[Search] [txt|pdf|bibtex] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 00 01 02 03 04 05 06 07 rfc2078                               
Internet-Draft                                      J. Linn (OpenVision)
IETF Common Authentication Technology WG         OpenVision Technologies
<draft-ietf-cat-gssv2-02.txt>                                2 June 1995

   Generic Security Service Application Program Interface, Version 2

STATUS OF THIS MEMO

   This document is an Internet-Draft.  Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups.  Note that other groups may also distribute
   working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet- Drafts as reference
   material or to cite them other than as ``work in progress.''

   To learn the current status of any Internet-Draft, please check the
   ``1id-abstracts.txt'' listing contained in the Internet- Drafts
   Shadow Directories on ds.internic.net (US East Coast), nic.nordu.net
   (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
   Rim).

   Comments on this document should be sent to "cat-ietf@mit.edu", the
   IETF Common Authentication Technology WG discussion list.

ABSTRACT

   The Generic Security Service Application Program Interface (GSS-API),
   as defined in RFC-1508, provides security services to callers in a
   generic fashion, supportable with a range of underlying mechanisms
   and technologies and hence allowing source-level portability of
   applications to different environments. This specification defines
   GSS-API services and primitives at a level independent of underlying
   mechanism and programming language environment, and is to be
   complemented by other, related specifications:

      documents defining specific parameter bindings for particular
      language environments

      documents defining token formats, protocols, and procedures to be
      implemented in order to realize GSS-API services atop particular
      security mechanisms

   This Internet-Draft revises RFC-1508, making specific, incremental
   changes in response to implementation experience and liaison
   requests. It is intended, therefore, that this draft or a successor



Linn               Document Expiration: 2 December 1995         [Page 1]


Internet-Draft                                              June 2, 1995


   version thereto will become the basis for subsequent progression of
   the GSS-API specification on the standards track.

1: GSS-API Characteristics and Concepts

   GSS-API operates in the following paradigm.  A typical GSS-API caller
   is itself a communications protocol, calling on GSS-API in order to
   protect its communications with authentication, integrity, and/or
   confidentiality security services. A GSS-API caller accepts tokens
   provided to it by its local GSS-API implementation and transfers the
   tokens to a peer on a remote system; that peer passes the received
   tokens to its local GSS-API implementation for processing. The
   security services available through GSS-API in this fashion are
   implementable (and have been implemented) over a range of underlying
   mechanisms based on secret-key and public-key cryptographic
   technologies.

   The GSS-API separates the operations of initializing a security
   context between peers, achieving peer entity authentication (This
   security service definition, and other definitions used in this
   document, corresponds to that provided in International Standard ISO
   7498-2-1988(E), Security Architecture.) (GSS_Init_sec_context()  and
   GSS_Accept_sec_context() calls), from the operations of providing
   per-message data origin authentication and data integrity protection
   (GSS_GetMIC()  and GSS_VerifyMIC()  calls) for messages subsequently
   transferred in conjunction with that context.  When establishing a
   security context, the GSS-API enables a context initiator to
   optionally permit its credentials to be delegated, meaning that the
   context acceptor may initiate further security contexts on behalf of
   the initiating caller. Per-message GSS_Wrap()  and GSS_Unwrap()
   calls provide the data origin authentication and data integrity
   services which GSS_GetMIC()  and GSS_VerifyMIC() offer, and also
   support selection of confidentiality services as a caller option.
   Additional calls provide supportive functions to the GSS-API's users.

   The following paragraphs provide an example illustrating the
   dataflows involved in use of the GSS-API by a client and server in a
   mechanism-independent fashion, establishing a security context and
   transferring a protected message. The example assumes that credential
   acquisition has already been completed.  The example assumes that the
   underlying authentication technology is capable of authenticating a
   client to a server using elements carried within a single token, and
   of authenticating the server to the client (mutual authentication)
   with a single returned token; this assumption holds for presently-
   documented CAT mechanisms but is not necessarily true for other
   cryptographic technologies and associated protocols.

   The client calls GSS_Init_sec_context()  to establish a security



Linn               Document Expiration: 2 December 1995         [Page 2]


Internet-Draft                                              June 2, 1995


   context to the server identified by targ_name, and elects to set the
   mutual_req_flag so that mutual authentication is performed in the
   course of context establishment. GSS_Init_sec_context()  returns an
   output_token to be passed to the server, and indicates
   GSS_S_CONTINUE_NEEDED status pending completion of the mutual
   authentication sequence. Had mutual_req_flag not been set, the
   initial call to GSS_Init_sec_context()  would have returned
   GSS_S_COMPLETE status. The client sends the output_token to the
   server.

   The server passes the received token as the input_token parameter to
   GSS_Accept_sec_context().  GSS_Accept_sec_context indicates
   GSS_S_COMPLETE status, provides the client's authenticated identity
   in the src_name result, and provides an output_token to be passed to
   the client. The server sends the output_token to the client.

   The client passes the received token as the input_token parameter to
   a successor call to GSS_Init_sec_context(),  which processes data
   included in the token in order to achieve mutual authentication from
   the client's viewpoint. This call to GSS_Init_sec_context()  returns
   GSS_S_COMPLETE status, indicating successful mutual authentication
   and the completion of context establishment for this example.

   The client generates a data message and passes it to GSS_Wrap().
   GSS_Wrap() performs data origin authentication, data integrity, and
   (optionally) confidentiality processing on the message and
   encapsulates the result into output_message, indicating
   GSS_S_COMPLETE status. The client sends the output_message to the
   server.

   The server passes the received message to GSS_Unwrap().  GSS_Unwrap()
   inverts the encapsulation performed by GSS_Wrap(),  deciphers the
   message if the optional confidentiality feature was applied, and
   validates the data origin authentication and data integrity checking
   quantities. GSS_Unwrap()  indicates successful validation by
   returning GSS_S_COMPLETE status along with the resultant
   output_message.

   For purposes of this example, we assume that the server knows by
   out-of-band means that this context will have no further use after
   one protected message is transferred from client to server. Given
   this premise, the server now calls GSS_Delete_sec_context() to flush
   context-level information.  Optionally, the server-side application
   may provide a token buffer to GSS_Delete_sec_context(), to receive a
   context_token to be transferred to the client in order to request
   that client-side context-level information be deleted.

   If a context_token is transferred, the client passes the



Linn               Document Expiration: 2 December 1995         [Page 3]


Internet-Draft                                              June 2, 1995


   context_token to GSS_Process_context_token(), which returns
   GSS_S_COMPLETE status after deleting context-level information at the
   client system.

   The GSS-API design assumes and addresses several basic goals,
   including:

      Mechanism independence: The GSS-API defines an interface to
      cryptographically implemented strong authentication and other
      security services at a generic level which is independent of
      particular underlying mechanisms. For example, GSS-API-provided
      services can be implemented by secret-key technologies (e.g.,
      Kerberos) or public-key approaches (e.g., X.509).

      Protocol environment independence: The GSS-API is independent of
      the communications protocol suites with which it is employed,
      permitting use in a broad range of protocol environments. In
      appropriate environments, an intermediate implementation "veneer"
      which is oriented to a particular communication protocol (e.g.,
      Remote Procedure Call (RPC)) may be interposed between
      applications which call that protocol and the GSS-API, thereby
      invoking GSS-API facilities in conjunction with that protocol's
      communications invocations.

      Protocol association independence: The GSS-API's security context
      construct is independent of communications protocol association
      constructs. This characteristic allows a single GSS-API
      implementation to be utilized by a variety of invoking protocol
      modules on behalf of those modules' calling applications. GSS-API
      services can also be invoked directly by applications, wholly
      independent of protocol associations.

      Suitability to a range of implementation placements: GSS-API
      clients are not constrained to reside within any Trusted Computing
      Base (TCB) perimeter defined on a system where the GSS-API is
      implemented; security services are specified in a manner suitable
      to both intra-TCB and extra-TCB callers.

1.1: GSS-API Constructs

   This section describes the basic elements comprising the GSS-API.

1.1.1:  Credentials

   Credentials structures provide the prerequisites enabling peers to
   establish security contexts with each other. A caller may designate
   that the credential elements to be applied for context initiation or
   acceptance be selected by default.  Alternately, those GSS-API



Linn               Document Expiration: 2 December 1995         [Page 4]


Internet-Draft                                              June 2, 1995


   callers which need to make explicit selection of particular
   credentials structures may make references to those credentials
   through GSS-API-provided credential handles ("cred_handles").

   A single credential structure may be used for initiation of outbound
   contexts and acceptance of inbound contexts. Callers needing to
   operate in only one of these modes may designate this fact when
   credentials are acquired for use, allowing underlying mechanisms to
   optimize their processing and storage requirements. The credential
   elements defined by a particular mechanism may contain multiple
   cryptographic keys, e.g., to enable authentication and message
   encryption to be performed with different algorithms.

   A single credential structure may accommodate credential information
   associated with multiple underlying mechanisms (mech_types), but the
   elements within a given credential structure represent a common
   entity.  A credential structure's contents will vary depending on the
   set of mech_types supported by a particular GSS-API implementation.
   Commonly, a single mech_type will be used for all security contexts
   established by a particular initiator to a particular target; the
   primary motivation for supporting credential sets representing
   multiple mech_types is to allow initiators on systems which are
   equipped to handle multiple types to initiate contexts to targets on
   other systems which can accommodate only a subset of the set
   supported at the initiator's system.

   It is the responsibility of underlying system-specific mechanisms and
   OS functions below the GSS-API to ensure that the ability to acquire
   and use credentials associated with a given identity is constrained
   to appropriate processes within a system. This responsibility should
   be taken seriously by implementors, as the ability for an entity to
   utilize a principal's credentials is equivalent to the entity's
   ability to successfully assert that principal's identity.

   Once a set of GSS-API credentials is established, the transferability
   of that credentials set to other processes or analogous constructs
   within a system is a local matter, not defined by the GSS-API. An
   example local policy would be one in which any credentials received
   as a result of login to a given user account, or of delegation of
   rights to that account, are accessible by, or transferable to,
   processes running under that account.

   The credential establishment process (particularly when performed on
   behalf of users rather than server processes) is likely to require
   access to passwords or other quantities which should be protected
   locally and exposed for the shortest time possible. As a result, it
   will often be appropriate for preliminary credential establishment to
   be performed through local means at user login time, with the



Linn               Document Expiration: 2 December 1995         [Page 5]


Internet-Draft                                              June 2, 1995


   result(s) cached for subsequent reference. These preliminary
   credentials would be set aside (in a system-specific fashion) for
   subsequent use, either:

      to be accessed by an invocation of the GSS-API GSS_Acquire_cred()
      call, returning an explicit handle to reference that credential

      to comprise default credential elements to be installed, and to be
      used when default credential behavior is requested on behalf of a
      process

1.1.2: Tokens

   Tokens are data elements transferred between GSS-API callers, and are
   divided into two classes. Context-level tokens are exchanged in order
   to establish and manage a security context between peers. Per-message
   tokens are exchanged in conjunction with an established context to
   provide protective security services for corresponding data messages.
   The internal contents of both classes of tokens are specific to the
   particular underlying mechanism used to support the GSS-API; Appendix
   B of this document provides a uniform recommendation for designers of
   GSS-API support mechanisms, encapsulating mechanism-specific
   information along with a globally-interpretable mechanism identifier.

   Tokens are opaque from the viewpoint of GSS-API callers. They are
   generated within the GSS-API implementation at an end system,
   provided to a GSS-API caller to be transferred to the peer GSS-API
   caller at a remote end system, and processed by the GSS-API
   implementation at that remote end system. Tokens may be output by
   GSS-API primitives (and are to be transferred to GSS-API peers)
   independent of the status indications which those primitives
   indicate. Token transfer may take place in an in-band manner,
   integrated into the same protocol stream used by the GSS-API callers
   for other data transfers, or in an out-of-band manner across a
   logically separate channel.

   Development of GSS-API support primitives based on a particular
   underlying cryptographic technique and protocol does not necessarily
   imply that GSS-API callers invoking that GSS-API mechanism type will
   be able to interoperate with peers invoking the same technique and
   protocol outside the GSS-API paradigm.  For example, the format of
   GSS-API tokens defined in conjunction with a particular mechanism,
   and the techniques used to integrate those tokens into callers'
   protocols, may not be the same as those used by non-GSS-API callers
   of the same underlying technique.

1.1.3:  Security Contexts




Linn               Document Expiration: 2 December 1995         [Page 6]


Internet-Draft                                              June 2, 1995


   Security contexts are established between peers, using credentials
   established locally in conjunction with each peer or received by
   peers via delegation. Multiple contexts may exist simultaneously
   between a pair of peers, using the same or different sets of
   credentials. Coexistence of multiple contexts using different
   credentials allows graceful rollover when credentials expire.
   Distinction among multiple contexts based on the same credentials
   serves applications by distinguishing different message streams in a
   security sense.

   The GSS-API is independent of underlying protocols and addressing
   structure, and depends on its callers to transport GSS-API-provided
   data elements. As a result of these factors, it is a caller
   responsibility to parse communicated messages, separating GSS-API-
   related data elements from caller-provided data.  The GSS-API is
   independent of connection vs. connectionless orientation of the
   underlying communications service.

   No correlation between security context and communications protocol
   association is dictated. (The optional channel binding facility,
   discussed in Section 1.1.6 of this document, represents an
   intentional exception to this rule, supporting additional protection
   features within GSS-API supporting mechanisms.) This separation
   allows the GSS-API to be used in a wide range of communications
   environments, and also simplifies the calling sequences of the
   individual calls. In many cases (depending on underlying security
   protocol, associated mechanism, and availability of cached
   information), the state information required for context setup can be
   sent concurrently with initial signed user data, without interposing
   additional message exchanges.

1.1.4:  Mechanism Types

   In order to successfully establish a security context with a target
   peer, it is necessary to identify an appropriate underlying mechanism
   type (mech_type) which both initiator and target peers support. The
   definition of a mechanism embodies not only the use of a particular
   cryptographic technology (or a hybrid or choice among alternative
   cryptographic technologies), but also definition of the syntax and
   semantics of data element exchanges which that mechanism will employ
   in order to support security services.

   It is recommended that callers initiating contexts specify the
   "default" mech_type value, allowing system-specific functions within
   or invoked by the GSS-API implementation to select the appropriate
   mech_type, but callers may direct that a particular mech_type be
   employed when necessary.




Linn               Document Expiration: 2 December 1995         [Page 7]


Internet-Draft                                              June 2, 1995


   The means for identifying a shared mech_type to establish a security
   context with a peer will vary in different environments and
   circumstances; examples include (but are not limited to):

      use of a fixed mech_type, defined by configuration, within an
      environment

      syntactic convention on a target-specific basis, through
      examination of a target's name

      lookup of a target's name in a naming service or other database in
      order to identify mech_types supported by that target

      explicit negotiation between GSS-API callers in advance of
      security context setup

   When transferred between GSS-API peers, mech_type specifiers (per
   Appendix B, represented as Object Identifiers (OIDs)) serve to
   qualify the interpretation of associated tokens. (The structure and
   encoding of Object Identifiers is defined in ISO/IEC 8824,
   "Specification of Abstract Syntax Notation One (ASN.1)" and in
   ISO/IEC 8825, "Specification of Basic Encoding Rules for Abstract
   Syntax Notation One (ASN.1)".) Use of hierarchically structured OIDs
   serves to preclude ambiguous interpretation of mech_type specifiers.
   The OID representing the DASS MechType, for example, is
   1.3.12.2.1011.7.5, and that of the Kerberos V5 mechanism, once
   advanced to the level of Proposed Standard, will be
   1.2.840.113554.1.2.2.

1.1.5:  Naming

   The GSS-API avoids prescription of naming structures, treating the
   names transferred across the interface in order to initiate and
   accept security contexts as opaque octet string quantities.  This
   approach supports the GSS-API's goal of implementability atop a range
   of underlying security mechanisms, recognizing the fact that
   different mechanisms process and authenticate names which are
   presented in different forms. Generalized services offering
   translation functions among arbitrary sets of naming environments are
   outside the scope of the GSS-API; availability and use of local
   conversion functions to translate among the naming formats supported
   within a given end system is anticipated.

   Three distinct classes of name representations are used in
   conjunction with different GSS-API parameters:

      an internal form (denoted by INTERNAL NAME), opaque to callers and
      defined by individual GSS-API implementations; GSS-API



Linn               Document Expiration: 2 December 1995         [Page 8]


Internet-Draft                                              June 2, 1995


      implementations supporting multiple namespace types are
      responsible for maintaining internal tags to disambiguate the
      interpretation of particular names

      a printable form (denoted by OCTET STRING), for acceptance from
      and presentation to users; printable name forms are accompanied by
      OID tags identifying the namespace to which they correspond

      tagged, typed naming objects (denoted by ANY)

   Tagging of printable names allows GSS-API callers and underlying
   GSS-API mechanisms to disambiguate name types and to determine
   whether an associated name's type is one which they are capable of
   processing, avoiding aliasing problems which could result from
   misinterpreting a name of one type as a name of another type.

   In addition to providing means for names to be tagged with types,
   this specification defines primitives to support a level of naming
   environment independence for certain calling applications. To provide
   basic services oriented towards the requirements of callers which
   need not themselves interpret the internal syntax and semantics of
   names, GSS-API calls for name comparison (GSS_Compare_name()),
   human-readable display (GSS_Display_name()), input conversion
   (GSS_Import_name()), and internal name deallocation
   (GSS_Release_name())  functions are defined. (It is anticipated that
   these proposed GSS-API calls will be implemented in many end systems
   based on system-specific name manipulation primitives already extant
   within those end systems; inclusion within the GSS-API is intended to
   offer GSS-API callers a portable means to perform specific
   operations, supportive of authorization and audit requirements, on
   authenticated names.)

   GSS_Import_name() implementations can, where appropriate, support
   more than one printable syntax corresponding to a given namespace
   (e.g., alternative printable representations for X.500 Distinguished
   Names), allowing flexibility for their callers to select among
   alternative representations. GSS_Display_name() implementations
   output a printable syntax selected as appropriate to their
   operational environments; this selection is a local matter. Callers
   desiring portability across alternative printable syntaxes should
   refrain from implementing comparisons based on printable name forms
   and should instead use the GSS_Compare_name()  call to determine
   whether or not one internal-format name matches another.

   GSS_Import_name_object() and GSS_Export_name_object() routines are
   incorporated to enable callers to translate between GSS-API internal
   names and typed naming objects (not necessarily printable) used
   within their end systems but outside GSS-API.  This facility



Linn               Document Expiration: 2 December 1995         [Page 9]


Internet-Draft                                              June 2, 1995


   simplifies integration with certain mechanisms and their naming
   objects; it must be noted, however, that wired-in application
   dependence on particular mechanism-specific naming representations
   conflicts with portability goals.

1.1.6:  Channel Bindings

   The GSS-API accommodates the concept of caller-provided channel
   binding ("chan_binding") information.  Channel bindings are used to
   strengthen the quality with which peer entity authentication is
   provided during context establishment, by limiting the scope within
   which an intercepted context establishment token can be reused by an
   attacker. Specifically, they enable GSS-API callers to bind the
   establishment of a security context to relevant characteristics
   (e.g., addresses, transformed representations of encryption keys) of
   the underlying communications channel, of protection mechanisms
   applied to that communications channel, and to application-specific
   data.

   The caller initiating a security context must determine the
   appropriate channel binding values to provide as input to the
   GSS_Init_sec_context() call, and consistent values must be provided
   to GSS_Accept_sec_context() by the context's target, in order for
   both peers' GSS-API mechanisms to validate that received tokens
   possess correct channel-related characteristics. Use or non-use of
   the GSS-API channel binding facility is a caller option.  GSS-API
   mechanisms can operate in an environment where NULL channel bindings
   are presented; mechanism implementors are encouraged, but not
   required, to make use of caller-provided channel binding data within
   their mechanisms. Callers should not assume that underlying
   mechanisms provide confidentiality protection for channel binding
   information.

   When non-NULL channel bindings are provided by callers, certain
   mechanisms can offer enhanced security value by interpreting the
   bindings' content (rather than simply representing those bindings, or
   signatures computed on them, within tokens) and will therefore depend
   on presentation of specific data in a defined format. To this end,
   agreements among mechanism implementors are defining conventional
   interpretations for the contents of channel binding arguments,
   including address specifiers (with content dependent on
   communications protocol environment) for context initiators and
   acceptors. (These conventions are being incorporated in GSS-API
   mechanism specifications and into the GSS-API C language bindings
   specification.) In order for GSS-API callers to be portable across
   multiple mechanisms and achieve the full security functionality which
   each mechanism can provide, it is strongly recommended that GSS-API
   callers provide channel bindings consistent with these conventions



Linn              Document Expiration: 2 December 1995         [Page 10]


Internet-Draft                                              June 2, 1995


   and those of the networking environment in which they operate.

1.2:  GSS-API Features and Issues

   This section describes aspects of GSS-API operations, of the security
   services which the GSS-API provides, and provides commentary on
   design issues.

1.2.1:  Status Reporting

   Each GSS-API call provides two status return values. Major_status
   values provide a mechanism-independent indication of call status
   (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED),
   sufficient to drive normal control flow within the caller in a
   generic fashion. Table 1 summarizes the defined major_status return
   codes in tabular fashion.

   Table 1: GSS-API Major Status Codes

         FATAL ERROR CODES

         GSS_S_BAD_BINDINGS            channel binding mismatch
         GSS_S_BAD_MECH                unsupported mechanism requested
         GSS_S_BAD_NAME                invalid name provided
         GSS_S_BAD_NAMETYPE            name of unsupported type provided
         GSS_S_BAD_STATUS              invalid input status selector
         GSS_S_BAD_SIG                 token had invalid signature
         GSS_S_CONTEXT_EXPIRED         specified security context expired
         GSS_S_CREDENTIALS_EXPIRED     expired credentials detected
         GSS_S_DEFECTIVE_CREDENTIAL    defective credential detected
         GSS_S_DEFECTIVE_TOKEN         defective token detected
         GSS_S_FAILURE                 failure, unspecified at GSS-API
                                         level
         GSS_S_NO_CONTEXT              no valid security context specified
         GSS_S_NO_CRED                 no valid credentials provided
         GSS_S_BAD_QOP                 unsupported QOP value
         GSS_S_UNAUTHORIZED            operation unauthorized
         GSS_S_UNAVAILABLE             operation unavailable

         INFORMATORY STATUS CODES

         GSS_S_COMPLETE                normal completion
         GSS_S_CONTINUE_NEEDED         continuation call to routine
                                        required
         GSS_S_DUPLICATE_TOKEN         duplicate per-message token
                                        detected
         GSS_S_OLD_TOKEN               timed-out per-message token
                                        detected



Linn              Document Expiration: 2 December 1995         [Page 11]


Internet-Draft                                              June 2, 1995


         GSS_S_UNSEQ_TOKEN             reordered (early) per-message token
                                        detected
         GSS_S_GAP_TOKEN               skipped predecessor token(s)
                                        detected

   Minor_status provides more detailed status information which may
   include status codes specific to the underlying security mechanism.
   Minor_status values are not specified in this document.

   GSS_S_CONTINUE_NEEDED major_status returns, and optional message
   outputs, are provided in GSS_Init_sec_context()  and
   GSS_Accept_sec_context()  calls so that different mechanisms'
   employment of different numbers of messages within their
   authentication sequences need not be reflected in separate code paths
   within calling applications. Instead, such cases are accomodated with
   sequences of continuation calls to GSS_Init_sec_context()  and
   GSS_Accept_sec_context().  The same mechanism is used to encapsulate
   mutual authentication within the GSS-API's context initiation calls.

   For mech_types which require interactions with third-party servers in
   order to establish a security context, GSS-API context establishment
   calls may block pending completion of such third-party interactions.
   On the other hand, no GSS-API calls pend on serialized interactions
   with GSS-API peer entities.  As a result, local GSS-API status
   returns cannot reflect unpredictable or asynchronous exceptions
   occurring at remote peers, and reflection of such status information
   is a caller responsibility outside the GSS-API.

1.2.2: Per-Message Security Service Availability

   When a context is established, two flags are returned to indicate the
   set of per-message protection security services which will be
   available on the context:

      the integ_avail flag indicates whether per-message integrity and
      data origin authentication services are available

      the conf_avail flag indicates whether per-message confidentiality
      services are available, and will never be returned TRUE unless the
      integ_avail flag is also returned TRUE

      GSS-API callers desiring per-message security services should
      check the values of these flags at context establishment time, and
      must be aware that a returned FALSE value for integ_avail means
      that invocation of GSS_GetMIC()  or GSS_Wrap() primitives on the
      associated context will apply no cryptographic protection to user
      data messages.




Linn              Document Expiration: 2 December 1995         [Page 12]


Internet-Draft                                              June 2, 1995


   The GSS-API per-message protection service primitives, as the
   category name implies, are oriented to operation at the granularity
   of protocol data units. They perform cryptographic operations on the
   data units, transfer cryptographic control information in tokens,
   and, in the case of GSS_Wrap(), encapsulate the protected data unit.
   As such, these primitives are not oriented to efficient data
   protection for stream-paradigm protocols (e.g., Telnet) if
   cryptography must be applied on an octet-by-octet basis.

1.2.3: Per-Message Replay Detection and Sequencing

   Certain underlying mech_types are expected to offer support for
   replay detection and/or sequencing of messages transferred on the
   contexts they support. These optionally-selectable protection
   features are distinct from replay detection and sequencing features
   applied to the context establishment operation itself; the presence
   or absence of context-level replay or sequencing features is wholly a
   function of the underlying mech_type's capabilities, and is not
   selected or omitted as a caller option.

   The caller initiating a context provides flags (replay_det_req_flag
   and sequence_req_flag) to specify whether the use of per-message
   replay detection and sequencing features is desired on the context
   being established. The GSS-API implementation at the initiator system
   can determine whether these features are supported (and whether they
   are optionally selectable) as a function of mech_type, without need
   for bilateral negotiation with the target. When enabled, these
   features provide recipients with indicators as a result of GSS-API
   processing of incoming messages, identifying whether those messages
   were detected as duplicates or out-of-sequence. Detection of such
   events does not prevent a suspect message from being provided to a
   recipient; the appropriate course of action on a suspect message is a
   matter of caller policy.

   The semantics of the replay detection and sequencing services applied
   to received messages, as visible across the interface which the GSS-
   API provides to its clients, are as follows:

   When replay_det_state is TRUE, the possible major_status returns for
   well-formed and correctly signed messages are as follows:

      1. GSS_S_COMPLETE indicates that the message was within the window
      (of time or sequence space) allowing replay events to be detected,
      and that the message was not a replay of a previously-processed
      message within that window.

      2. GSS_S_DUPLICATE_TOKEN indicates that the cryptographic
      checkvalue on the received message was correct, but that the



Linn              Document Expiration: 2 December 1995         [Page 13]


Internet-Draft                                              June 2, 1995


      message was recognized as a duplicate of a previously-processed
      message.

      3. GSS_S_OLD_TOKEN indicates that the cryptographic checkvalue on
      the received message was correct, but that the message is too old
      to be checked for duplication.

   When sequence_state is TRUE, the possible major_status returns for
   well-formed and correctly signed messages are as follows:

      1. GSS_S_COMPLETE indicates that the message was within the window
      (of time or sequence space) allowing replay events to be detected,
      that the message was not a replay of a previously-processed
      message within that window, and that no predecessor sequenced
      messages are missing relative to the last received message (if
      any) processed on the context with a correct cryptographic
      checkvalue.

      2. GSS_S_DUPLICATE_TOKEN indicates that the signature on the
      received message was correct, but that the message was recognized
      as a duplicate of a previously-processed message.

      3. GSS_S_OLD_TOKEN indicates that the signature on the received
      message was correct, but that the token is too old to be checked
      for duplication.

      4. GSS_S_UNSEQ_TOKEN indicates that the cryptographic checkvalue
      on the received message was correct, but that it is earlier in a
      sequenced stream than a message already processed on the context.
      [Note: Mechanisms can be architected to provide a stricter form of
      sequencing service, delivering particular messages to recipients
      only after all predecessor messages in an ordered stream have been
      delivered.  This type of support is incompatible with the GSS-API
      paradigm in which recipients receive all messages, whether in
      order or not, and provide them (one at a time, without intra-GSS-
      API message buffering) to GSS-API routines for validation.  GSS-
      API facilities provide supportive functions, aiding clients to
      achieve strict message stream integrity in an efficient manner in
      conjunction with sequencing provisions in communications
      protocols, but the GSS-API does not offer this level of message
      stream integrity service by itself.]

      5. GSS_S_GAP_TOKEN indicates that the cryptographic checkvalue on
      the received message was correct, but that one or more predecessor
      sequenced messages have not been successfully processed relative
      to the last received message (if any) processed on the context
      with a correct cryptographic checkvalue.




Linn              Document Expiration: 2 December 1995         [Page 14]


Internet-Draft                                              June 2, 1995


   As the message stream integrity features (especially sequencing) may
   interfere with certain applications' intended communications
   paradigms, and since support for such features is likely to be
   resource intensive, it is highly recommended that mech_types
   supporting these features allow them to be activated selectively on
   initiator request when a context is established. A context initiator
   and target are provided with corresponding indicators
   (replay_det_state and sequence_state), signifying whether these
   features are active on a given context.

   An example mech_type supporting per-message replay detection could
   (when replay_det_state is TRUE) implement the feature as follows: The
   underlying mechanism would insert timestamps in data elements output
   by GSS_GetMIC()  and GSS_Wrap(), and would maintain (within a time-
   limited window) a cache (qualified by originator-recipient pair)
   identifying received data elements processed by GSS_VerifyMIC()  and
   GSS_Unwrap(). When this feature is active, exception status returns
   (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN) will be provided when
   GSS_VerifyMIC()  or GSS_Unwrap() is presented with a message which is
   either a detected duplicate of a prior message or which is too old to
   validate against a cache of recently received messages.

1.2.4:  Quality of Protection

   Some mech_types will provide their users with fine granularity
   control over the means used to provide per-message protection,
   allowing callers to trade off security processing overhead
   dynamically against the protection requirements of particular
   messages. A per-message quality-of-protection parameter (analogous to
   quality-of-service, or QOS) selects among different QOP options
   supported by that mechanism. On context establishment for a multi-QOP
   mech_type, context-level data provides the prerequisite data for a
   range of protection qualities.

   It is expected that the majority of callers will not wish to exert
   explicit mechanism-specific QOP control and will therefore request
   selection of a default QOP. Definitions of, and choices among, non-
   default QOP values are mechanism-specific, and no ordered sequences
   of QOP values can be assumed equivalent across different mechanisms.
   Meaningful use of non-default QOP values demands that callers be
   familiar with the QOP definitions of an underlying mechanism or
   mechanisms, and is therefore a non-portable construct.  The
   GSS_S_BAD_QOP major_status value is defined in order to indicate that
   a provided QOP value is unsupported for a security context, most
   likely because that value is unrecognized by the underlying
   mechanism.

1.2.5: Anonymity Support



Linn              Document Expiration: 2 December 1995         [Page 15]


Internet-Draft                                              June 2, 1995


   In certain situations or environments, an application may wish to
   authenticate a peer and/or protect communications using GSS-API per-
   message services without revealing its own identity.  For example,
   consider an application which provides read access to a research
   database, and which permits queries by arbitrary requestors.  A
   client of such a service might wish to authenticate the service, to
   establish trust in the information received from it, but might not
   wish to disclose its identity to the service for privacy reasons.

   In ordinary GSS-API usage, a context initiator's identity is made
   available to the context acceptor as part of the context
   establishment process.  To provide for anonymity support, a facility
   (input anon_req_flag to GSS_Init_sec_context()) is provided through
   which context initiators may request that their identity not be
   provided to the context acceptor.  Mechanisms are not required to
   honor this request, but a caller will be informed (via returned
   anon_state indicator from GSS_Init_sec_context()) whether or not the
   request is honored.

   The following Object Identifier value is provided as a means to
   identify anonymous names:

   {2(joint-iso-ccitt), 16(country), 840(US(ANSI)), 1(organizations),
   113687(OpenVision), 1(security), 2(nametypes), 1(anonymous-name)}

   The recommended symbolic name corresponding to this definition is
   GSS_C_NAMETYPE_ANONYMOUS.

1.2.6: Initialization

   No initialization calls (i.e., calls which must be invoked prior to
   invocation of other facilities in the interface) are defined in GSS-
   API.  As an implication of this fact, GSS-API implementations must
   themselves be self-initializing.

2:  Interface Descriptions

   This section describes the GSS-API's service interface, dividing the
   set of calls offered into four groups. Credential management calls
   are related to the acquisition and release of credentials by
   principals. Context-level calls are related to the management of
   security contexts between principals. Per-message calls are related
   to the protection of individual messages on established security
   contexts. Support calls provide ancillary functions useful to GSS-API
   callers. Table 2 groups and summarizes the calls in tabular fashion.






Linn              Document Expiration: 2 December 1995         [Page 16]


Internet-Draft                                              June 2, 1995


   Table 2:  GSS-API Calls

   CREDENTIAL MANAGEMENT

   GSS_Acquire_cred             acquire credentials for use
   GSS_Release_cred             release credentials after use
   GSS_Inquire_cred             display information about
                                credentials
   GSS_Add_cred                 construct credentials incrementally

   CONTEXT-LEVEL CALLS

   GSS_Init_sec_context         initiate outbound security context
   GSS_Accept_sec_context       accept inbound security context
   GSS_Delete_sec_context       flush context when no longer needed
   GSS_Process_context_token    process received control token on
                                context
   GSS_Context_time             indicate validity time remaining on
                                      context
   GSS_Inquire_context          display information about context
   GSS_Wrap_size_limit          determine GSS_Wrap token size limit
   GSS_Export_sec_context       transfer context to other process
   GSS_Import_sec_context       import transferred context

   PER-MESSAGE CALLS

   GSS_GetMIC                   apply signature, receive as token
                                separate from message
   GSS_VerifyMIC                validate signature token along with
                                message
   GSS_Wrap                     sign, optionally encrypt,
                                encapsulate
   GSS_Unwrap                   decapsulate, decrypt if needed,
                                validate signature

   SUPPORT CALLS

   GSS_Display_status           translate status codes to printable
                                form
   GSS_Indicate_mechs           indicate mech_types supported on
                                local system
   GSS_Compare_name             compare two names for equality
   GSS_Display_name             translate name to printable form
   GSS_Import_name              convert printable name to
                                normalized form
   GSS_Release_name             free storage of normalized-form
                                name
   GSS_Release_buffer           free storage of printable name



Linn              Document Expiration: 2 December 1995         [Page 17]


Internet-Draft                                              June 2, 1995


   GSS_Release_oid              free storage of OID object
   GSS_Release_oid_set          free storage of OID set object
   GSS_Import_name_object       import name from object
   GSS_Export_name_object       export name to object
   GSS_Create_empty_oid_set     create empty OID set
   GSS_Add_oid_set_member       add member to OID set
   GSS_Test_oid_set_member      test if OID is member of OID set
   GSS_OID_to_str               display OID as string
   GSS_Str_to_OID               construct OID from string
   GSS_Get_mechs_for_name       identify mechanisms supporting name


2.1:  Credential management calls

   These GSS-API calls provide functions related to the management of
   credentials. Their characterization with regard to whether or not
   they may block pending exchanges with other network entities (e.g.,
   directories or authentication servers) depends in part on OS-specific
   (extra-GSS-API) issues, so is not specified in this document.

   The GSS_Acquire_cred()  call is defined within the GSS-API in support
   of application portability, with a particular orientation towards
   support of portable server applications. It is recognized that (for
   certain systems and mechanisms) credentials for interactive users may
   be managed differently from credentials for server processes; in such
   environments, it is the GSS-API implementation's responsibility to
   distinguish these cases and the procedures for making this
   distinction are a local matter. The GSS_Release_cred()  call provides
   a means for callers to indicate to the GSS-API that use of a
   credentials structure is no longer required. The GSS_Inquire_cred()
   call allows callers to determine information about a credentials
   structure.  The GSS_Add_cred() call enables callers to append
   elements to an existing credential structure, as to iteratively
   construct a multi-mechanism credential.

2.1.1  GSS_Acquire_cred call

   Inputs:

   o  desired_name INTERNAL NAME, -NULL requests locally-determined
      default

   o  lifetime_req INTEGER,-in seconds; 0 requests default

   o  desired_mechs SET OF OBJECT IDENTIFIER,-empty set requests
      system-selected default

   o  cred_usage INTEGER-0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,



Linn              Document Expiration: 2 December 1995         [Page 18]


Internet-Draft                                              June 2, 1995


      2=ACCEPT-ONLY

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_cred_handle CREDENTIAL HANDLE,

   o  actual_mechs SET OF OBJECT IDENTIFIER,

   o  lifetime_rec INTEGER -in seconds, or reserved value for
      INDEFINITE

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that requested credentials were
      successfully established, for the duration indicated in
      lifetime_rec, suitable for the usage requested in cred_usage,
      for the set of mech_types indicated in actual_mechs, and that
      those credentials can be referenced for subsequent use with
      the handle returned in output_cred_handle.

   o  GSS_S_BAD_MECH indicates that a mech_type unsupported by the
      GSS-API implementation type was requested, causing the
      credential establishment operation to fail.

   o  GSS_S_BAD_NAMETYPE indicates that the provided desired_name is
      uninterpretable or of a type unsupported by the supporting
      GSS-API implementation, so no credentials could be
      established for the accompanying desired_name.

   o  GSS_S_BAD_NAME indicates that the provided desired_name is
      inconsistent in terms of internally-incorporated type specifier
      information, so no credentials could be established for the
      accompanying desired_name.

   o  GSS_S_FAILURE indicates that credential establishment failed
      for reasons unspecified at the GSS-API level, including lack
      of authorization to establish and use credentials associated
      with the identity named in the input desired_name argument.


   GSS_Acquire_cred()  is used to acquire credentials so that a
   principal can (as a function of the input cred_usage parameter)
   initiate and/or accept security contexts under the identity
   represented by the desired_name input argument. On successful



Linn              Document Expiration: 2 December 1995         [Page 19]


Internet-Draft                                              June 2, 1995


   completion, the returned output_cred_handle result provides a handle
   for subsequent references to the acquired credentials.  Typically,
   single-user client processes requesting that default credential
   behavior be applied for context establishment purposes will have no
   need to invoke this call.

   A caller may provide the value NULL for desired_name, signifying a
   request for credentials corresponding to a principal identity
   selected by default for the caller. The procedures used by GSS-API
   implementations to select the appropriate principal identity in
   response to such a request are local matters. It is possible that
   multiple pre-established credentials may exist for the same principal
   identity (for example, as a result of multiple user login sessions)
   when GSS_Acquire_cred()  is called; the means used in such cases to
   select a specific credential are local matters.  The input
   lifetime_req argument to GSS_Acquire_cred() may provide useful
   information for local GSS-API implementations to employ in making
   this disambiguation in a manner which will best satisfy a caller's
   intent.

   The lifetime_rec result indicates the length of time for which the
   acquired credentials will be valid, as an offset from the present. A
   mechanism may return a reserved value indicating INDEFINITE if no
   constraints on credential lifetime are imposed.  A caller of
   GSS_Acquire_cred()  can request a length of time for which acquired
   credentials are to be valid (lifetime_req argument), beginning at the
   present, or can request credentials with a default validity interval.
   (Requests for postdated credentials are not supported within the
   GSS-API.) Certain mechanisms and implementations may bind in
   credential validity period specifiers at a point preliminary to
   invocation of the GSS_Acquire_cred() call (e.g., in conjunction with
   user login procedures). As a result, callers requesting non-default
   values for lifetime_req must recognize that such requests cannot
   always be honored and must be prepared to accommodate the use of
   returned credentials with different lifetimes as indicated in
   lifetime_rec.

   The caller of GSS_Acquire_cred()  can explicitly specify a set of
   mech_types which are to be accommodated in the returned credentials
   (desired_mechs argument), or can request credentials for a system-
   defined default set of mech_types. Selection of the system-specified
   default set is recommended in the interests of application
   portability. The actual_mechs return value may be interrogated by the
   caller to determine the set of mechanisms with which the returned
   credentials may be used.

2.1.2:  GSS_Release_cred call




Linn              Document Expiration: 2 December 1995         [Page 20]


Internet-Draft                                              June 2, 1995


   Input:

   o  cred_handle CREDENTIAL HANDLE - NULL specifies that
      the credential elements used when default credential behavior
      is requested be released.

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the credentials referenced by the
      input cred_handle were released for purposes of subsequent
      access by the caller. The effect on other processes which may
      be authorized shared access to such credentials is a local
      matter.

   o  GSS_S_NO_CRED indicates that no release operation was
      performed, either because the input cred_handle was invalid or
      because the caller lacks authorization to access the
      referenced credentials.

   o  GSS_S_FAILURE indicates that the release operation failed for
      reasons unspecified at the GSS-API level.

   Provides a means for a caller to explicitly request that credentials
   be released when their use is no longer required. Note that system-
   specific credential management functions are also likely to exist,
   for example to assure that credentials shared among processes are
   properly deleted when all affected processes terminate, even if no
   explicit release requests are issued by those processes. Given the
   fact that multiple callers are not precluded from gaining authorized
   access to the same credentials, invocation of GSS_Release_cred()
   cannot be assumed to delete a particular set of credentials on a
   system-wide basis.

2.1.3:  GSS_Inquire_cred call

   Input:

   o  cred_handle CREDENTIAL HANDLE -NULL specifies that the
      credential elements used when default credential behavior is
      requested are to be queried

   Outputs:



Linn              Document Expiration: 2 December 1995         [Page 21]


Internet-Draft                                              June 2, 1995


   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  cred_name INTERNAL NAME,

   o  lifetime_rec INTEGER -in seconds, or reserved value for
      INDEFINITE

   o  cred_usage INTEGER, -0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
      2=ACCEPT-ONLY

   o  mech_set SET OF OBJECT IDENTIFIER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the credentials referenced by the
      input cred_handle argument were valid, and that the output
      cred_name, lifetime_rec, and cred_usage values represent,
      respectively, the credentials' associated principal name,
      remaining lifetime, suitable usage modes, and supported
      mechanism types.

   o  GSS_S_NO_CRED indicates that no information could be returned
      about the referenced credentials, either because the input
      cred_handle was invalid or because the caller lacks
      authorization to access the referenced credentials.

   o  GSS_S_FAILURE indicates that the release operation failed for
      reasons unspecified at the GSS-API level.

   The GSS_Inquire_cred()  call is defined primarily for the use of
   those callers which request use of default credential behavior rather
   than acquiring credentials explicitly with GSS_Acquire_cred().  It
   enables callers to determine a credential structure's associated
   principal name, remaining validity period, usability for security
   context initiation and/or acceptance, and supported mechanisms.

2.1.4:  GSS_Add_cred call

   Inputs:

   o  cred_handle CREDENTIAL HANDLE - handle to credential structure
      created with prior GSS_Acquire_cred() or GSS_Add_cred() call,
      or NULL to append elements to the set applied for the caller
      when default credential behavior is specified.

   o  desired_name INTERNAL NAME - NULL requests locally-determined



Linn              Document Expiration: 2 December 1995         [Page 22]


Internet-Draft                                              June 2, 1995


      default

   o  lifetime_req INTEGER - in seconds; 0 requests default

   o  desired_mech OBJECT IDENTIFIER

   o  cred_usage INTEGER - 0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
           2=ACCEPT-ONLY

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_cred_handle CREDENTIAL HANDLE,

   o  actual_mechs SET OF OBJECT IDENTIFIER,

   o  lifetime_rec INTEGER -in seconds, or reserved value for
      INDEFINITE

   o  cred_usage INTEGER, -0=INITIATE-AND-ACCEPT, 1=INITIATE-ONLY,
      2=ACCEPT-ONLY

   o  mech_set SET OF OBJECT IDENTIFIER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the credentials referenced by
      the input cred_handle argument were valid, and that the
      output_cred_handle references a credential valid for the
      duration indicated in lifetime_rec, suitable for the usage
      requested in cred_usage, and for the mechanisms indicated in
      actual_mechs.

   o  GSS_S_BAD_MECH indicates that the input desired_mech specified
      a mechanism unsupported by the GSS-API implementation, causing
      the GSS_Add_cred() operation to fail.

   o  GSS_S_BAD_NAMETYPE indicates that the provided desired_name is
      is uninterpretable or of a type unsupported by the GSS-API
      implementation, so the GSS_Add_cred() operation could not be
      performed for that name.

   o  GSS_S_BAD_NAME indicates that the provided desired_name is
      inconsistent in terms of internally-incorporated type specifier
      information, so the GSS_Add_cred() operation could not be



Linn              Document Expiration: 2 December 1995         [Page 23]


Internet-Draft                                              June 2, 1995


      performed for that name.

   o  GSS_S_NO_CRED indicates that the input cred_handle referenced
      invalid or inaccessible credentials.

   o  GSS_S_FAILURE indicates that the release operation failed for
      reasons unspecified at the GSS-API level, including lack of
      authorization to establish or use credentials representing
      the requested identity.

   GSS_Add_cred() enables callers to construct credentials iteratively
   through successive operations.  This offers particular value in
   multi-mechanism environments, as the major_status and minor_status
   values returned on each iteration are individually visible and can
   therefore be interpreted unambiguously on a per-mechanism basis.

   The same input desired_name, or default reference, should be used on
   all GSS_Acquire_cred() and GSS_Add_cred() calls corresponding to a
   particular credential.

2.2:  Context-level calls

   This group of calls is devoted to the establishment and management of
   security contexts between peers. A context's initiator calls
   GSS_Init_sec_context(),  resulting in generation of a token which the
   caller passes to the target. At the target, that token is passed to
   GSS_Accept_sec_context().  Depending on the underlying mech_type and
   specified options, additional token exchanges may be performed in the
   course of context establishment; such exchanges are accommodated by
   GSS_S_CONTINUE_NEEDED status returns from GSS_Init_sec_context()  and
   GSS_Accept_sec_context().

   Either party to an established context may invoke
   GSS_Delete_sec_context() to flush context information when a context
   is no longer required. GSS_Process_context_token()  is used to
   process received tokens carrying context-level control information.
   GSS_Context_time()  allows a caller to determine the length of time
   for which an established context will remain valid.
   GSS_Inquire_context() returns status information describing context
   characteristics. GSS_Wrap_size_limit() allows a caller to determine
   the size of a token which will be generated by a GSS_Wrap()
   operation.  GSS_Export_sec_context() and GSS_Import_sec_context()
   enable transfer of active contexts between processes on an end
   system.

2.2.1:  GSS_Init_sec_context call

   Inputs:



Linn              Document Expiration: 2 December 1995         [Page 24]


Internet-Draft                                              June 2, 1995


   o  claimant_cred_handle CREDENTIAL HANDLE, -NULL specifies "use
      default"

   o  input_context_handle CONTEXT HANDLE, -0 specifies "none assigned
      yet"

   o  targ_name INTERNAL NAME,

   o  mech_type OBJECT IDENTIFIER, -NULL parameter specifies "use
      default"

   o  deleg_req_flag BOOLEAN,

   o  mutual_req_flag BOOLEAN,

   o  replay_det_req_flag BOOLEAN,

   o  sequence_req_flag BOOLEAN,

   o  anon_req_flag BOOLEAN,

   o  lifetime_req INTEGER,-0 specifies default lifetime

   o  chan_bindings OCTET STRING,

   o  input_token OCTET STRING-NULL or token received from target

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_context_handle CONTEXT HANDLE,

   o  mech_type OBJECT IDENTIFIER, -actual mechanism always
      indicated, never NULL

   o  output_token OCTET STRING, -NULL or token to pass to context
      target

   o  deleg_state BOOLEAN,

   o  mutual_state BOOLEAN,

   o  replay_det_state BOOLEAN,

   o  sequence_state BOOLEAN,



Linn              Document Expiration: 2 December 1995         [Page 25]


Internet-Draft                                              June 2, 1995


   o  anon_state BOOLEAN,

   o  trans_state BOOLEAN,

   o  conf_avail BOOLEAN,

   o  integ_avail BOOLEAN,

   o  lifetime_rec INTEGER - in seconds, or reserved value for
      INDEFINITE

   This call may block pending network interactions for those mech_types
   in which an authentication server or other network entity must be
   consulted on behalf of a context initiator in order to generate an
   output_token suitable for presentation to a specified target.

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that context-level information was
      successfully initialized, and that the returned output_token
      will provide sufficient information for the target to perform
      per-message processing on the newly-established context.

   o  GSS_S_CONTINUE_NEEDED indicates that control information in the
      returned output_token must be sent to the target, and that a
      reply must be received and passed as the input_token argument
      to a continuation call to GSS_Init_sec_context(),  before
      per-message processing can be performed in conjunction with
      this context.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks
      performed on the input_token failed, preventing further
      processing from being performed based on that token.

   o  GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
      performed on the credential structure referenced by
      claimant_cred_handle failed, preventing further processing from
      being performed using that credential structure.

   o  GSS_S_BAD_SIG indicates that the received input_token
      contains an incorrect signature, so context setup cannot be
      accomplished.

   o  GSS_S_NO_CRED indicates that no context was established,
      either because the input cred_handle was invalid, because the
      referenced credentials are valid for context acceptor use
      only, or because the caller lacks authorization to access the
      referenced credentials.



Linn              Document Expiration: 2 December 1995         [Page 26]


Internet-Draft                                              June 2, 1995


   o  GSS_S_CREDENTIALS_EXPIRED indicates that the credentials
      provided through the input claimant_cred_handle argument are no
      longer valid, so context establishment cannot be completed.

   o  GSS_S_BAD_BINDINGS indicates that a mismatch between the
      caller-provided chan_bindings and those extracted from the
      input_token was detected, signifying a security-relevant
      event and preventing context establishment. (This result will
      be returned by GSS_Init_sec_context only for contexts where
      mutual_state is TRUE.)

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided; this major status will
      be returned only for successor calls following GSS_S_CONTINUE_
      NEEDED status returns.

   o  GSS_S_BAD_NAMETYPE indicates that the provided targ_name is
      of a type uninterpretable or unsupported by the supporting
      GSS-API implementation, so context establishment cannot be
      completed.

   o  GSS_S_BAD_NAME indicates that the provided targ_name is
      inconsistent in terms of internally-incorporated type specifier
      information, so context establishment cannot be accomplished.

   o  GSS_S_BAD_MECH indicates receipt of a context establishment token
      or of a caller request specifying a mechanism unsupported by
      the local system or with the caller's active credentials

   o  GSS_S_FAILURE indicates that context setup could not be
      accomplished for reasons unspecified at the GSS-API level, and
      that no interface-defined recovery action is available.

   This routine is used by a context initiator, and ordinarily emits one
   (or, for the case of a multi-step exchange, more than one)
   output_token suitable for use by the target within the selected
   mech_type's protocol. Using information in the credentials structure
   referenced by claimant_cred_handle, GSS_Init_sec_context()
   initializes the data structures required to establish a security
   context with target targ_name. The claimant_cred_handle must
   correspond to the same valid credentials structure on the initial
   call to GSS_Init_sec_context()  and on any successor calls resulting
   from GSS_S_CONTINUE_NEEDED status returns; different protocol
   sequences modeled by the GSS_S_CONTINUE_NEEDED facility will require
   access to credentials at different points in the context
   establishment sequence.

   The input_context_handle argument is 0, specifying "not yet



Linn              Document Expiration: 2 December 1995         [Page 27]


Internet-Draft                                              June 2, 1995


   assigned", on the first GSS_Init_sec_context()  call relating to a
   given context. If successful (i.e., if accompanied by major_status
   GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and only if successful, the
   initial GSS_Init_sec_context() call returns a non-zero
   output_context_handle for use in future references to this context.
   Once a non-zero output_context_handle has been returned, GSS-API
   callers should call GSS_Delete_sec_context() to release context-
   related resources if errors occur in later phases of context
   establishment, or when an established context is no longer required.

   When continuation attempts to GSS_Init_sec_context() are needed to
   perform context establishment, the previously-returned non-zero
   handle value is entered into the input_context_handle argument and
   will be echoed in the returned output_context_handle argument. On
   such continuation attempts (and only on continuation attempts) the
   input_token value is used, to provide the token returned from the
   context's target.

   The chan_bindings argument is used by the caller to provide
   information binding the security context to security-related
   characteristics (e.g., addresses, cryptographic keys) of the
   underlying communications channel. See Section 1.1.6 of this document
   for more discussion of this argument's usage.

   The input_token argument contains a message received from the target,
   and is significant only on a call to GSS_Init_sec_context()  which
   follows a previous return indicating GSS_S_CONTINUE_NEEDED
   major_status.

   It is the caller's responsibility to establish a communications path
   to the target, and to transmit any returned output_token (independent
   of the accompanying returned major_status value) to the target over
   that path. The output_token can, however, be transmitted along with
   the first application-provided input message to be processed by
   GSS_GetMIC() or GSS_Wrap() in conjunction with a successfully-
   established context.

   The initiator may request various context-level functions through
   input flags: the deleg_req_flag requests delegation of access rights,
   the mutual_req_flag requests mutual authentication, the
   replay_det_req_flag requests that replay detection features be
   applied to messages transferred on the established context, and the
   sequence_req_flag requests that sequencing be enforced. (See Section
   1.2.3 for more information on replay detection and sequencing
   features.)  The anon_req_flag requests that the initiator's identity
   not be transferred within tokens to be sent to the acceptor.

   Not all of the optionally-requestable features will be available in



Linn              Document Expiration: 2 December 1995         [Page 28]


Internet-Draft                                              June 2, 1995


   all underlying mech_types. The corresponding return state values
   deleg_state, mutual_state, replay_det_state, and sequence_state
   indicate, as a function of mech_type processing capabilities and
   initiator-provided input flags, the set of features which will be
   active on the context.  The returned trans_state value indicates
   whether the context is transferable to other processes through use of
   GSS_Export_sec_context().  These state indicators' values are
   undefined unless the routine's major_status indicates GSS_S_COMPLETE.

   The returned anon_state value, unlike the other feature indicators,
   has a defined value not only when GSS_Init_sec_context() returns
   GSS_S_COMPLETE but also when GSS_S_CONTINUE_NEEDED is returned.  When
   anon_state is returned TRUE, this indicates that neither the current
   token nor its predecessors delivers or has delivered the initiator's
   identity.  Callers wishing to perform context establishment only if
   anonymity support is provided should transfer a returned token from
   GSS_Init_sec_context() to the peer only if it is accompanied by a
   TRUE anon_state indicator.

   Failure to provide the precise set of features requested by the
   caller does not cause context establishment to fail; it is the
   caller's prerogative to delete the context if the feature set
   provided is unsuitable for the caller's use.

   The returned mech_type value indicates the specific mechanism
   employed on the context, is valid only along with major_status
   GSS_S_COMPLETE, and will never indicate the value for "default".
   Note that, for the case of certain mechanisms which themselves
   perform negotiation, the returned mech_type result may indicate
   selection of a mechanism identified by an OID different than that
   passed in the input mech_type argument.

   The conf_avail return value indicates whether the context supports
   per-message confidentiality services, and so informs the caller
   whether or not a request for encryption through the conf_req_flag
   input to GSS_Wrap()  can be honored. In similar fashion, the
   integ_avail return value indicates whether per-message integrity
   services are available (through either GSS_GetMIC() or GSS_Wrap())
   on the established context.

   The lifetime_req input specifies a desired upper bound for the
   lifetime of the context to be established, with a value of 0 used to
   request a default lifetime. The lifetime_rec return value indicates
   the length of time for which the context will be valid, expressed as
   an offset from the present; depending on mechanism capabilities,
   credential lifetimes, and local policy, it may not correspond to the
   value requested in lifetime_req.  If no constraints on context
   lifetime are imposed, this may be indicated by returning a reserved



Linn              Document Expiration: 2 December 1995         [Page 29]


Internet-Draft                                              June 2, 1995


   value representing INDEFINITE lifetime_req. The values of conf_avail,
   integ_avail, and lifetime_rec are undefined unless the routine's
   major_status indicates GSS_S_COMPLETE.

   If the mutual_state is TRUE, this fact will be reflected within the
   output_token. A call to GSS_Accept_sec_context()  at the target in
   conjunction with such a context will return a token, to be processed
   by a continuation call to GSS_Init_sec_context(),  in order to
   achieve mutual authentication.

2.2.2:  GSS_Accept_sec_context call

   Inputs:

   o  acceptor_cred_handle CREDENTIAL HANDLE,-NULL specifies "use
      default"

   o  input_context_handle CONTEXT HANDLE, -0 specifies "not yet assigned"

   o  chan_bindings OCTET STRING,

   o  input_token OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  src_name INTERNAL NAME,

   o  mech_type OBJECT IDENTIFIER,

   o  output_context_handle CONTEXT HANDLE,

   o  deleg_state BOOLEAN,

   o  mutual_state BOOLEAN,

   o  replay_det_state BOOLEAN,

   o  sequence_state BOOLEAN,

   o  anon_state BOOLEAN,

   o  trans_state BOOLEAN,

   o  conf_avail BOOLEAN,



Linn              Document Expiration: 2 December 1995         [Page 30]


Internet-Draft                                              June 2, 1995


   o  integ_avail BOOLEAN,

   o  lifetime_rec INTEGER, - in seconds, or reserved value for
      INDEFINITE

   o  delegated_cred_handle CREDENTIAL HANDLE,

   o  output_token OCTET STRING -NULL or token to pass to context
      initiator

   This call may block pending network interactions for those mech_types
   in which a directory service or other network entity must be
   consulted on behalf of a context acceptor in order to validate a
   received input_token.

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that context-level data structures
      were successfully initialized, and that per-message processing
      can now be performed in conjunction with this context.

   o  GSS_S_CONTINUE_NEEDED indicates that control information in the
      returned output_token must be sent to the initiator, and that
      a response must be received and passed as the input_token
      argument to a continuation call to GSS_Accept_sec_context(),
      before per-message processing can be performed in conjunction
      with this context.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
      on the input_token failed, preventing further processing from
      being performed based on that token.

   o  GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
      performed on the credential structure referenced by
      acceptor_cred_handle failed, preventing further processing from being
      performed using that credential structure.

   o  GSS_S_BAD_SIG indicates that the received input_token contains
      an incorrect signature, so context setup cannot be accomplished.

   o  GSS_S_DUPLICATE_TOKEN indicates that the signature on the
      received input_token was correct, but that the input_token
      was recognized as a duplicate of an input_token already
      processed. No new context is established.

   o  GSS_S_OLD_TOKEN indicates that the signature on the received
      input_token was correct, but that the input_token is too old
      to be checked for duplication against previously-processed



Linn              Document Expiration: 2 December 1995         [Page 31]


Internet-Draft                                              June 2, 1995


      input_tokens. No new context is established.

   o  GSS_S_NO_CRED indicates that no context was established, either
      because the input cred_handle was invalid, because the
      referenced credentials are valid for context initiator use
      only, or because the caller lacks authorization to access the
      referenced credentials.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided
      through the input acceptor_cred_handle argument are no
      longer valid, so context establishment cannot be completed.

   o  GSS_S_BAD_BINDINGS indicates that a mismatch between the
      caller-provided chan_bindings and those extracted from the
      input_token was detected, signifying a security-relevant
      event and preventing context establishment.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided; this major status will
      be returned only for successor calls following GSS_S_CONTINUE_
      NEEDED status returns.

   o  GSS_S_BAD_MECH indicates receipt of a context establishment token
      specifying a mechanism unsupported by the local system or with
      the caller's active credentials.

   o  GSS_S_FAILURE indicates that context setup could not be accomplished
      for reasons unspecified at the GSS-API level, and
      that no interface-defined recovery action is available.

   The GSS_Accept_sec_context()  routine is used by a context target.
   Using information in the credentials structure referenced by the
   input acceptor_cred_handle, it verifies the incoming input_token and
   (following the successful completion of a context establishment
   sequence) returns the authenticated src_name and the mech_type used.
   The acceptor_cred_handle must correspond to the same valid
   credentials structure on the initial call to GSS_Accept_sec_context()
   and on any successor calls resulting from GSS_S_CONTINUE_NEEDED
   status returns; different protocol sequences modeled by the
   GSS_S_CONTINUE_NEEDED mechanism will require access to credentials at
   different points in the context establishment sequence.

   The input_context_handle argument is 0, specifying "not yet
   assigned", on the first GSS_Accept_sec_context()  call relating to a
   given context.  If successful (i.e., if accompanied by major_status
   GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and only if successful, the
   initial GSS_Accept_sec_context() call returns a non-zero
   output_context_handle for use in future references to this context.



Linn              Document Expiration: 2 December 1995         [Page 32]


Internet-Draft                                              June 2, 1995


   Once a non-zero output_context_handle has been returned, GSS-API
   callers should call GSS_Delete_sec_context() to release context-
   related resources if errors occur in later phases of context
   establishment, or when an established context is no longer required.

   The chan_bindings argument is used by the caller to provide
   information binding the security context to security-related
   characteristics (e.g., addresses, cryptographic keys) of the
   underlying communications channel. See Section 1.1.6 of this document
   for more discussion of this argument's usage.

   The returned state results (deleg_state, mutual_state,
   replay_det_state, sequence_state, anon_state, and trans_state)
   reflect the same context state values as returned to
   GSS_Init_sec_context()'s caller at the initiator system.

   The conf_avail return value indicates whether the context supports
   per-message confidentiality services, and so informs the caller
   whether or not a request for encryption through the conf_req_flag
   input to GSS_Wrap()  can be honored. In similar fashion, the
   integ_avail return value indicates whether per-message integrity
   services are available (through either GSS_GetMIC()  or GSS_Wrap())
   on the established context.

   The lifetime_rec return value indicates the length of time for which
   the context will be valid, expressed as an offset from the present.
   The values of deleg_state, mutual_state, replay_det_state,
   sequence_state, anon_state, trans_state, conf_avail, integ_avail, and
   lifetime_rec are undefined unless the accompanying major_status
   indicates GSS_S_COMPLETE.

   The mech_type return value indicates the specific mechanism employed
   on the context, is valid only along with major_status GSS_S_COMPLETE,
   and will never indicate the value for "default".

   The delegated_cred_handle result is significant only when deleg_state
   is TRUE, and provides a means for the target to reference the
   delegated credentials. The output_token result, when non-NULL,
   provides a context-level token to be returned to the context
   initiator to continue a multi-step context establishment sequence. As
   noted with GSS_Init_sec_context(),  any returned token should be
   transferred to the context's peer (in this case, the context
   initiator), independent of the value of the accompanying returned
   major_status.

   Note: A target must be able to distinguish a context-level
   input_token, which is passed to GSS_Accept_sec_context(),  from the
   per-message data elements passed to GSS_VerifyMIC()  or GSS_Unwrap().



Linn              Document Expiration: 2 December 1995         [Page 33]


Internet-Draft                                              June 2, 1995


   These data elements may arrive in a single application message, and
   GSS_Accept_sec_context()  must be performed before per-message
   processing can be performed successfully.

2.2.3: GSS_Delete_sec_context call

   Input:

   o  context_handle CONTEXT HANDLE

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_context_token OCTET STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the context was recognized, that
      relevant context-specific information was flushed, and that
      the returned output_context_token, if requested via caller
      provision of a non-null buffer for receipt of said token,
      is ready for transfer to the context's peer.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provide, so no deletion was
      performed.

   o  GSS_S_FAILURE indicates that the context is recognized, but
      that the GSS_Delete_sec_context()  operation could not be
      performed for reasons unspecified at the GSS-API level.

   This call may block pending network interactions for mech_types in
   which active notification must be made to a central server when a
   security context is to be deleted.

   This call can be made by either peer in a security context, to flush
   context-specific information.  If a non-null output_context_token
   parameter is provided, an output_context_token will be returned, and
   can be passed to the context's peer to inform the peer's GSS-API
   implementation that the peer's corresponding context information can
   also be flushed. (Once a context is established, the peers involved
   are expected to retain cached credential and context-related
   information until the information's expiration time is reached or
   until a GSS_Delete_sec_context() call is made.)




Linn              Document Expiration: 2 December 1995         [Page 34]


Internet-Draft                                              June 2, 1995


   The facility for context_token usage to signal context deletion is
   retained for compatibility with GSS-API Version 1.  For current
   usage, it is recommended that both peers to a context invoke
   GSS_Delete_sec_context() independently, passing a null
   output_context_token buffer to indicate that no context_token is
   required.  Implementations of GSS_Delete_sec_context() should delete
   relevant locally-stored context information.

   Attempts to perform per-message processing on a deleted context will
   result in error returns.

2.2.4:  GSS_Process_context_token call

   Inputs:

   o  context_handle CONTEXT HANDLE,

   o  input_context_token OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_context_token was
      successfully processed in conjunction with the context
      referenced by context_handle.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks
      performed on the received context_token failed, preventing
      further processing from being performed with that token.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided.

   o  GSS_S_FAILURE indicates that the context is recognized, but
      that the GSS_Process_context_token()  operation could not be
      performed for reasons unspecified at the GSS-API level.

   This call is used to process context_tokens received from a peer once
   a context has been established, with corresponding impact on
   context-level state information. One use for this facility is
   processing of the context_tokens generated by
   GSS_Delete_sec_context();  GSS_Process_context_token() will not block
   pending network interactions for that purpose. Another use is to



Linn              Document Expiration: 2 December 1995         [Page 35]


Internet-Draft                                              June 2, 1995


   process tokens indicating remote-peer context establishment failures
   after the point where the local GSS-API implementation has already
   indicated GSS_S_COMPLETE status.

2.2.5:  GSS_Context_time call

   Input:

   o  context_handle CONTEXT HANDLE,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  lifetime_rec INTEGER - in seconds, or reserved value for
      INDEFINITE

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the referenced context is valid,
      and will remain valid for the amount of time indicated in
      lifetime_rec.

   o  GSS_S_CONTEXT_EXPIRED indicates that data items related to the
      referenced context have expired.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized,
      but that its associated credentials have expired.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided.

   o  GSS_S_FAILURE indicates that the requested operation failed for
      reasons unspecified at the GSS-API level.

   This call is used to determine the amount of time for which a
   currently established context will remain valid.

2.2.6:   GSS_Inquire_context call

   Input:

   o  context_handle INTEGER,

   Outputs:




Linn              Document Expiration: 2 December 1995         [Page 36]


Internet-Draft                                              June 2, 1995


   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  src_name INTERNAL NAME,  -- name of context initiator

   o  targ_name INTERNAL NAME,  -- name of context target

   o  lifetime_rec INTEGER -- in seconds, or reserved value for
      INDEFINITE,

   o  mech_type OBJECT IDENTIFIER, -- the mechanism supporting this
      security context

   o  deleg_state BOOLEAN,

   o  mutual_state BOOLEAN,

   o  replay_det_state BOOLEAN,

   o  sequence_state BOOLEAN,

   o  anon_state BOOLEAN,

   o  trans_state BOOLEAN,

   o  conf_avail BOOLEAN,

   o  integ_avail BOOLEAN,

   o  locally_initiated BOOLEAN, -- TRUE if initiator, FALSE if acceptor

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the referenced context is valid
      and that src_name, targ_name, lifetime_rec, mech_type, deleg_state,
      mutual_state, replay_det_state, sequence_state, anon_state,
      trans_state, conf_avail, integ_avail, and locally_initiated
      return values describe the corresponding characteristics of
      the context.

   o  GSS_S_CONTEXT_EXPIRED indicates that the provided input context_handle
      is recognized, but that the referenced context has expired.  Return
      values other than major_status and minor_status are undefined.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided. Return values other than
      major_status and minor_status are undefined.



Linn              Document Expiration: 2 December 1995         [Page 37]


Internet-Draft                                              June 2, 1995


   o  GSS_S_FAILURE indicates that the requested operation failed for
      reasons unspecified at the GSS-API level. Return values other than
      major_status and minor_status are undefined.

   This call is used to extract information describing characteristics
   of a security context.

2.2.7:   GSS_Wrap_size_limit call

   Inputs:

   o  context_handle INTEGER,

   o  qop INTEGER,

   o  output_size INTEGER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  max_input_size INTEGER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates a successful token size determination:
   an input message with a length in octets equal to the
   returned max_input_size value will, when passed to GSS_Wrap()
   for processing on the context identified by the context_handle
   parameter and with the quality of protection specifier provided
   in the qop parameter, yield an output token no larger than the
   value of the provided output_size parameter.

   o  GSS_S_CONTEXT_EXPIRED indicates that the provided input context_handle
   is recognized, but that the referenced context has expired.  Return
   values other than major_status and minor_status are undefined.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided. Return values other than
   major_status and minor_status are undefined.

   o  GSS_S_BAD_QOP indicates that the provided QOP value is not
   recognized or supported for the context.

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level. Return values other than



Linn              Document Expiration: 2 December 1995         [Page 38]


Internet-Draft                                              June 2, 1995


   major_status and minor_status are undefined.


   This call is used to determine the largest input datum which may be
   passed to GSS_Wrap() without yielding an output token larger than a
   caller-specified value.

2.2.8:   GSS_Export_sec_context call

   Inputs:

   o  context_handle INTEGER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  interprocess_token OCTET STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the referenced context has been
   successfully exported to a representation in the interprocess_token,
   and is no longer available for use by the caller.

   o  GSS_S_UNAVAILABLE indicates that the context export facility
   is not available for use on the referenced context.  (This status
   should occur only for contexts for which the trans_state value is
   FALSE.) Return values other than major_status and minor_status are
   undefined.

   o  GSS_S_CONTEXT_EXPIRED indicates that the provided input context_handle
   is recognized, but that the referenced context has expired.  Return
   values other than major_status and minor_status are undefined.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
   for the input context_handle provided. Return values other than
   major_status and minor_status are undefined.

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level. Return values other than
   major_status and minor_status are undefined.


   This call generates an interprocess token for transfer to another
   process within an end system, in order to transfer control of a



Linn              Document Expiration: 2 December 1995         [Page 39]


Internet-Draft                                              June 2, 1995


   security context to that process.  The recipient of the interprocess
   token will call GSS_Import_sec_context() to accept the transfer.

   The internal representation contained within the interprocess token
   is an implementation-defined local matter.  Interprocess tokens
   cannot be assumed to be transferable across different GSS-API
   implementations. It is recommended that implementations supporting
   context transfer protect the transferred context data, either by
   using cryptography to protect data within the tokens or by using
   interprocess tokens as a means to reference local interprocess
   communication facilities (protected by other means) rather than
   storing the context data directly within the tokens.

   Transfer of an open context may, for certain mechanisms and
   implementations, reveal data about the credential which was used to
   establish the context.  Callers should, therefore, be cautious about
   the trustworthiness of processes to which they transfer contexts.


2.2.9:   GSS_Import_sec_context call

   Inputs:

   o  interprocess_token OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  context_handle CONTEXT HANDLE

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the context represented by the
   input interprocess_token has been successfully transferred to
   the caller, and is available for future use via the output
   context_handle.

   o  GSS_S_CONTEXT_EXPIRED indicates that the context represented by
   the input interprocess_token has expired. Return values other
   than major_status and minor_status are undefined.

   o  GSS_S_NO_CONTEXT indicates that the context represented by the
   input interprocess_token was invalid. Return values other than
   major_status and minor_status are undefined.




Linn              Document Expiration: 2 December 1995         [Page 40]


Internet-Draft                                              June 2, 1995


   o  GSS_S_DEFECTIVE_TOKEN indicates that the input interprocess_token
   was defective.  Return values other than major_status and minor_status
   are undefined.

   o  GSS_S_UNAVAILABLE indicates that the context import facility
   is not available for use on the referenced context.  Return values
   other than major_status and minor_status are undefined.

   o  GSS_S_UNAUTHORIZED indicates that the context represented by
   the input interprocess_token is unauthorized for transfer to the
   caller. Return values other than major_status and minor_status
   are undefined.

   o  GSS_S_FAILURE indicates that the requested operation failed for
   reasons unspecified at the GSS-API level. Return values other than
   major_status and minor_status are undefined.


   This call processes an interprocess token generated by
   GSS_Export_sec_context(), making the transferred context available
   for use by the caller.  After a successful GSS_Import_sec_context()
   operation, the imported context is fully and exclusively owned by the
   importing process.

   It is recommended that GSS-API implementations adopt policies suited
   to their operational environments in order to define the set of
   processes eligible to import a context, but specific constraints in
   this area are local matters.  Candidate examples include transfers
   between processes operating on behalf of the same user identity, or
   processes comprising a common job.


2.3:  Per-message calls

   This group of calls is used to perform per-message protection
   processing on an established security context. None of these calls
   block pending network interactions. These calls may be invoked by a
   context's initiator or by the context's target.  The four members of
   this group should be considered as two pairs; the output from
   GSS_GetMIC()  is properly input to GSS_VerifyMIC(),  and the output
   from GSS_Wrap() is properly input to GSS_Unwrap().

   GSS_GetMIC() and GSS_VerifyMIC() support data origin authentication
   and data integrity services. When GSS_GetMIC()  is invoked on an
   input message, it yields a per-message token containing data items
   which allow underlying mechanisms to provide the specified security
   services. The original message, along with the generated per-message
   token, is passed to the remote peer; these two data elements are



Linn              Document Expiration: 2 December 1995         [Page 41]


Internet-Draft                                              June 2, 1995


   processed by GSS_VerifyMIC(),  which validates the message in
   conjunction with the separate token.

   GSS_Wrap() and GSS_Unwrap() support caller-requested confidentiality
   in addition to the data origin authentication and data integrity
   services offered by GSS_GetMIC()  and GSS_VerifyMIC(). GSS_Wrap()
   outputs a single data element, encapsulating optionally enciphered
   user data as well as associated token data items.  The data element
   output from GSS_Wrap()  is passed to the remote peer and processed by
   GSS_Unwrap()  at that system. GSS_Unwrap() combines decipherment (as
   required) with validation of data items related to authentication and
   integrity.

2.3.1:  GSS_GetMIC call

   Note: This call is functionally equivalent to the GSS_Sign call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future
   references to this function as GSS_Sign are deprecated.

   Inputs:

   o  context_handle CONTEXT HANDLE,

   o  qop_req INTEGER,-0 specifies default QOP

   o  message OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  per_msg_token OCTET STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that a signature, suitable for an
      established security context, was successfully applied and
      that the message and corresponding per_msg_token are ready
      for transmission.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data
      items have expired, so that the requested operation cannot be
      performed.




Linn              Document Expiration: 2 December 1995         [Page 42]


Internet-Draft                                              June 2, 1995


   o  GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized,
      but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided.

   o  GSS_S_BAD_QOP indicates that the provided QOP value is not
      recognized or supported for the context.

   o  GSS_S_FAILURE indicates that the context is recognized, but
      that the requested operation could not be performed for
      reasons unspecified at the GSS-API level.

   Using the security context referenced by context_handle, apply a
   signature to the input message (along with timestamps and/or other
   data included in support of mech_type-specific mechanisms) and return
   the result in per_msg_token. The qop_req parameter, interpretation of
   which is discussed in Section 1.2.4, allows quality-of-protection
   control. The caller passes the message and the per_msg_token to the
   target.

   The GSS_GetMIC()  function completes before the message and
   per_msg_token is sent to the peer; successful application of
   GSS_GetMIC()  does not guarantee that a corresponding GSS_VerifyMIC()
   has been (or can necessarily be) performed successfully when the
   message arrives at the destination.

2.3.2:  GSS_VerifyMIC call

   Note: This call is functionally equivalent to the GSS_Verify call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future
   references to this function as GSS_Verify are deprecated.

   Inputs:

   o  context_handle CONTEXT HANDLE,

   o  message OCTET STRING,

   o  per_msg_token OCTET STRING

   Outputs:

   o  qop_state INTEGER,




Linn              Document Expiration: 2 December 1995         [Page 43]


Internet-Draft                                              June 2, 1995


   o  major_status INTEGER,

   o  minor_status INTEGER,

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the message was successfully
      verified.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
      on the received per_msg_token failed, preventing
      further processing from being performed with that token.

   o  GSS_S_BAD_SIG indicates that the received per_msg_token contains
      an incorrect signature for the message.

   o  GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN,
      and GSS_S_GAP_TOKEN values appear in conjunction with the
      optional per-message replay detection features described
      in Section 1.2.3; their semantics are described in that section.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data
      items have expired, so that the requested operation cannot be
      performed.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized,
      but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided.

   o  GSS_S_FAILURE indicates that the context is recognized, but
      that the GSS_VerifyMIC()  operation could not be performed for
      reasons unspecified at the GSS-API level.

   Using the security context referenced by context_handle, verify that
   the input per_msg_token contains an appropriate signature for the
   input message, and apply any active replay detection or sequencing
   features. Return an indication of the quality-of-protection applied
   to the processed message in the qop_state result.

2.3.3: GSS_Wrap call

   Note: This call is functionally equivalent to the GSS_Seal call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future



Linn              Document Expiration: 2 December 1995         [Page 44]


Internet-Draft                                              June 2, 1995


   references to this function as GSS_Seal are deprecated.

   Inputs:

   o  context_handle CONTEXT HANDLE,

   o  conf_req_flag BOOLEAN,

   o  qop_req INTEGER,-0 specifies default QOP

   o  input_message OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  conf_state BOOLEAN,

   o  output_message OCTET STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_message was successfully
      processed and that the output_message is ready for
      transmission.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data
      items have expired, so that the requested operation cannot be
      performed.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized,
      but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided.

   o  GSS_S_BAD_QOP indicates that the provided QOP value is not
      recognized or supported for the context.

   o  GSS_S_FAILURE indicates that the context is recognized, but
      that the GSS_Wrap()  operation could not be performed for
      reasons unspecified at the GSS-API level.

   Performs the data origin authentication and data integrity functions
   of GSS_GetMIC().  If the input conf_req_flag is TRUE, requests that



Linn              Document Expiration: 2 December 1995         [Page 45]


Internet-Draft                                              June 2, 1995


   confidentiality be applied to the input_message.  Confidentiality may
   not be supported in all mech_types or by all implementations; the
   returned conf_state flag indicates whether confidentiality was
   provided for the input_message. The qop_req parameter, interpretation
   of which is discussed in Section 1.2.4, allows quality-of-protection
   control.

   In all cases, the GSS_Wrap()  call yields a single output_message
   data element containing (optionally enciphered) user data as well as
   control information.

2.3.4: GSS_Unwrap call

   Note: This call is functionally equivalent to the GSS_Unseal call as
   defined in previous versions of this specification. In the interests
   of backward compatibility, it is recommended that implementations
   support this function under both names for the present; future
   references to this function as GSS_Unseal are deprecated.

   Inputs:

   o  context_handle CONTEXT HANDLE,

   o  input_message OCTET STRING

   Outputs:

   o  conf_state BOOLEAN,

   o  qop_state INTEGER,

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_message OCTET STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_message was
      successfully processed and that the resulting output_message is
      available.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
      on the per_msg_token extracted from the input_message
      failed, preventing further processing from being performed.

   o  GSS_S_BAD_SIG indicates that an incorrect signature was detected



Linn              Document Expiration: 2 December 1995         [Page 46]


Internet-Draft                                              June 2, 1995


      for the message.

   o  GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN,
      and GSS_S_GAP_TOKEN values appear in conjunction with the
      optional per-message replay detection features described
      in Section 1.2.3; their semantics are described in that section.

   o  GSS_S_CONTEXT_EXPIRED indicates that context-related data
      items have expired, so that the requested operation cannot be
      performed.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the context is recognized,
      but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  GSS_S_NO_CONTEXT indicates that no valid context was recognized
      for the input context_handle provided.

   o  GSS_S_FAILURE indicates that the context is recognized, but
      that the GSS_Unwrap()  operation could not be performed for
      reasons unspecified at the GSS-API level.

   Processes a data element generated (and optionally enciphered) by
   GSS_Wrap(),  provided as input_message. The returned conf_state value
   indicates whether confidentiality was applied to the input_message.
   If conf_state is TRUE, GSS_Unwrap()  deciphers the input_message.
   Returns an indication of the quality-of-protection applied to the
   processed message in the qop_state result. GSS_Wrap()  performs the
   data integrity and data origin authentication checking functions of
   GSS_VerifyMIC()  on the plaintext data. Plaintext data is returned in
   output_message.

2.4:  Support calls

   This group of calls provides support functions useful to GSS-API
   callers, independent of the state of established contexts. Their
   characterization with regard to blocking or non-blocking status in
   terms of network interactions is unspecified.

2.4.1:  GSS_Display_status call

   Inputs:

   o  status_value INTEGER,-GSS-API major_status or minor_status
      return value

   o  status_type INTEGER,-1 if major_status, 2 if minor_status




Linn              Document Expiration: 2 December 1995         [Page 47]


Internet-Draft                                              June 2, 1995


   o  mech_type OBJECT IDENTIFIER-mech_type to be used for minor_
      status translation

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  status_string_set SET OF OCTET STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid printable status representation
      (possibly representing more than one status event
      encoded within the status_value) is available in the returned
      status_string_set.

   o  GSS_S_BAD_MECH indicates that translation in accordance with an
      unsupported mech_type was requested, so translation could not
      be performed.

   o  GSS_S_BAD_STATUS indicates that the input status_value was
      invalid, or that the input status_type carried a value other
      than 1 or 2, so translation could not be performed.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Provides a means for callers to translate GSS-API-returned major and
   minor status codes into printable string representations.

2.4.2:  GSS_Indicate_mechs call

   Input:

   o  (none)

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  mech_set SET OF OBJECT IDENTIFIER

   Return major_status codes:




Linn              Document Expiration: 2 December 1995         [Page 48]


Internet-Draft                                              June 2, 1995


   o  GSS_S_COMPLETE indicates that a set of available mechanisms has
      been returned in mech_set.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to determine the set of mechanism types available on
   the local system. This call is intended for support of specialized
   callers who need to request non-default mech_type sets from
   GSS_Acquire_cred(),  and should not be needed by other callers.

2.4.3:  GSS_Compare_name call

   Inputs:

   o  name1 INTERNAL NAME,

   o  name2 INTERNAL NAME

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  name_equal BOOLEAN

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that name1 and name2 were comparable,
      and that the name_equal result indicates whether name1 and
      name2 represent the same entity.

   o  GSS_S_BAD_NAMETYPE indicates that one or both of name1 and
      name2 contained internal type specifiers uninterpretable
      by the supporting GSS-API implementation, or that the two
      names' types are different and incomparable, so that the
      comparison operation could not be completed.

   o  GSS_S_BAD_NAME indicates that one or both of the input names
      was ill-formed in terms of its internal type specifier, so
      the comparison operation could not be completed.

   o  GSS_S_FAILURE indicates that the call's operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to compare two internal name representations to
   determine whether they refer to the same entity.  If either name



Linn              Document Expiration: 2 December 1995         [Page 49]


Internet-Draft                                              June 2, 1995


   presented to GSS_Compare_name() denotes an anonymous principal,
   GSS_Compare_name() shall indicate FALSE.

2.4.4:  GSS_Display_name call

   Inputs:

   o  name INTERNAL NAME

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  name_string OCTET STRING,

   o  name_type OBJECT IDENTIFIER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid printable name
      representation is available in the returned name_string.

   o  GSS_S_BAD_NAMETYPE indicates that the provided name was of a
      type uninterpretable by the supporting GSS-API implementation,
      so no printable representation could be generated.

   o  GSS_S_BAD_NAME indicates that the contents of the provided name
      were inconsistent with the internally-indicated name type, so
      no printable representation could be generated.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to translate an internal name representation into a
   printable form with associated namespace type descriptor. The syntax
   of the printable form is a local matter.

   If the input name represents an anonymous identity, a reserved value
   (GSS_C_NAMETYPE_ANONYMOUS) shall be returned for name_type.

2.4.5:  GSS_Import_name call

   Inputs:

   o  input_name_string OCTET STRING,




Linn              Document Expiration: 2 December 1995         [Page 50]


Internet-Draft                                              June 2, 1995


   o  input_name_type OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_name INTERNAL NAME

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid name representation is
      output in output_name and described by the type value in
      output_name_type.

   o  GSS_S_BAD_NAMETYPE indicates that the input_name_type is unsupported
      by the GSS-API implementation, so the import operation
      could not be completed.

   o  GSS_S_BAD_NAME indicates that the provided input_name_string
      is ill-formed in terms of the input_name_type, so the import
      operation could not be completed.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to provide a printable name representation, designate
   the type of namespace in conjunction with which it should be parsed,
   and convert that printable representation to an internal form
   suitable for input to other GSS-API routines.  The syntax of the
   input_name_string is a local matter.  Note: The input_name_type
   argument serves to describe and qualify the interpretation of the
   associated input_name_string; it does not specify the data type of
   the returned output_name.

2.4.6: GSS_Release_name call

   Inputs:

   o  name INTERNAL NAME

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER




Linn              Document Expiration: 2 December 1995         [Page 51]


Internet-Draft                                              June 2, 1995


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the storage associated with the
      input name was successfully released.

   o  GSS_S_BAD_NAME indicates that the input name argument did not
      contain a valid name.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to release the storage associated with an internal
   name representation.

2.4.7: GSS_Release_buffer call

   Inputs:

   o  buffer OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the storage associated with the
      input buffer was successfully released.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to release the storage associated with an OCTET STRING
   buffer allocated by another GSS-API call.

2.4.8: GSS_Release_oid_set call

   Inputs:

   o  buffer SET OF OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER



Linn              Document Expiration: 2 December 1995         [Page 52]


Internet-Draft                                              June 2, 1995


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the storage associated with the
      input object identifier set was successfully released.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to release the storage associated with an object
   identifier set object allocated by another GSS-API call.

2.4.9: GSS_Import_name_object call

   Inputs:

   o  input_name ANY,

   o  name_type OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_name INTERNAL NAME


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid GSS-API internal
      name representation, corresponding to the contents of
      input_name, is output in output_name.

   o  GSS_S_BAD_NAMETYPE indicates that the input name_type is
      unsupported by the GSS-API implementation, so the import
      operation could not be completed.

   o  GSS_S_BAD_NAME indicates that the contents of the input_name
      object are ill-formed in terms of the input name_type, so the
      import operation could not be completed.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.


   Converts an input_name object, with type identified by name_type,
   into a GSS-API internal name represented by output_name.



Linn              Document Expiration: 2 December 1995         [Page 53]


Internet-Draft                                              June 2, 1995


   Implementors should note that use of this routine, and associated
   mechanism-specific name objects, by an application is a construct
   unlikely to be portable to other mechanisms.

2.4.10: GSS_Export_name_object call

   Inputs:

   o  input_name INTERNAL NAME,

   o  desired_name_type OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_name ANY


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that a valid name object, with type
      corresponding to desired_name_type and contents corresponding
      to input_name, is output in output_name.

   o  GSS_S_BAD_NAMETYPE indicates that the requested desired_name_type
      was uninterpretable or unsupported by the GSS-API implementation,
      so no output_name object could be generated.

   o  GSS_S_BAD_NAME indicates that the contents of the provided
      input_name could not be converted into an output_name object
      of the requested desired_name_type.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.


   Converts a GSS_API internal name, specified by input_name, into a
   name object representation specified by output_name and with the type
   specified by desired_name_type.  Note that it may not be possible to
   convert all input_name values or types into all supported
   desired_name_types. Implementors should note that use of this
   routine, and associated mechanism-specific name objects, by an
   application is a construct unlikely to be portable to other
   mechanisms.




Linn              Document Expiration: 2 December 1995         [Page 54]


Internet-Draft                                              June 2, 1995


2.4.11: GSS_Create_empty_OID_set call

   Inputs:

   o  (none)

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  oid_set SET OF OBJECT IDENTIFIER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed


   Creates an object identifier set containing no object identifiers, to
   which members may be subsequently added using the
   GSS_Add_OID_set_member() routine.  These routines are intended to be
   used to construct sets of mechanism object identifiers, for input to
   GSS_Acquire_cred().


2.4.12: GSS_Add_OID_set_member call

   Inputs:

   o  member_OID OBJECT IDENTIFIER,

   o  oid_set SET OF OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed




Linn              Document Expiration: 2 December 1995         [Page 55]


Internet-Draft                                              June 2, 1995


   Adds an Object Identifier to an Object Identifier set.  This routine
   is intended for use in conjunction with GSS_Create_empty_OID_set()
   when constructing a set of mechanism OIDs for input to
   GSS_Acquire_cred().


2.4.13: GSS_Test_oid_set_member call

   Inputs:

   o  member OBJECT IDENTIFIER,

   o  set SET OF OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  present BOOLEAN

   Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed


   Interrogates an Object Identifier set to determine whether a
   specified Object Identifier is a member.  This routine is intended to
   be used with OID sets returned by GSS_Indicate_mechs(),
   GSS_Acquire_cred(), and GSS_Inquire_cred().


2.4.14: GSS_Release_OID call

   Inputs:

   o  oid OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER

   Return major_status codes:



Linn              Document Expiration: 2 December 1995         [Page 56]


Internet-Draft                                              June 2, 1995


   o  GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed


   Discards an OID.  This routine is provided for completeness only.
   While some of the GSS-API routines return OIDs, these routines are
   currently documented as returning pointers to structures maintained
   in static storage.  GSS_Release_OID() will recognise any of the GSS-
   API's own OID values, and will silently ignore attempts to free these
   OIDs; for other OIDs it will call the local language environment's
   equivalent of C's "free()" routine for both the OID data and the
   descriptor.  This allows applications to freely mix their own heap-
   allocated OID values with OIDs returned by GSS-API.


2.4.15: GSS_OID_to_str call

   Inputs:

   o  oid OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  oid_str PRINTABLE STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed


   The function GSS_OID_to_str() returns a string allocated from the
   free store representing the OID in printable form (e.g., "1.2.3.3").
   The string is suitable for release using the function "free()" for C,
   or by its functional equivalent in other language environments. An
   empty string (i.e., "") is returned if NULL is passed.


2.4.16: GSS_Str_to_OID call

   Inputs:




Linn              Document Expiration: 2 December 1995         [Page 57]


Internet-Draft                                              June 2, 1995


   o  oid_str PRINTABLE STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  oid OBJECT IDENTIFIER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates successful completion

   o  GSS_S_FAILURE indicates that the operation failed


   The function GSS_Str_to_OID() constructs and returns an OID from its
   printable form (i.e., "1.2.3.3"). The OID is allocated from the free
   store suitable for release using the function GSS_OID_free(). An
   empty OID is returned if an empty string or NULL is passed.


2.4.17:  GSS_Get_mechs_for_name call

   Inputs:

   o  input_is_external BOOLEAN, -- TRUE if input is external name
                                 -- FALSE if input is internal name

   o  input_name_string OCTET STRING,  -- for external name

   o  input_name_type OBJECT IDENTIFIER, -- type for external name

   o  input_int_name INTERNAL NAME  -- if providing internal name

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  oid_set SET OF OBJECT IDENTIFIER

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the output oid_set contains
      a list of locally supported mechanisms capable of supporting



Linn              Document Expiration: 2 December 1995         [Page 58]


Internet-Draft                                              June 2, 1995


      the input name.

   o  GSS_S_BAD_NAMETYPE indicates (when an external name is
      provided) that the input_name_type is unsupported
      by the GSS-API implementation, so the operation could not be
      completed.  Return values other than major_status and
      minor_status are undefined.

   o  GSS_S_BAD_NAME indicates (when an external name is provided)
      that the provided input_name_string is ill-formed in terms
      of the input_name_type, so the operation could not be completed.
      Return values other than major_status and minor_status are
      undefined.

   o  GSS_S_FAILURE indicates that the requested operation could not
      be performed for reasons unspecified at the GSS-API level.

   Allows callers to determine the set of locally supported mechanisms
   capable of supporting a name.  Callers may use the input_is_external
   flag as a means to indicate that they are providing either an
   external name and type specifier, as would be provided to
   GSS_Import_name(), or an internal name as would be provided to
   GSS_Init_sec_context().

3:  Mechanism-Specific Example Scenarios

   This section provides illustrative overviews of the use of various
   candidate mechanism types to support the GSS-API. These discussions
   are intended primarily for readers familiar with specific security
   technologies, demonstrating how GSS-API functions can be used and
   implemented by candidate underlying mechanisms. They should not be
   regarded as constrictive to implementations or as defining the only
   means through which GSS-API functions can be realized with a
   particular underlying technology, and do not demonstrate all GSS-API
   features with each technology.

3.1: Kerberos V5, single-TGT

   OS-specific login functions yield a TGT to the local realm Kerberos
   server; TGT is placed in a credentials structure for the client.
   Client calls GSS_Acquire_cred()  to acquire a cred_handle in order to
   reference the credentials for use in establishing security contexts.

   Client calls GSS_Init_sec_context().  If the requested service is
   located in a different realm, GSS_Init_sec_context()  gets the
   necessary TGT/key pairs needed to traverse the path from local to
   target realm; these data are placed in the owner's TGT cache. After
   any needed remote realm resolution, GSS_Init_sec_context()  yields a



Linn              Document Expiration: 2 December 1995         [Page 59]


Internet-Draft                                              June 2, 1995


   service ticket to the requested service with a corresponding session
   key; these data are stored in conjunction with the context. GSS-API
   code sends KRB_TGS_REQ request(s) and receives KRB_TGS_REP
   response(s) (in the successful case) or KRB_ERROR.

   Assuming success, GSS_Init_sec_context()  builds a Kerberos-formatted
   KRB_AP_REQ message, and returns it in output_token.  The client sends
   the output_token to the service.

   The service passes the received token as the input_token argument to
   GSS_Accept_sec_context(),  which verifies the authenticator, provides
   the service with the client's authenticated name, and returns an
   output_context_handle.

   Both parties now hold the session key associated with the service
   ticket, and can use this key in subsequent GSS_GetMIC(),
   GSS_VerifyMIC(),  GSS_Wrap(), and GSS_Unwrap() operations.

3.2: Kerberos V5, double-TGT

   TGT acquisition as above.

   Note: To avoid unnecessary frequent invocations of error paths when
   implementing the GSS-API atop Kerberos V5, it seems appropriate to
   represent "single-TGT K-V5" and "double-TGT K-V5" with separate
   mech_types, and this discussion makes that assumption.

   Based on the (specified or defaulted) mech_type,
   GSS_Init_sec_context()  determines that the double-TGT protocol
   should be employed for the specified target. GSS_Init_sec_context()
   returns GSS_S_CONTINUE_NEEDED major_status, and its returned
   output_token contains a request to the service for the service's TGT.
   (If a service TGT with suitably long remaining lifetime already
   exists in a cache, it may be usable, obviating the need for this
   step.) The client passes the output_token to the service.  Note: this
   scenario illustrates a different use for the GSS_S_CONTINUE_NEEDED
   status return facility than for support of mutual authentication;
   note that both uses can coexist as successive operations within a
   single context establishment operation.

   The service passes the received token as the input_token argument to
   GSS_Accept_sec_context(),  which recognizes it as a request for TGT.
   (Note that current Kerberos V5 defines no intra-protocol mechanism to
   represent such a request.) GSS_Accept_sec_context()  returns
   GSS_S_CONTINUE_NEEDED major_status and provides the service's TGT in
   its output_token. The service sends the output_token to the client.

   The client passes the received token as the input_token argument to a



Linn              Document Expiration: 2 December 1995         [Page 60]


Internet-Draft                                              June 2, 1995


   continuation of GSS_Init_sec_context(). GSS_Init_sec_context()
   caches the received service TGT and uses it as part of a service
   ticket request to the Kerberos authentication server, storing the
   returned service ticket and session key in conjunction with the
   context. GSS_Init_sec_context()  builds a Kerberos-formatted
   authenticator, and returns it in output_token along with
   GSS_S_COMPLETE return major_status. The client sends the output_token
   to the service.

   Service passes the received token as the input_token argument to a
   continuation call to GSS_Accept_sec_context().
   GSS_Accept_sec_context()  verifies the authenticator, provides the
   service with the client's authenticated name, and returns
   major_status GSS_S_COMPLETE.

   GSS_GetMIC(),  GSS_VerifyMIC(), GSS_Wrap(), and GSS_Unwrap()  as
   above.

3.3:  X.509 Authentication Framework

   This example illustrates use of the GSS-API in conjunction with
   public-key mechanisms, consistent with the X.509 Directory
   Authentication Framework.

   The GSS_Acquire_cred()  call establishes a credentials structure,
   making the client's private key accessible for use on behalf of the
   client.

   The client calls GSS_Init_sec_context(),  which interrogates the
   Directory to acquire (and validate) a chain of public-key
   certificates, thereby collecting the public key of the service.  The
   certificate validation operation determines that suitable signatures
   were applied by trusted authorities and that those certificates have
   not expired. GSS_Init_sec_context()  generates a secret key for use
   in per-message protection operations on the context, and enciphers
   that secret key under the service's public key.

   The enciphered secret key, along with an authenticator quantity
   signed with the client's private key, is included in the output_token
   from GSS_Init_sec_context().  The output_token also carries a
   certification path, consisting of a certificate chain leading from
   the service to the client; a variant approach would defer this path
   resolution to be performed by the service instead of being asserted
   by the client. The client application sends the output_token to the
   service.

   The service passes the received token as the input_token argument to
   GSS_Accept_sec_context().  GSS_Accept_sec_context() validates the



Linn              Document Expiration: 2 December 1995         [Page 61]


Internet-Draft                                              June 2, 1995


   certification path, and as a result determines a certified binding
   between the client's distinguished name and the client's public key.
   Given that public key, GSS_Accept_sec_context() can process the
   input_token's authenticator quantity and verify that the client's
   private key was used to sign the input_token. At this point, the
   client is authenticated to the service. The service uses its private
   key to decipher the enciphered secret key provided to it for per-
   message protection operations on the context.

   The client calls GSS_GetMIC()  or GSS_Wrap() on a data message, which
   causes per-message authentication, integrity, and (optional)
   confidentiality facilities to be applied to that message. The service
   uses the context's shared secret key to perform corresponding
   GSS_VerifyMIC()  and GSS_Unwrap() calls.

4: Mechanism-Independent Token Format

   This section specifies a mechanism-independent level of encapsulating
   representation for the initial token of a GSS-API context
   establishment sequence, incorporating an identifier of the mechanism
   type to be used on that context and enabling tokens to be interpreted
   unambiguously at GSS-API peers. Use of this format (with ASN.1-
   encoded data elements represented in BER, constrained in the
   interests of parsing simplicity to the Distinguished Encoding Rule
   (DER) BER subset defined in X.509, clause 8.7) is required for
   initial context establishment tokens of Internet standards-track
   GSS-API mechanisms; use in non-initial tokens is optional.  There is
   no requirement that the mechanism-specific innerContextToken,
   innerMsgToken, and sealedUserData data elements be encoded in ASN.1
   BER.

       -- optional top-level token definitions to
       -- frame different mechanisms

       GSS-API DEFINITIONS ::=

       BEGIN

       MechType ::= OBJECT IDENTIFIER
       -- data structure definitions

       -- callers must be able to distinguish among
       -- InitialContextToken, SubsequentContextToken,
       -- PerMsgToken, and SealedMessage data elements
       -- based on the usage in which they occur

       InitialContextToken ::=
       -- option indication (delegation, etc.) indicated within



Linn              Document Expiration: 2 December 1995         [Page 62]


Internet-Draft                                              June 2, 1995


       -- mechanism-specific token
       [APPLICATION 0] IMPLICIT SEQUENCE {
               thisMech MechType,
               innerContextToken ANY DEFINED BY thisMech
                  -- contents mechanism-specific
                  -- ASN.1 structure not required
               }

       SubsequentContextToken ::= innerContextToken ANY
       -- interpretation based on predecessor InitialContextToken
       -- ASN.1 structure not required

       PerMsgToken ::=
       -- as emitted by GSS_GetMIC and processed by GSS_VerifyMIC
       -- ASN.1 structure not required
               innerMsgToken ANY

       SealedMessage ::=
       -- as emitted by GSS_Wrap and processed by GSS_Unwrap
       -- includes internal, mechanism-defined indicator
       -- of whether or not encrypted
       -- ASN.1 structure not required
               sealedUserData ANY

       END


5:  Related Activities

   In order to implement the GSS-API atop existing, emerging, and future
   security mechanisms:

      object identifiers must be assigned to candidate GSS-API
      mechanisms and the name types which they support

      concrete data element formats must be defined for candidate
      mechanisms

   Calling applications must implement formatting conventions which will
   enable them to distinguish GSS-API tokens from other data carried in
   their application protocols.

   Concrete language bindings are required for the programming
   environments in which the GSS-API is to be employed; such bindings
   for the C language are currently specified in RFC-1509.






Linn              Document Expiration: 2 December 1995         [Page 63]


Internet-Draft                                              June 2, 1995


                              APPENDIX  A


                    PACS AND AUTHORIZATION SERVICES

   Consideration has been given to modifying the GSS-API service
   interface to recognize and manipulate Privilege Attribute
   Certificates (PACs) as in ECMA 138, carrying authorization data as a
   side effect of establishing a security context, but no such
   modifications have been incorporated at this time. This appendix
   provides rationale for this decision and discusses compatibility
   alternatives between PACs and the GSS-API which do not require that
   PACs be made visible to GSS-API callers.

   Existing candidate mechanism types such as Kerberos and X.509 do not
   incorporate PAC manipulation features, and exclusion of such
   mechanisms from the set of candidates equipped to fully support the
   GSS-API seems inappropriate. Inclusion (and GSS-API visibility) of a
   feature supported by only a limited number of mechanisms could
   encourage the development of ostensibly portable applications which
   would in fact have only limited portability.

   The status quo, in which PACs are not visible across the GSS-API
   interface, does not preclude implementations in which PACs are
   carried transparently, within the tokens defined and used for certain
   mech_types, and stored within peers' credentials and context-level
   data structures. While invisible to API callers, such PACs could be
   used by operating system or other local functions as inputs in the
   course of mediating access requests made by callers. This course of
   action allows dynamic selection of PAC contents, if such selection is
   administratively-directed rather than caller-directed.

   In a distributed computing environment, authentication must span
   different systems; the need for such authentication provides
   motivation for GSS-API definition and usage. Heterogeneous systems in
   a network can intercommunicate, with globally authenticated names
   comprising the common bond between locally defined access control
   policies. Access control policies to which authentication provides
   inputs are often local, or specific to particular operating systems
   or environments. If the GSS-API made particular authorization models
   visible across its service interface, its scope of application would
   become less general. The current GSS-API paradigm is consistent with
   the precedent set by Kerberos, neither defining the interpretation of
   authorization-related data nor enforcing access controls based on
   such data.

   The GSS-API is a general interface, whose callers may reside inside
   or outside any defined TCB or NTCB boundaries. Given this



Linn              Document Expiration: 2 December 1995         [Page 64]


Internet-Draft                                              June 2, 1995


   characteristic, it appears more realistic to provide facilities which
   provide "value-added" security services to its callers than to offer
   facilities which enforce restrictions on those callers. Authorization
   decisions must often be mediated below the GSS-API level in a local
   manner against (or in spite of) applications, and cannot be
   selectively invoked or omitted at those applications' discretion.
   Given that the GSS-API's placement prevents it from providing a
   comprehensive solution to the authorization issue, the value of a
   partial contribution specific to particular authorization models is
   debatable.









































Linn              Document Expiration: 2 December 1995         [Page 65]


Internet-Draft                                              June 2, 1995


                                APPENDIX B


                       MECHANISM DESIGN CONSTRAINTS

   The following constraints on GSS-API mechanism designs are adopted in
   response to observed caller protocol requirements, and adherence
   thereto is anticipated in subsequent descriptions of GSS-API
   mechanisms to be documented in standards-track Internet
   specifications.

   It is strongly recommended that mechanisms offering per-message
   protection services also offer at least one of the replay detection
   and sequencing services, as mechanisms offering neither of the latter
   will fail to satisfy recognized requirements of certain candidate
   caller protocols.



































Linn              Document Expiration: 2 December 1995         [Page 66]


Internet-Draft                                              June 2, 1995


AUTHOR'S ADDRESS

John Linn
OpenVision Technologies
One Main St.
Cambridge, MA  02142  USA

Phone: +1 617.374.2245

E-mail: John.Linn@ov.com









































Linn              Document Expiration: 2 December 1995         [Page 67]