer IPv6 addresses over IPv4 addresses, or vice-versa.
All IPv6 nodes, including both hosts and routers, must implement
default address selection as defined in this specification.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 26, 2012.
Copyright Notice
Thaler, et al. Expires August 26, 2012 [Page 1]
Internet-Draft Default Address Selection for IPv6 February 2012
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Thaler, et al. Expires August 26, 2012 [Page 2]
Internet-Draft Default Address Selection for IPv6 February 2012
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Conventions Used in This Document . . . . . . . . . . . . 5
2. Context in Which the Algorithms Operate . . . . . . . . . . . 5
2.1. Policy Table . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Common Prefix Length . . . . . . . . . . . . . . . . . . . 8
3. Address Properties . . . . . . . . . . . . . . . . . . . . . . 8
3.1. Scope Comparisons . . . . . . . . . . . . . . . . . . . . 8
3.2. IPv4 Addresses and IPv4-Mapped Addresses . . . . . . . . . 9
3.3. Other IPv6 Addresses with Embedded IPv4 Addresses . . . . 9
3.4. IPv6 Loopback Address and Other Format Prefixes . . . . . 9
3.5. Mobility Addresses . . . . . . . . . . . . . . . . . . . . 9
4. Candidate Source Addresses . . . . . . . . . . . . . . . . . . 10
5. Source Address Selection . . . . . . . . . . . . . . . . . . . 11
6. Destination Address Selection . . . . . . . . . . . . . . . . 13
7. Interactions with Routing . . . . . . . . . . . . . . . . . . 16
8. Implementation Considerations . . . . . . . . . . . . . . . . 16
9. Security Considerations . . . . . . . . . . . . . . . . . . . 17
10. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.1. Default Source Address Selection . . . . . . . . . . . . . 18
10.2. Default Destination Address Selection . . . . . . . . . . 18
10.3. Configuring Preference for IPv6 or IPv4 . . . . . . . . . 20
10.3.1. Handling Broken IPv6 . . . . . . . . . . . . . . . . 20
10.4. Configuring Preference for Link-Local Addresses . . . . . 21
10.5. Configuring a Multi-Homed Site . . . . . . . . . . . . . . 21
10.6. Configuring ULA Preference . . . . . . . . . . . . . . . . 23
10.7. Configuring 6to4 Preference . . . . . . . . . . . . . . . 24
11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11.1. Normative References . . . . . . . . . . . . . . . . . . . 25
11.2. Informative References . . . . . . . . . . . . . . . . . . 26
Appendix A. Acknowledgements . . . . . . . . . . . . . . . . . . 27
Appendix B. Changes Since RFC 3484 . . . . . . . . . . . . . . . 28
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 29
Thaler, et al. Expires August 26, 2012 [Page 3]
Internet-Draft Default Address Selection for IPv6 February 2012
1. Introduction
The IPv6 addressing architecture [RFC4291] allows multiple unicast
addresses to be assigned to interfaces. These addresses may have
different reachability scopes (link-local, site-local, or global).
These addresses may also be "preferred" or "deprecated" [RFC4862].
Privacy considerations have introduced the concepts of "public
addresses" and "temporary addresses" [RFC4941]. The mobility
architecture introduces "home addresses" and "care-of addresses"
[RFC6275]. In addition, multi-homing situations will result in more
addresses per node. For example, a node may have multiple
interfaces, some of them tunnels or virtual interfaces, or a site may
have multiple ISP attachments with a global prefix per ISP.
The end result is that IPv6 implementations will very often be faced
with multiple possible source and destination addresses when
initiating communication. It is desirable to have default
algorithms, common across all implementations, for selecting source
and destination addresses so that developers and administrators can
reason about and predict the behavior of their systems.
Furthermore, dual or hybrid stack implementations, which support both
IPv6 and IPv4, will very often need to choose between IPv6 and IPv4
when initiating communication. For example, when DNS name resolution
yields both IPv6 and IPv4 addresses and the network protocol stack
has available both IPv6 and IPv4 source addresses. In such cases, a
simple policy to always prefer IPv6 or always prefer IPv4 can produce
poor behavior. As one example, suppose a DNS name resolves to a
global IPv6 address and a global IPv4 address. If the node has
assigned a global IPv6 address and a 169.254/16 auto-configured IPv4
address [RFC3927], then IPv6 is the best choice for communication.
But if the node has assigned only a link-local IPv6 address and a
global IPv4 address, then IPv4 is the best choice for communication.
The destination address selection algorithm solves this with a
unified procedure for choosing among both IPv6 and IPv4 addresses.
The algorithms in this document are specified as a set of rules that
define a partial ordering on the set of addresses that are available
for use. In the case of source address selection, a node typically
has multiple addresses assigned to its interfaces, and the source
address ordering rules in section 5 define which address is the
"best" one to use. In the case of destination address selection, the
DNS may return a set of addresses for a given name, and an
application needs to decide which one to use first, and in what order
to try others should the first one not be reachable. The destination
address ordering rules in section 6, when applied to the set of
addresses returned by the DNS, provide such a recommended ordering.
Thaler, et al. Expires August 26, 2012 [Page 4]
Internet-Draft Default Address Selection for IPv6 February 2012
This document specifies source address selection and destination
address selection separately, but using a common context so that
together the two algorithms yield useful results. The algorithms
attempt to choose source and destination addresses of appropriate
scope and configuration status (preferred or deprecated in the RFC
4862 sense). Furthermore, this document suggests a preferred method,
longest matching prefix, for choosing among otherwise equivalent
addresses in the absence of better information.
This document also specifies policy hooks to allow administrative
override of the default behavior. For example, using these hooks an
administrator can specify a preferred source prefix for use with a
destination prefix, or prefer destination addresses with one prefix
over addresses with another prefix. These hooks give an
administrator flexibility in dealing with some multi-homing and
transition scenarios, but they are certainly not a panacea.
The selection rules specified in this document MUST NOT be construed
to override an application or upper-layer's explicit choice of a
legal destination or source address.
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119
[RFC2119].
2. Context in Which the Algorithms Operate
Our context for address selection derives from the most common
implementation architecture, which separates the choice of
destination address from the choice of source address. Consequently,
we have two separate algorithms for these tasks. The algorithms are
designed to work well together and they share a mechanism for
administrative policy override.
In this implementation architecture, applications use APIs [RFC3493]
like getaddrinfo() that return a list of addresses to the
application. This list might contain both IPv6 and IPv4 addresses
(sometimes represented as IPv4-mapped addresses). The application
then passes a destination address to the network stack with connect()
or sendto(). The application would then typically try the first
address in the list, looping over the list of addresses until it
finds a working address. In any case, the network layer is never in
a situation where it needs to choose a destination address from
several alternatives. The application might also specify a source
Thaler, et al. Expires August 26, 2012 [Page 5]
Internet-Draft Default Address Selection for IPv6 February 2012
address with bind(), but often the source address is left
unspecified. Therefore the network layer does often choose a source
address from several alternatives.
As a consequence, we intend that implementations of getaddrinfo()
will use the destination address selection algorithm specified here
to sort the list of IPv6 and IPv4 addresses that they return.
Separately, the IPv6 network layer will use the source address
selection algorithm when an application or upper-layer has not
specified a source address. Application of this specification to
source address selection in an IPv4 network layer may be possible but
this is not explored further here.
Well-behaved applications SHOULD iterate through the list of
addresses returned from getaddrinfo() until they find a working
address.
The algorithms use several criteria in making their decisions. The
combined effect is to prefer destination/source address pairs for
which the two addresses are of equal scope or type, prefer smaller
scopes over larger scopes for the destination address, prefer non-
deprecated source addresses, avoid the use of transitional addresses
when native addresses are available, and all else being equal prefer
address pairs having the longest possible common prefix. For source
address selection, public addresses [RFC4941] are preferred over
temporary addresses. In mobile situations [RFC6275], home addresses
are preferred over care-of addresses. If an address is
simultaneously a home address and a care-of address (indicating the
mobile node is "at home" for that address), then the home/care-of
address is preferred over addresses that are solely a home address or
solely a care-of address.
This specification optionally allows for the possibility of
administrative configuration of policy (e.g., via manual
configuration or a DHCP option such as that proposed in
[I-D.ietf-6man-addr-select-opt]) that can override the default
behavior of the algorithms. The policy override takes the form of a
configurable table that specifies precedence values and preferred
source prefixes for destination prefixes. If an implementation is
not configurable, or if an implementation has not been configured,
then the default policy table specified in this document SHOULD be
used.
2.1. Policy Table
The policy table is a longest-matching-prefix lookup table, much like
a routing table. Given an address A, a lookup in the policy table
produces two values: a precedence value Precedence(A) and a
Thaler, et al. Expires August 26, 2012 [Page 6]
Internet-Draft Default Address Selection for IPv6 February 2012
classification or label Label(A).
The precedence value Precedence(A) is used for sorting destination
addresses. If Precedence(A) > Precedence(B), we say that address A
has higher precedence than address B, meaning that our algorithm will
prefer to sort destination address A before destination address B.
The label value Label(A) allows for policies that prefer a particular
source address prefix for use with a destination address prefix. The
algorithms prefer to use a source address S with a destination
address D if Label(S) = Label(D).
IPv6 implementations SHOULD support configurable address selection
via a mechanism at least as powerful as the policy tables defined
here. It is important that implementations provide a way to change
the default policies as more experience is gained. Sections 10.3 and
10.4 provide examples of the kind of changes that might be needed.
If an implementation is not configurable or has not been configured,
then it SHOULD operate according to the algorithms specified here in
conjunction with the following default policy table:
Prefix Precedence Label
::1/128 50 0
::/0 40 1
::ffff:0:0/96 35 4
2002::/16 30 2
2001::/32 5 5
fc00::/7 3 13
::/96 1 3
fec0::/10 1 11
3ffe::/16 1 12
An implementation MAY automatically add additional site-specific rows
to the default table based on its configured addresses, such as for
ULAs and 6to4 addresses for instance (see Section 10.6 and
Section 10.7 for examples).
One effect of the default policy table is to prefer using native
source addresses with native destination addresses, 6to4 [RFC3056]
source addresses with 6to4 destination addresses, etc. Another
effect of the default policy table is to prefer communication using
IPv6 addresses to communication using IPv4 addresses, if matching
source addresses are available.
Policy table entries for scoped address prefixes MAY be qualified
with an optional zone index. If so, a prefix table entry only
matches against an address during a lookup if the zone index also
Thaler, et al. Expires August 26, 2012 [Page 7]
Internet-Draft Default Address Selection for IPv6 February 2012
matches the address's zone index.
2.2. Common Prefix Length
We define the common prefix length CommonPrefixLen(S, D) of a source
address S and a destination address D as the length of the longest
prefix (looking at the most significant, or leftmost, bits) that the
two addresses have in common, up to the length of S's prefix (i.e.,
the portion of the address not including the interface ID). For
example, CommonPrefixLen(fe80::1, fe80::2) is 64.
3. Address Properties
In the rules given in later sections, addresses of different types
(e.g., IPv4, IPv6, multicast and unicast) are compared against each
other. Some of these address types have properties that aren't
directly comparable to each other. For example, IPv6 unicast
addresses can be "preferred" or "deprecated" [RFC4862], while IPv4
addresses have no such notion. To compare such addresses using the
ordering rules (e.g., to use "preferred" addresses in preference to
"deprecated" addresses), the following mappings are defined.
3.1. Scope Comparisons
Multicast destination addresses have a 4-bit scope field that
controls the propagation of the multicast packet. The IPv6
addressing architecture defines scope field values for interface-
local (0x1), link-local (0x2), subnet-local (0x3), admin-local (0x4),
site-local (0x5), organization-local (0x8), and global (0xE) scopes
[RFC4007].
Use of the source address selection algorithm in the presence of
multicast destination addresses requires the comparison of a unicast
address scope with a multicast address scope. We map unicast link-
local to multicast link-local, unicast site-local to multicast site-
local, and unicast global scope to multicast global scope. For
example, unicast site-local is equal to multicast site-local, which
is smaller than multicast organization-local, which is smaller than
unicast global, which is equal to multicast global.
We write Scope(A) to mean the scope of address A. For example, if A
is a link-local unicast address and B is a site-local multicast
address, then Scope(A) < Scope(B).
This mapping implicitly conflates unicast site boundaries and
multicast site boundaries [RFC4007].
Thaler, et al. Expires August 26, 2012 [Page 8]
Internet-Draft Default Address Selection for IPv6 February 2012
3.2. IPv4 Addresses and IPv4-Mapped Addresses
The destination address selection algorithm operates on both IPv6 and
IPv4 addresses. For this purpose, IPv4 addresses should be
represented as IPv4-mapped addresses [RFC4291]. For example, to
lookup the precedence or other attributes of an IPv4 address in the
policy table, lookup the corresponding IPv4-mapped IPv6 address.
IPv4 addresses are assigned scopes as follows. IPv4 auto-
configuration addresses [RFC3927], which have the prefix 169.254/16,
are assigned link-local scope. IPv4 private addresses [RFC1918],
which have the prefixes 10/8, 172.16/12, and 192.168/16, are assigned
global scope. IPv4 loopback addresses ([RFC1918], section 4.2.2.11),
which have the prefix 127/8, are assigned link-local scope
(analogously to the treatment of the IPv6 loopback address
([RFC4007], section 4)). Other IPv4 addresses are assigned global
scope.
IPv4 addresses should be treated as having "preferred" (in the RFC
4862 sense) configuration status.
3.3. Other IPv6 Addresses with Embedded IPv4 Addresses
IPv4-compatible addresses [RFC4291], IPv4-mapped [RFC4291], IPv4-
converted [RFC6145], IPv4-translatable [RFC6145], and 6to4 addresses
[RFC3056] contain an embedded IPv4 address. For the purposes of this
document, these addresses should be treated as having global scope.
IPv4-compatible, IPv4-mapped, and IPv4-converted addresses should be
treated as having "preferred" (in the RFC 4862 sense) configuration
status.
3.4. IPv6 Loopback Address and Other Format Prefixes
The loopback address should be treated as having link-local scope
([RFC4007], section 4) and "preferred" (in the RFC 4862 sense)
configuration status.
NSAP addresses and other addresses with as-yet-undefined format
prefixes should be treated as having global scope and "preferred" (in
the RFC 4862) configuration status. Later standards may supersede
this treatment.
3.5. Mobility Addresses
Some nodes may support mobility using the concepts of home address
and care-of address (for example see [RFC6275]). Conceptually, a
home address is an IP address assigned to a mobile node and used as
Thaler, et al. Expires August 26, 2012 [Page 9]
Internet-Draft Default Address Selection for IPv6 February 2012
the permanent address of the mobile node. A care-of address is an IP
address associated with a mobile node while visiting a foreign link.
When a mobile node is on its home link, it may have an address that
is simultaneously a home address and a care-of address.
For the purposes of this document, it is sufficient to know whether
or not one's own addresses are designated as home addresses or
care-of addresses. Whether or not an address should be designated a
home address or care-of address is outside the scope of this
document.
4. Candidate Source Addresses
The source address selection algorithm uses the concept of a
"candidate set" of potential source addresses for a given destination
address. The candidate set is the set of all addresses that could be
used as a source address; the source address selection algorithm will
pick an address out of that set. We write CandidateSource(A) to
denote the candidate set for the address A.
It is RECOMMENDED that the candidate source addresses be the set of
unicast addresses assigned to the interface that will be used to send
to the destination. (The "outgoing" interface.) On routers, the
candidate set MAY include unicast addresses assigned to any interface
that forwards packets, subject to the restrictions described below.
Discussion: The Neighbor Discovery Redirect mechanism [RFC4861]
requires that routers verify that the source address of a packet
identifies a neighbor before generating a Redirect, so it is
advantageous for hosts to choose source addresses assigned to the
outgoing interface. Implementations that wish to support the use
of global source addresses assigned to a loopback interface should
behave as if the loopback interface originates and forwards the
packet.
In some cases the destination address may be qualified with a zone
index or other information that will constrain the candidate set.
For multicast and link-local destination addresses, the set of
candidate source addresses MUST only include addresses assigned to
interfaces belonging to the same link as the outgoing interface.
Discussion: The restriction for multicast destination addresses is
necessary because currently-deployed multicast forwarding
algorithms use Reverse Path Forwarding (RPF) checks.
For site-local destination addresses, the set of candidate source
Thaler, et al. Expires August 26, 2012 [Page 10]
Internet-Draft Default Address Selection for IPv6 February 2012
addresses MUST only include addresses assigned to interfaces
belonging to the same site as the outgoing interface.
In any case, multicast addresses, and the unspecified address MUST
NOT be included in a candidate set.
If an application or upper layer specifies a source address that is
not in the candidate set for the destination, then the network layer
MUST treat this as an error. The specified source address may
influence the candidate set, by affecting the choice of outgoing
interface. If the application or upper layer specifies a source
address that is in the candidate set for the destination, then the
network layer MUST respect that choice. If the application or upper
layer does not specify a source address, then the network layer uses
the source address selection algorithm specified in the next section.
On IPv6-only nodes that support SIIT [RFC6145], if the destination
address is an IPv4-converted address then the candidate set MUST
contain only IPv4-translatable addresses.
5. Source Address Selection
The source address selection algorithm produces as output a single
source address for use with a given destination address. This
algorithm only applies to IPv6 destination addresses, not IPv4
addresses.
The algorithm is specified here in terms of a list of pair-wise
comparison rules that (for a given destination address D) imposes a
"greater than" ordering on the addresses in the candidate set
CandidateSource(D). The address at the front of the list after the
algorithm completes is the one the algorithm selects.
Note that conceptually, a sort of the candidate set is being
performed, where a set of rules define the ordering among addresses.
But because the output of the algorithm is a single source address,
an implementation need not actually sort the set; it need only
identify the "maximum" value that ends up at the front of the sorted
list.
The ordering of the addresses in the candidate set is defined by a
list of eight pair-wise comparison rules, with each rule placing a
"greater than," "less than" or "equal to" ordering on two source
addresses with respect to each other (and that rule). In the case
that a given rule produces a tie, i.e., provides an "equal to" result
for the two addresses, the remaining rules are applied (in order) to
just those addresses that are tied to break the tie. Note that if a
Thaler, et al. Expires August 26, 2012 [Page 11]
Internet-Draft Default Address Selection for IPv6 February 2012
rule produces a single clear "winner" (or set of "winners" in the
case of ties), those addresses not in the winning set can be
discarded from further consideration, with subsequent rules applied
only to the remaining addresses. If the eight rules fail to choose a
single address, some unspecified tie-breaker should be used.
When comparing two addresses SA and SB from the candidate set, we say
"prefer SA" to mean that SA is "greater than" SB, and similarly we
say "prefer SB" to mean that SA is "less than" SB.
Rule 1: Prefer same address.
If SA = D, then prefer SA. Similarly, if SB = D, then prefer SB.
Rule 2: Prefer appropriate scope.
If Scope(SA) < Scope(SB): If Scope(SA) < Scope(D), then prefer SB and
otherwise prefer SA. Similarly, if Scope(SB) < Scope(SA): If
Scope(SB) < Scope(D), then prefer SA and otherwise prefer SB.
Rule 3: Avoid deprecated addresses.
The addresses SA and SB have the same scope. If one of the two
source addresses is "preferred" and one of them is "deprecated" (in
the RFC 4862 sense), then prefer the one that is "preferred."
Rule 4: Prefer home addresses.
If SA is simultaneously a home address and care-of address and SB is
not, then prefer SA. Similarly, if SB is simultaneously a home
address and care-of address and SA is not, then prefer SB. If SA is
just a home address and SB is just a care-of address, then prefer SA.
Similarly, if SB is just a home address and SA is just a care-of
address, then prefer SB.
Implementations should provide a mechanism allowing an application to
reverse the sense of this preference and prefer care-of addresses
over home addresses (e.g., via appropriate API extensions such as
[RFC5014]). Use of the mechanism should only affect the selection
rules for the invoking application.
Rule 5: Prefer outgoing interface.
If SA is assigned to the interface that will be used to send to D and
SB is assigned to a different interface, then prefer SA. Similarly,
if SB is assigned to the interface that will be used to send to D and
SA is assigned to a different interface, then prefer SB.
Rule 5.5: Prefer addresses in a prefix advertised by the next-hop
If SA or SA's prefix is assigned by the selected next-hop that will
be used to send to D and SB or SB's prefix is assigned by a different
next-hop, then prefer SA. Similarly, if SB or SB's prefix is
assigned by the next-hop that will be used to send to D and SA or
Thaler, et al. Expires August 26, 2012 [Page 12]
Internet-Draft Default Address Selection for IPv6 February 2012
SA's prefix is assigned by a different next-hop, then prefer SB.
Discussion: An IPv6 implementation is not required to remember
which next-hops advertised which prefixes. The conceptual models
of IPv6 hosts in Section 5 of [RFC4861] and Section 3 of [RFC4191]
have no such requirement. Implementations that do not track this
information shall omit rule 5.5.
Rule 6: Prefer matching label.
If Label(SA) = Label(D) and Label(SB) <> Label(D), then prefer SA.
Similarly, if Label(SB) = Label(D) and Label(SA) <> Label(D), then
prefer SB.
Rule 7: Prefer public addresses.
If SA is a public address and SB is a temporary address, then prefer
SA. Similarly, if SB is a public address and SA is a temporary
address, then prefer SB.
Implementations MUST provide a mechanism allowing an application to
reverse the sense of this preference and prefer temporary addresses
over public addresses (e.g., via appropriate API extensions such as
[RFC5014]). Use of the mechanism should only affect the selection
rules for the invoking application. This rule avoids applications
potentially failing due to the relatively short lifetime of temporary
addresses or due to the possibility of the reverse lookup of a
temporary address either failing or returning a randomized name.
Implementations for which privacy considerations outweigh these
application compatibility concerns MAY reverse the sense of this rule
and by default prefer temporary addresses over public addresses.
Rule 8: Use longest matching prefix.
If CommonPrefixLen(SA, D) > CommonPrefixLen(SB, D), then prefer SA.
Similarly, if CommonPrefixLen(SB, D) > CommonPrefixLen(SA, D), then
prefer SB.
Rule 8 may be superseded if the implementation has other means of
choosing among source addresses. For example, if the implementation
somehow knows which source address will result in the "best"
communications performance.
Rule 2 (prefer appropriate scope) MUST be implemented and given high
priority because it can affect interoperability.
6. Destination Address Selection
The destination address selection algorithm takes a list of
destination addresses and sorts the addresses to produce a new list.
Thaler, et al. Expires August 26, 2012 [Page 13]
Internet-Draft Default Address Selection for IPv6 February 2012
It is specified here in terms of the pair-wise comparison of
addresses DA and DB, where DA appears before DB in the original list.
The algorithm sorts together both IPv6 and IPv4 addresses. To find
the attributes of an IPv4 address in the policy table, the IPv4
address should be represented as an IPv4-mapped address.
We write Source(D) to indicate the selected source address for a
destination D. For IPv6 addresses, the previous section specifies the
source address selection algorithm. Source address selection for
IPv4 addresses is not specified in this document.
We say that Source(D) is undefined if there is no source address
available for destination D. For IPv6 addresses, this is only the
case if CandidateSource(D) is the empty set.
The pair-wise comparison of destination addresses consists of ten
rules, which should be applied in order. If a rule determines a
result, then the remaining rules are not relevant and should be
ignored. Subsequent rules act as tie-breakers for earlier rules.
See the previous section for a lengthier description of how pair-wise
comparison tie-breaker rules can be used to sort a list.
Rule 1: Avoid unusable destinations.
If DB is known to be unreachable or if Source(DB) is undefined, then
prefer DA. Similarly, if DA is known to be unreachable or if
Source(DA) is undefined, then prefer DB.
Discussion: An implementation may know that a particular
destination is unreachable in several ways. For example, the
destination may be reached through a network interface that is
currently unplugged. For example, the implementation may retain
for some period of time information from Neighbor Unreachability
Detection [RFC4861]. In any case, the determination of
unreachability for the purposes of this rule is implementation-
dependent.
Rule 2: Prefer matching scope.
If Scope(DA) = Scope(Source(DA)) and Scope(DB) <> Scope(Source(DB)),
then prefer DA. Similarly, if Scope(DA) <> Scope(Source(DA)) and
Scope(DB) = Scope(Source(DB)), then prefer DB.
Rule 3: Avoid deprecated addresses.
If Source(DA) is deprecated and Source(DB) is not, then prefer DB.
Similarly, if Source(DA) is not deprecated and Source(DB) is
deprecated, then prefer DA.
Rule 4: Prefer home addresses.
Thaler, et al. Expires August 26, 2012 [Page 14]
Internet-Draft Default Address Selection for IPv6 February 2012
If Source(DA) is simultaneously a home address and care-of address
and Source(DB) is not, then prefer DA. Similarly, if Source(DB) is
simultaneously a home address and care-of address and Source(DA) is
not, then prefer DB.
If Source(DA) is just a home address and Source(DB) is just a care-of
address, then prefer DA. Similarly, if Source(DA) is just a care-of
address and Source(DB) is just a home address, then prefer DB.
Rule 5: Prefer matching label.
If Label(Source(DA)) = Label(DA) and Label(Source(DB)) <> Label(DB),
then prefer DA. Similarly, if Label(Source(DA)) <> Label(DA) and
Label(Source(DB)) = Label(DB), then prefer DB.
Rule 6: Prefer higher precedence.
If Precedence(DA) > Precedence(DB), then prefer DA. Similarly, if
Precedence(DA) < Precedence(DB), then prefer DB.
Rule 7: Prefer native transport.
If DA is reached via an encapsulating transition mechanism (e.g.,
IPv6 in IPv4) and DB is not, then prefer DB. Similarly, if DB is
reached via encapsulation and DA is not, then prefer DA.
Discussion: 6RD [RFC5969], ISATAP [RFC5214], and configured
tunnels [RFC4213] are examples of encapsulating transition
mechanisms for which the destination address does not have a
specific prefix and hence can not be assigned a lower precedence
in the policy table. An implementation MAY generalize this rule
by using a concept of interface preference, and giving virtual
interfaces (like the IPv6-in-IPv4 encapsulating interfaces) a
lower preference than native interfaces (like ethernet
interfaces).
Rule 8: Prefer smaller scope.
If Scope(DA) < Scope(DB), then prefer DA. Similarly, if Scope(DA) >
Scope(DB), then prefer DB.
Rule 9: Use longest matching prefix.
When DA and DB belong to the same address family (both are IPv6 or
both are IPv4): If CommonPrefixLen(Source(DA), DA) >
CommonPrefixLen(Source(DB), DB), then prefer DA. Similarly, if
CommonPrefixLen(Source(DA), DA) < CommonPrefixLen(Source(DB), DB),
then prefer DB.
Rule 10: Otherwise, leave the order unchanged.
If DA preceded DB in the original list, prefer DA. Otherwise prefer
DB.
Thaler, et al. Expires August 26, 2012 [Page 15]
Internet-Draft Default Address Selection for IPv6 February 2012
Rules 9 and 10 may be superseded if the implementation has other
means of sorting destination addresses. For example, if the
implementation somehow knows which destination addresses will result
in the "best" communications performance.
7. Interactions with Routing
This specification of source address selection assumes that routing
(more precisely, selecting an outgoing interface on a node with
multiple interfaces) is done before source address selection.
However, implementations may use source address considerations as a
tiebreaker when choosing among otherwise equivalent routes.
For example, suppose a node has interfaces on two different links,
with both links having a working default router. Both of the
interfaces have preferred (in the RFC 4862 sense) global addresses.
When sending to a global destination address, if there's no routing
reason to prefer one interface over the other, then an implementation
may preferentially choose the outgoing interface that will allow it
to use the source address that shares a longer common prefix with the
destination.
Implementations that support Rule 5.5 also use the choice of router
to influence the choice of source address. For example, suppose a
host is on a link with two routers. One router is advertising a
global prefix A and the other router is advertising global prefix B.
Then when sending via the first router, the host may prefer source
addresses with prefix A and when sending via the second router,
prefer source addresses with prefix B.
8. Implementation Considerations
The destination address selection algorithm needs information about
potential source addresses. One possible implementation strategy is
for getaddrinfo() to call down to the network layer with a list of
destination addresses, sort the list in the network layer with full
current knowledge of available source addresses, and return the
sorted list to getaddrinfo(). This is simple and gives the best
results but it introduces the overhead of another system call. One
way to reduce this overhead is to cache the sorted address list in
the resolver, so that subsequent calls for the same name do not need
to resort the list.
Another implementation strategy is to call down to the network layer
to retrieve source address information and then sort the list of
addresses directly in the context of getaddrinfo(). To reduce
Thaler, et al. Expires August 26, 2012 [Page 16]
Internet-Draft Default Address Selection for IPv6 February 2012
overhead in this approach, the source address information can be
cached, amortizing the overhead of retrieving it across multiple
calls to getaddrinfo(). In this approach, the implementation may not
have knowledge of the outgoing interface for each destination, so it
MAY use a looser definition of the candidate set during destination
address ordering.
In any case, if the implementation uses cached and possibly stale
information in its implementation of destination address selection,
or if the ordering of a cached list of destination addresses is
possibly stale, then it should ensure that the destination address
ordering returned to the application is no more than one second out
of date. For example, an implementation might make a system call to
check if any routing table entries or source address assignments or
prefix policy table entries that might affect these algorithms have
changed. Another strategy is to use an invalidation counter that is
incremented whenever any underlying state is changed. By caching the
current invalidation counter value with derived state and then later
comparing against the current value, the implementation could detect
if the derived state is potentially stale.
9. Security Considerations
This document has no direct impact on Internet infrastructure
security.
Note that most source address selection algorithms, including the one
specified in this document, expose a potential privacy concern. An
unfriendly node can infer correlations among a target node's
addresses by probing the target node with request packets that force
the target host to choose its source address for the reply packets.
(Perhaps because the request packets are sent to an anycast or
multicast address, or perhaps the upper-layer protocol chosen for the
attack does not specify a particular source address for its reply
packets.) By using different addresses for itself, the unfriendly
node can cause the target node to expose the target's own addresses.
10. Examples
This section contains a number of examples, first of default behavior
and then demonstrating the utility of policy table configuration.
These examples are provided for illustrative purposes; they should
not be construed as normative.
Thaler, et al. Expires August 26, 2012 [Page 17]
Internet-Draft Default Address Selection for IPv6 February 2012
10.1. Default Source Address Selection
The source address selection rules, in conjunction with the default
policy table, produce the following behavior:
Destination: 2001:db8:1::1
Candidate Source Addresses: 2001:db8:3::1 or fe80::1
Result: 2001:db8::1 (prefer appropriate scope)
Destination: ff05::1
Candidate Source Addresses: 2001:db8:3::1 or fe80::1
Result: 2001:db8:3::1 (prefer appropriate scope)
Destination: 2001:db8:1::1
Candidate Source Addresses: 2001:db8:1::1 (deprecated) or
2001:db8:2::1
Result: 2001:db8:1::1 (prefer same address)
Destination: fe80::1
Candidate Source Addresses: fe80::2 (deprecated) or 2001:db8:1::1
Result: fe80::2 (prefer appropriate scope)
Destination: 2001:db8:1::1
Candidate Source Addresses: 2001:db8:1::2 or 2001:db8:3::2
Result: 2001:db8:1:::2 (longest-matching-prefix)
Destination: 2001:db8:1::1
Candidate Source Addresses: 2001:db8:1::2 (care-of address) or 2001:
db8:3::2 (home address)
Result: 2001:db8:3::2 (prefer home address)
Destination: 2002:c633:6401::1
Candidate Source Addresses: 2002:c633:6401::d5e3:7953:13eb:22e8
(temporary) or 2001:db8:1::2
Result: 2002:c633:6401::d5e3:7953:13eb:22e8 (prefer matching label)
Destination: 2001:db8:1::d5e3:0:0:1
Candidate Source Addresses: 2001:db8:1::2 or 2001:db8:1::d5e3:7953:
13eb:22e8 (temporary)
Result: 2001:db8:1::2 (prefer public address)
10.2. Default Destination Address Selection
The destination address selection rules, in conjunction with the
default policy table and the source address selection rules, produce
the following behavior:
Candidate Source Addresses: 2001:db8:1::2 or fe80::1 or 169.254.13.78
Thaler, et al. Expires August 26, 2012 [Page 18]
Internet-Draft Default Address Selection for IPv6 February 2012
Destination Address List: 2001:db8:1::1 or 198.51.100.121
Result: 2001:db8:1::1 (src 2001:db8:1::2) then 198.51.100.121 (src
169.254.13.78) (prefer matching scope)
Candidate Source Addresses: fe80::1 or 198.51.100.117
Destination Address List: 2001:db8:1::1 or 198.51.100.121
Result: 198.51.100.121 (src 198.51.100.117) then 2001:db8:1::1 (src
fe80::1) (prefer matching scope)
Candidate Source Addresses: 2001:db8:1::2 or fe80::1 or 10.1.2.4
Destination Address List: 2001:db8:1::1 or 10.1.2.3
Result: 2001:db8:1::1 (src 2001:db8:1::2) then 10.1.2.3 (src
10.1.2.4) (prefer higher precedence)
Candidate Source Addresses: 2001:db8:1::2 or fe80::2
Destination Address List: 2001:db8:1::1 or fe80::1
Result: fe80::1 (src fe80::2) then 2001:db8:1::1 (src 2001:db8:1::2)
(prefer smaller scope)
Candidate Source Addresses: 2001:db8:1::2 (care-of address) or 2001:
db8:3::1 (home address) or fe80::2 (care-of address)
Destination Address List: 2001:db8:1::1 or fe80::1
Result: 2001:db8:1::1 (src 2001:db8:3::1) then fe80::1 (src fe80::2)
(prefer home address)
Candidate Source Addresses: 2001:db8:1::2 or fe80::2 (deprecated)
Destination Address List: 2001:db8:1::1 or fe80::1
Result: 2001:db8:1::1 (src 2001:db8:1::2) then fe80::1 (src fe80::2)
(avoid deprecated addresses)
Candidate Source Addresses: 2001:db8:1::2 or 2001:db8:3f44::2 or
fe80::2
Destination Address List: 2001:db8:1::1 or 2001:db8:3ffe::1
Result: 2001:db8:1::1 (src 2001:db8:1::2) then 2001:db8:3ffe::1 (src
2001:db8:3f44::2) (longest matching prefix)
Candidate Source Addresses: 2002:c633:6401::2 or fe80::2
Destination Address List: 2002:c633:6401::1 or 2001:db8:1::1
Result: 2002:c633:6401::1 (src 2002:c633:6401::2) then 2001:db8:1::1
(src 2002:c633:6401::2) (prefer matching label)
Candidate Source Addresses: 2002:c633:6401::2 or 2001:db8:1::2 or
fe80::2
Destination Address List: 2002:c633:6401::1 or 2001:db8:1::1
Result: 2001:db8:1::1 (src 2001:db8:1::2) then 2002:c633:6401::1 (src
2002:c633:6401::2) (prefer higher precedence)
Thaler, et al. Expires August 26, 2012 [Page 19]
Internet-Draft Default Address Selection for IPv6 February 2012
10.3. Configuring Preference for IPv6 or IPv4
The default policy table gives IPv6 addresses higher precedence than
IPv4 addresses. This means that applications will use IPv6 in
preference to IPv4 when the two are equally suitable. An
administrator can change the policy table to prefer IPv4 addresses by
giving the ::ffff:0.0.0.0/96 prefix a higher precedence:
Prefix Precedence Label
::1/128 50 0
::/0 40 1
fc00::/7 35 13
::ffff:0:0/96 100 4
2002::/16 7 2
2001::/32 5 5
::/96 1 3
fec0::/10 1 11
3ffe::/16 1 12
This change to the default policy table produces the following
behavior:
Candidate Source Addresses: 2001::2 or fe80::1 or 169.254.13.78
Destination Address List: 2001::1 or 198.51.100.121
Unchanged Result: 2001::1 (src 2001::2) then 198.51.100.121 (src
169.254.13.78) (prefer matching scope)
Candidate Source Addresses: fe80::1 or 198.51.100.117
Destination Address List: 2001::1 or 198.51.100.121
Unchanged Result: 198.51.100.121 (src 198.51.100.117) then 2001::1
(src fe80::1) (prefer matching scope)
Candidate Source Addresses: 2001::2 or fe80::1 or 10.1.2.4
Destination Address List: 2001::1 or 10.1.2.3
New Result: 10.1.2.3 (src 10.1.2.4) then 2001::1 (src 2001::2)
(prefer higher precedence)
10.3.1. Handling Broken IPv6
One problem in practice that has been recently observed occurs when a
host has IPv4 connectivity to the Internet, but has "broken" IPv6
connectivity to the Internet in that it has a global IPv6 address,
but is discconnected from the IPv6 Internet. Since the default
policy table prefers IPv6, this can result in unwanted timeouts.
This can be solved by configuring the table to prefer IPv4 as shown
above. An implementation that has some means to detect that it is
not connected to the IPv6 Internet MAY do this automatically. An
Thaler, et al. Expires August 26, 2012 [Page 20]
Internet-Draft Default Address Selection for IPv6 February 2012
implementation could instead treat it as part of its implementation
of Rule 1 (avoid unusable destinations).
10.4. Configuring Preference for Link-Local Addresses
The destination address selection rules give preference to
destinations of smaller scope. For example, a link-local destination
will be sorted before a global scope destination when the two are
otherwise equally suitable. An administrator can change the policy
table to reverse this preference and sort global destinations before
link-local destinations:
Prefix Precedence Label
::1/128 50 0
::/0 40 1
fc00::/7 35 13
fe80::/10 33 1
::ffff:0:0/96 10 4
2002::/16 7 2
2001::/32 5 5
::/96 1 3
fec0::/10 1 11
3ffe::/16 1 12
This change to the default policy table produces the following
behavior:
Candidate Source Addresses: 2001::2 or fe80::2
Destination Address List: 2001::1 or fe80::1
New Result: 2001::1 (src 2001::2) then fe80::1 (src fe80::2) (prefer
higher precedence)
Candidate Source Addresses: 2001::2 (deprecated) or fe80::2
Destination Address List: 2001::1 or fe80::1
Unchanged Result: fe80::1 (src fe80::2) then 2001::1 (src 2001::2)
(avoid deprecated addresses)
10.5. Configuring a Multi-Homed Site
Consider a site A that has a business-critical relationship with
another site B. To support their business needs, the two sites have
contracted for service with a special high-performance ISP. This is
in addition to the normal Internet connection that both sites have
with different ISPs. The high-performance ISP is expensive and the
two sites wish to use it only for their business-critical traffic
with each other.
Each site has two global prefixes, one from the high-performance ISP
Thaler, et al. Expires August 26, 2012 [Page 21]
Internet-Draft Default Address Selection for IPv6 February 2012
and one from their normal ISP. Site A has prefix 2001:aaaa:aaaa::/48
from the high-performance ISP and prefix 2007:0:aaaa::/48 from its
normal ISP. Site B has prefix 2001:bbbb:bbbb::/48 from the high-
performance ISP and prefix 2007:0:bbbb::/48 from its normal ISP. All
hosts in both sites register two addresses in the DNS.
The routing within both sites directs most traffic to the egress to
the normal ISP, but the routing directs traffic sent to the other
site's 2001 prefix to the egress to the high-performance ISP. To
prevent unintended use of their high-performance ISP connection, the
two sites implement ingress filtering to discard traffic entering
from the high-performance ISP that is not from the other site.
The default policy table and address selection rules produce the
following behavior:
Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
fe80::a
Destination Address List: 2001:bbbb:bbbb::b or 2007:0:bbbb::b
Result: 2007:0:bbbb::b (src 2007:0:aaaa::a) then 2001:bbbb:bbbb::b
(src 2001:aaaa:aaaa::a) (longest matching prefix)
In other words, when a host in site A initiates a connection to a
host in site B, the traffic does not take advantage of their
connections to the high-performance ISP. This is not their desired
behavior.
Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
fe80::a
Destination Address List: 2001:cccc:cccc::c or 2006:cccc:cccc::c
Result: 2001:cccc:cccc::c (src 2001:aaaa:aaaa::a) then 2006:cccc:
cccc::c (src 2007:0:aaaa::a) (longest matching prefix)
In other words, when a host in site A initiates a connection to a
host in some other site C, the reverse traffic may come back through
the high-performance ISP. Again, this is not their desired behavior.
This predicament demonstrates the limitations of the longest-
matching-prefix heuristic in multi-homed situations.
However, the administrators of sites A and B can achieve their
desired behavior via policy table configuration. For example, they
can use the following policy table:
Thaler, et al. Expires August 26, 2012 [Page 22]
Internet-Draft Default Address Selection for IPv6 February 2012
Prefix Precedence Label
::1/128 50 0
2001:aaaa:aaaa::/48 43 6
2001:bbbb:bbbb::/48 43 6
::/0 40 1
fc00::/7 35 13
::ffff:0:0/96 10 4
2002::/16 7 2
2001::/32 5 5
::/96 1 3
fec0::/10 1 11
3ffe::/16 1 12
This policy table produces the following behavior:
Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
fe80::a
Destination Address List: 2001:bbbb:bbbb::b or 2007:0:bbbb::b
New Result: 2001:bbbb:bbbb::b (src 2001:aaaa:aaaa::a) then 2007:0:
bbbb::b (src 2007:0:aaaa::a) (prefer higher precedence)
In other words, when a host in site A initiates a connection to a
host in site B, the traffic uses the high-performance ISP as desired.
Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
fe80::a
Destination Address List: 2001:cccc:cccc::c or 2006:cccc:cccc::c
New Result: 2006:cccc:cccc::c (src 2007:0:aaaa::a) then 2001:cccc:
cccc::c (src 2007:0:aaaa::a) (longest matching prefix)
In other words, when a host in site A initiates a connection to a
host in some other site C, the traffic uses the normal ISP as
desired.
10.6. Configuring ULA Preference
RFC 5220 [RFC5220] sections 2.1.4, 2.2.2, and 2.2.3 describe address
selection problems related to ULAs [RFC4193]. By default, global
IPv6 destinations are preferred over ULA destinations, since an
arbitrary ULA is not necessarily reachable:
Candidate Source Addresses: 2001:db8:1::1 or fd11:1111:1111:1::1
Destination Address List: 2001:db8:2::2 or fd22:2222:2222:2::2
Result: 2001:db8:2::2 (src 2001:db8:1::1) then fd22:2222:2222:2::2
(src fd11:1111:1111:1::1) (prefer higher precedence)
However, a site-specific policy entry can be used to cause ULAs
within a site to be preferred over global addresses as follows.
Thaler, et al. Expires August 26, 2012 [Page 23]
Internet-Draft Default Address Selection for IPv6 February 2012
Prefix Precedence Label
::1/128 50 0
fd11:1111:1111::/48 45 14
::/0 40 1
fc00::/7 35 13
::ffff:0:0/96 10 4
2002::/16 7 2
2001::/32 5 5
::/96 1 3
fec0::/10 1 11
3ffe::/16 1 12
Such a configuration would have the following effect:
Candidate Source Addresses: 2001:db8:1::1 or fd11:1111:1111:1::1
Destination Address List: 2001:db8:2::2 or fd22:2222:2222:2::2
Unchanged Result: 2001:db8:2::2 (src 2001:db8:1::1) then fd22:2222:
2222:2::2 (src fd11:1111:1111:1::1) (prefer higher precedence)
Candidate Source Addresses: 2001:db8:1::1 or fd11:1111:1111:1::1
Destination Address List: 2001:db8:2::2 or fd11:1111:1111:2::2
New Result: fd11:1111:1111:2::2 (src fd11:1111:1111:1::1) then 2001:
db8:2::2 (src 2001:db8:1::1) (prefer higher precedence)
Since ULAs are defined to have a /48 site prefix, an implementation
might choose to add such a row automatically on a machine with a ULA.
It is also worth noting that ULAs are assigned global scope. As
such, the existence of one or more rows in the prefix policy table is
important so that source address selection does not choose a ULA
purely based on longest match:
Candidate Source Addresses: 2001:db8:1::1 or fd11:1111:1111:1::1
Destination Address List: ff00:1
Result: 2001:db8:1::1 (prefer matching label)
10.7. Configuring 6to4 Preference
By default, NAT'ed IPv4 is preferred over 6to4-relayed connectivity:
Candidate Source Addresses: 2002:836b:4179::2 or 10.1.2.3
Destination Address List: 2001:db8:1::1 or 203.0.113.1
Result: 203.0.113.1 (src 10.1.2.3) then 2001:db8:1::1 (src 2002:836b:
4179::2) (prefer matching label)
However, NAT'ed IPv4 is now also preferred over 6to4-to-6to4
connectivity by default. Since a 6to4 prefix might be used natively
within an organization, a site-specific policy entry can be used to
Thaler, et al. Expires August 26, 2012 [Page 24]
Internet-Draft Default Address Selection for IPv6 February 2012
cause native IPv6 communication (using a 6to4 prefix) to be preferred
over NAT'ed IPv4 as follows.
Prefix Precedence Label
::1/128 50 0
2002:836b:4179::/48 45 14
::/0 40 1
fc00::/7 35 13
::ffff:0:0/96 10 4
2002::/16 7 2
2001::/32 5 5
::/96 1 3
fec0::/10 1 11
3ffe::/16 1 12
Such a configuration would have the following effect:
Candidate Source Addresses: 2002:836b:4179:1::1 or 10.1.2.3
Destination Address List: 2002:836b:4179:2::2 or 203.0.113.1
New Result: 2002:836b:4179:2::2 (src 2002:836b:4179:1::1) then
203.0.113.1 (sec 10.1.2.3) (prefer higher precedence)
Since 6to4 addresses are defined to have a /48 site prefix, an
implementation might choose to add such a row automatically on a
machine with a native IPv6 address with a 6to4 prefix.
11. References
11.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains
via IPv4 Clouds", RFC 3056, February 2001.
[RFC3701] Fink, R. and R. Hinden, "6bone (IPv6 Testing Address
Allocation) Phaseout", RFC 3701, March 2004.
[RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local
Addresses", RFC 3879, September 2004.
[RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
Addresses", RFC 4193, October 2005.
[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, February 2006.
Thaler, et al. Expires August 26, 2012 [Page 25]
Internet-Draft Default Address Selection for IPv6 February 2012
[RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
Network Address Translations (NATs)", RFC 4380,
February 2006.
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", RFC 4862, September 2007.
[RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
Extensions for Stateless Address Autoconfiguration in
IPv6", RFC 4941, September 2007.
[RFC6145] Li, X., Bao, C., and F. Baker, "IP/ICMP Translation
Algorithm", RFC 6145, April 2011.
11.2. Informative References
[I-D.ietf-6man-addr-select-opt]
Matsumoto, A., Fujisaki, T., Kato, J., and T. Chown,
"Distributing Address Selection Policy using DHCPv6",
draft-ietf-6man-addr-select-opt-03 (work in progress),
February 2012.
[RFC1794] Brisco, T., "DNS Support for Load Balancing", RFC 1794,
April 1995.
[RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
E. Lear, "Address Allocation for Private Internets",
BCP 5, RFC 1918, February 1996.
[RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP Source
Address Spoofing", BCP 38, RFC 2827, May 2000.
[RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
Stevens, "Basic Socket Interface Extensions for IPv6",
RFC 3493, February 2003.
[RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
Configuration of IPv4 Link-Local Addresses", RFC 3927,
May 2005.
[RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
March 2005.
[RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
More-Specific Routes", RFC 4191, November 2005.
Thaler, et al. Expires August 26, 2012 [Page 26]
Internet-Draft Default Address Selection for IPv6 February 2012
[RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
for IPv6 Hosts and Routers", RFC 4213, October 2005.
[RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
"Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
September 2007.
[RFC5014] Nordmark, E., Chakrabarti, S., and J. Laganier, "IPv6
Socket API for Source Address Selection", RFC 5014,
September 2007.
[RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
March 2008.
[RFC5220] Matsumoto, A., Fujisaki, T., Hiromi, R., and K. Kanayama,
"Problem Statement for Default Address Selection in Multi-
Prefix Environments: Operational Issues of RFC 3484
Default Rules", RFC 5220, July 2008.
[RFC5969] Townsley, W. and O. Troan, "IPv6 Rapid Deployment on IPv4
Infrastructures (6rd) -- Protocol Specification",
RFC 5969, August 2010.
[RFC6052] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
October 2010.
[RFC6275] Perkins, C., Johnson, D., and J. Arkko, "Mobility Support
in IPv6", RFC 6275, July 2011.
Appendix A. Acknowledgements
RFC 3484 acknowledged the contributions of the IPng Working Group,
particularly Marc Blanchet, Brian Carpenter, Matt Crawford, Alain
Durand, Steve Deering, Robert Elz, Jun-ichiro itojun Hagino, Tony
Hain, M.T. Hollinger, JINMEI Tatuya, Thomas Narten, Erik Nordmark,
Ken Powell, Markku Savela, Pekka Savola, Hesham Soliman, Dave Thaler,
Mauro Tortonesi, Ole Troan, and Stig Venaas. In addition, the
anonymous IESG reviewers had many great comments and suggestions for
clarification.
This revision was heavily influenced by the work by Arifumi
Matsumoto, Jun-ya Kato, and Tomohiro Fujisaki in a working draft that
made proposals for this revision to adopt, with input from Pekka
Savola, Remi Denis-Courmont, Francois-Xavier Le Bail, and the 6man
Working Group. Dmitry Anipko, Mark Andrews, and Ray Hunter also
Thaler, et al. Expires August 26, 2012 [Page 27]
Internet-Draft Default Address Selection for IPv6 February 2012
provided valuable feedback on this revision.
Appendix B. Changes Since RFC 3484
Some changes were made to the default policy table that were deemed
to be universally useful and cause no harm in every reasonable
network environment. In doing so, care was taken to use the same
preference and label values as in RFC 3484 whenever possible, and for
new rows to use label values less likely to collide with values that
might already be in use in additional rows on some hosts. These
changes are:
1. Added the Teredo [RFC4380] prefix (2001::/32), with the
preference and label values already widely used in popular
implementations.
2. Added a row for ULAs (fc00::/7) below native IPv6 since they are
not globally reachable, as discussed in Section 10.6.
3. Added a row for site-local addresses (fec0::/10) in order to
depreference them, for consistency with the example in
Section 10.3, since they are deprecated [RFC3879].
4. Depreferenced 6to4 (2002::/32) below native IPv4 since 6to4
connectivity is less reliable today (and is expected to be phased
out over time, rather than becoming more reliable). It remains
above Teredo since 6to4 is more efficient in terms of connection
establishment time, bandwidth, and server load.
5. Depreferenced IPv4-Compatible addresses (::/96) since they are
now deprecated [RFC4291] and not in common use.
6. Added a row for 6bone testing addresses (3ffe::/16) in order to
depreference them as they have also been phased out [RFC3701].
Similarly, some changes were made to the rules, as follows:
1. Changed the definition of CommonPrefixLen() to only compare bits
up to the source address's prefix length. The previous
definition used the entire source address, rather than only its
prefix. As a result, when a source and destination addresses had
the same prefix, common bits in the interface ID would previously
result in overriding DNS load balancing [RFC1794] by forcing the
destination address with the most bits in common to be always
chosen. The updated definition allows DNS load balancing to
continue to be used as a tie breaker.
2. Added Rule 5.5 to allow choosing a source address from a prefix
advertised by the chosen next-hop for a given destination. This
allows better connectivity in the presence of BCP 38 [RFC2827]
ingress filtering and egress filtering. Previously, RFC 3484 had
issues with multiple egress networks reached via the same
interface, as discussed in [RFC5220].
Thaler, et al. Expires August 26, 2012 [Page 28]
Internet-Draft Default Address Selection for IPv6 February 2012
3. Removed restriction against anycast addresses in the candidate
set of source addresses, since the restriction against using IPv6
anycast addresses as source addresses was removed in Section 2.6
of RFC 4291 [RFC4291].
4. Changed mapping of RFC 1918 [RFC1918] addresses to global scope
in Section Section 3.2. Previously they were mapped to site-
local scope. However, experience has resulted in current
implementations already using global scope instead. When they
were mapped to site-local, Destination Address Selection Rule 2
(Prefer matching scope) would cause IPv6 to be preferred in
scenarios such as that described in Section 10.7. The change to
global scope allows configurability via the prefix policy table.
Finally, some editorial changes were made, including:
1. Changed global IP addresses in examples to use ranges reserved
for documentation.
2. Added additional examples in Section 10.6 and Section 10.7.
3. Added Section 10.3.1 on "broken" IPv6.
4. Updated references.
Authors' Addresses
Dave Thaler (editor)
Microsoft
One Microsoft Way
Redmond, WA 98052
Phone: +1 425 703 8835
Email: dthaler@microsoft.com
Richard Draves
Microsoft Research
One Microsoft Way
Redmond, WA 98052
Phone: +1 425 706 2268
Email: richdr@microsoft.com
Thaler, et al. Expires August 26, 2012 [Page 29]
Internet-Draft Default Address Selection for IPv6 February 2012
Tim Chown
University of Southampt on
Southampton, Hampshire SO17 1BJ
United Kingdom
Email: tjc@ecs.soton.ac.uk
Thaler, et al. Expires August 26, 2012 [Page 30]