Internet Draft                                          C. Adams, Nortel
draft-ietf-cat-idup-gss-05.txt                             June 11, 1996


        Independent Data Unit Protection Generic Security Service
             Application Program Interface  (IDUP-GSS-API)

STATUS OF THIS MEMO

   This document is an Internet-Draft. Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups. Note that other groups may also distribute
   working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by
   other documents at any time. It is inappropriate to use Internet-
   Drafts as reference material or to cite them other than as
   "work in progress."

   To learn the current status of any Internet Draft, please check the
   "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
   Directories on ds.internic.net (US East Coast), nic.nordu.net
   (Europe), ftp.isi.edu (US West Coast) or munnari.oz.au (Pacific Rim).

   Comments on this document should be sent to "cat-ietf@mit.edu", the
   IETF Common Authentication Technology WG discussion list.

ABSTRACT

   The IDUP-GSS-API extends the GSS-API [RFC-1508] for applications
   requiring protection of a generic data unit (such as a file or
   message) in a way which is independent of the protection of any other
   data unit and independent of any concurrent contact with designated
   "receivers" of the data unit.  Thus, it is suitable for applications
   such as secure electronic mail where data needs to be protected
   without any on-line connection with the intended recipient(s) of that
   data.  The protection offered by IDUP includes services such as data
   origin authentication with data integrity, data confidentiality with
   data integrity, and support for non-repudiation services.  Subsequent
   to being protected, the data unit can be transferred to the
   recipient(s) - or to an archive - perhaps to be processed
   ("unprotected") only days or years later.

   Throughout the remainder of this document, the "unit" of data
   described in the above paragraph will be referred to as an IDU
   (Independent Data Unit).  The IDU can be of any size (the application
   may, if it wishes, split the IDU into pieces and have the protection
   computed a piece at a time, but the resulting protection token
   applies to the entire IDU).  However, the primary characteristic of
   an IDU is that it represents a stand-alone unit of data whose
   protection is entirely independent of any other unit of data.  If an
   application protects several IDUs and sends them all to a single
   receiver, the IDUs may be unprotected by that receiver in any order
   over any time span; no logical connection of any kind is implied by
   the protection process itself.
Adams               Document Expiration:  11 Dec. 1996                 1

   As with RFC-1508, this IDUP-GSS-API definition provides security
   services to callers in a generic fashion, supportable with a range of
   underlying mechanisms and technologies and hence allowing source-
   level portability of applications to different environments. This
   specification defines IDUP-GSS-API services and primitives at a level
   independent of underlying mechanism and programming language environ-
   ment, and is to be complemented by other, related specifications:

      - documents defining specific parameter bindings for particular
        language environments;
      - documents defining token formats, protocols, and procedures to
        be implemented in order to realize IDUP-GSS-API services atop
        particular security mechanisms.

TABLE OF CONTENTS
   1.  IDUP-GSS-API Characteristics and Concepts ..................    3
   1.1.  IDUP-GSS-API Constructs ..................................    5
   1.1.1.  Credentials ............................................    5
   1.1.2.  Tokens .................................................    5
   1.1.3.  Security Environment ...................................    5
   1.1.4.  Mechanism Types ........................................    5
   1.1.5.  Naming .................................................    5
   1.1.6.  Channel Bindings .......................................    6
   1.2.  IDUP-GSS-API Features and Issues .........................    6
   1.2.1.  Status Reporting .......................................    6
   1.2.2.  Per-IDU Security Service Availability ..................    7
   1.2.3.  Per-IDU Replay Detection and Sequencing ................    7
   1.2.4.  Quality of Protection ..................................    7
   1.2.5.  The Provision of Time ..................................   10
   2.  Interface Descriptions .....................................   10
   2.1.  Credential management calls ..............................   11
   2.1.1.  Relationship to GSS-API ................................   11
   2.2.  Environment-level calls ..................................   12
   2.2.1.  Relationship to GSS-API ................................   12
   2.2.2.  IDUP_Establish_Env call ................................   13
   2.2.3.  IDUP_Abolish_Env call ..................................   15
   2.2.4.  IDUP_Inquire_Env call ..................................   16
   2.3.  Per-IDU calls ............................................   17
   2.3.1.  Relationship to GSS-API ................................   17
   2.3.2.  Parameter Bundles ......................................   17
   2.3.3.  IDUP_Start_Protect .....................................   21
   2.3.4.  IDUP_Protect ...........................................   24
   2.3.5.  IDUP_End_Protect .......................................   25
   2.3.6.  IDUP_File_Protect ......................................   26
   2.3.7.  IDUP_Start_Unprotect ...................................   27
   2.3.8.  IDUP_Unprotect .........................................   30
   2.3.9.  IDUP_End_Unprotect .....................................   31
   2.3.10. IDUP_File_Unprotect ....................................   32
   2.4.  Special-Purpose calls ....................................   35
   2.4.1.  Relationship to GSS-API ................................   35
   2.4.5.  IDUP_Form_Complete_PIDU ................................   35
   2.5.  Support calls ............................................   37
   2.5.1.  Relationship to GSS-API ................................   37
   2.5.2.  IDUP_Parse_token call ..................................   37
   2.5.3.  IDUP_Get_Policy_Info ...................................   38

Adams               Document Expiration:  11 Dec. 1996                 2

   3.  Related Activities .........................................   40
   4.  Acknowledgments ............................................   40
   5.  Security Considerations ....................................   40
   6.  References       ...........................................   41
   7.  Author's Address ...........................................   41
   Appendix  A, B .................................................   42
   Appendix  C ....................................................   43

1. IDUP-GSS-API Characteristics and Concepts

   The paradigm within which IDUP-GSS-API operates is as follows.  An
   IDUP-GSS-API caller is any application which works with IDUs, calling
   on IDUP-GSS-API in order to protect its IDUs with services such as
   data origin authentication with integrity (DOA), confidentiality with
   integrity (CONF), and/or support for non-repudiation (e.g., evidence
   generation, where "evidence" is information that either by itself or
   when used in conjunction with other information is used to establish
   proof about an event or action (note:  the evidence itself does not
   necessarily prove truth or existence of something, but contributes to
   establish proof) -- see [ISO/IEC] for fuller discussion regarding
   evidence and its role in various types of non-repudiation).  An
   IDUP-GSS-API caller passes an IDU to, and accepts a token from, its
   local IDUP-GSS-API implementation, transferring the resulting
   protected IDU (P-IDU) to a peer or to any storage medium.  When a
   P-IDU is to be "unprotected", it must be passed to an IDUP-GSS-API
   implementation for processing.  The security services available
   through IDUP-GSS-API in this fashion are implementable over a range
   of underlying mechanisms based on secret-key and/or public-key
   cryptographic technologies.

   During the protection operation, the input IDU buffers may be
   modified (for example, the data may be encrypted or encoded in some
   way) or may remain unchanged.  In any case, the result is termed a
   "M-IDU" (Modified IDU) in order to distinguish it from the original
   IDU.  Depending on the desire of the calling application and the
   capabilities of the underlying IDUP mechanism, the token produced by
   the protection processing may or may not encapsulate the M-IDU.
   Thus, the P-IDU may be the token alone (if encapsulation is done) or
   may be the logical concatenation of the token and the M-IDU (if
   encapsulation is not done).  In the latter case, the protecting
   application may choose whatever method it wishes to concatenate or
   combine the token and the M-IDU into a P-IDU, provided the
   unprotecting application knows how to de-couple the P-IDU back into
   its component parts prior to calling the IDUP unprotection set of
   functions.

   The IDUP-GSS-API separates the operation of initializing a security
   environment (the IDUP_Establish_Env() call) from the operations of
   providing per-IDU protection, for IDUs subsequently protected in
   conjunction with that environment. Per-IDU protection and
   unprotection calls provide DOA, CONF, evidence, and other services,
   as requested by the calling application and as supported by the
   underlying mechanism.



Adams               Document Expiration:  11 Dec. 1996                 3


   The following paragraphs provide an example illustrating the
   dataflows involved in the use of the IDUP-GSS-API by the sender and
   receiver of a P-IDU in a mechanism-independent fashion.  The example
   assumes that credential acquisition has already been completed by
   both sides.  Furthermore, the example does not cover all possible
   options available in the protection/unprotection calls.

      The sender first calls IDUP_Establish_Env() to establish a
      security environment.  Then, for the IDU to be protected the
      sender calls IDUP_Start_Protect(), IDUP_Protect() for each buffer
      of data, and IDUP_End_Protect() to complete the IDU protection.
      The resulting P-IDU, which may (depending on whether or not
      encapsulation was chosen/available) be either the token itself
      or the logical concatenation of the token and the M-IDU, is now
      ready to be sent to the target.  The sender then calls
      IDUP_Abolish_Env() to flush all environment-specific information.

      The receiver first calls IDUP_Establish_Env() to establish a
      security environment in order to unprotect the P-IDU.  Then, for
      the received P-IDU the receiver calls IDUP_Start_Unprotect(),
      IDUP_Unprotect() for each buffer of data, and IDUP_End_Unprotect()
      to complete the P-IDU unprotection.  The receiver then calls
      IDUP_Abolish_Env() to flush all environment-specific information.


   It is important to note that absolutely no synchronization is implied
   or expected between the data buffer size used by the sender as input
   to the protection calls, the data buffer size used by the receiver as
   input to the unprotection calls, and the block sizes required by the
   underlying protection algorithms (integrity and confidentiality).
   All these sizes are meant to be independent; furthermore, the data
   buffer sizes used for the protection and unprotection calls are
   purely a function of the local environment where the calls are made.

   The IDUP-GSS-API design assumes and addresses several basic goals,
   including the following.

      Mechanism independence:  The IDUP-GSS-API defines an interface to
      cryptographically implemented security services at a generic level
      which is independent of particular underlying mechanisms. For
      example, IDUP-GSS-API-provided services can be implemented by
      secret-key technologies or public-key approaches.

      Protocol environment independence: The IDUP-GSS-API is independent
      of the communications protocol suites which may be used to
      transfer P-IDUs, permitting use in a broad range of protocol
      environments.

      Protocol association independence: The IDUP-GSS-API's security
      environment construct has nothing whatever to do with
      communications protocol association constructs, so that
      IDUP-GSS-API services can be invoked by applications, wholly
      independent of protocol associations.


Adams               Document Expiration:  11 Dec. 1996                 4

      Suitability for a range of implementation placements: IDUP-GSS-API
      clients are not constrained to reside within any Trusted Computing
      Base (TCB) perimeter defined on a system where the IDUP-GSS-API is
      implemented; security services are specified in a manner suitable
      for both intra-TCB and extra-TCB callers.

1.1. IDUP-GSS-API Constructs

   This section describes the basic elements comprising the
   IDUP-GSS-API.


1.1.1.  Credentials

   Credentials in IDUP-GSS-API are to be understood and used as
   described in GSS-API [RFC-1508].

1.1.2. Tokens

   Tokens in IDUP-GSS-API are to be understood and used as described in
   GSS-API [RFC-1508] with the exception that there are no context-level
   tokens generated by IDUP-GSS-API.  The IDUP-GSS-API token
   may (depending on the underlying mechanism) encapsulate the M-IDU or
   may be logically concatenated with M-IDU prior to transfer to a
   target; furthermore, for some evidence services the token may be sent
   independently of any other data transfer.

1.1.3.  Security Environment

   The "security environment" in IDUP-GSS-API is entirely different from
   the concept of security contexts used in GSS-API [RFC-1508].  Here, a
   security environment exists within a calling application (that is, it
   is purely local to the caller) for the purpose of protecting or
   unprotecting one or more IDUs using a particular caller credential or
   set of credentials.  In GSS-API, on the other hand, a security
   context exists between peers (the initiator and the target) for the
   purpose of protecting, in real time, the data that is exchanged
   between them.  Although they are different concepts, the env_handle
   in IDUP-GSS-API is similar to the context_handle in GSS-API in that
   it is a convenient way of tying together the entire process of
   protecting or unprotecting one or more IDUs using a particular
   underlying mechanism.  As with the GSS-API security contexts, a
   caller can initiate and maintain multiple environments using the same
   or different credentials.

1.1.4.  Mechanism Types

   Mechanism types in IDUP-GSS-API are to be understood and used as
   described in GSS-API [RFC-1508].

1.1.5.  Naming

   Naming in IDUP-GSS-API is to be understood and used as described in
   GSS-API [RFC-1508].


Adams               Document Expiration:  11 Dec. 1996                 5

1.1.6.  Channel Bindings

   The concept of channel bindings discussed in GSS-API [RFC-1508] is
   not relevant to the IDUP-GSS-API.



1.2.  IDUP-GSS-API Features and Issues

   This section describes aspects of IDUP-GSS-API operations and of the
   security services which the IDUP-GSS-API provides.  It also provides
   commentary on design issues.


1.2.1.  Status Reporting

   Status reporting in IDUP-GSS-API is to be understood and used as
   described in GSS-API [RFC-1508], with the addition of the following
   IDUP-GSS-API major status codes.

   As with GSS-API, minor_status codes, which provide more detailed
   status information than major_status codes, and which may include
   status codes specific to the underlying security mechanism, are not
   specified in this document.



   Table 1: IDUP-GSS-API Major Status Codes


      Fatal Error Codes

      IDUP_S_BAD_TARG_INFO     all target information is invalid or
                               unsuitable for IDU protection

      IDUP_S_BAD_DOA_KEY       DOA key has expired or been revoked

      IDUP_S_BAD_KE_KEY        key used for key establishment between
                               orig. and targ. has exp. or been revoked

      IDUP_S_BAD_ENC_IDU       encrypted IDU is defective/invalid

      IDUP_S_INCOMPLETE
         there is not enough info. in token for P-IDU verification

      IDUP_S_SERV_VERIF_INFO_NEEDED
         the Service_Verification_Info parameter bundle is required

      IDUP_S_SERVICE_UNAVAIL  mech. does not support requested service

      IDUP_S_REQ_TIME_SERVICE_UNAVAIL
         the time service requested is not avail. in this environment

      IDUP_S_INAPPROPRIATE_CRED
         the credentials supplied cannot be used to unprotect P-IDU

Adams               Document Expiration:  11 Dec. 1996                 6

      IDUP_S_NO_ENV            no environment recognized for env_handle


      IDUP_S_NO_MATCH          Service_Verification_Info and input token
                               do not match

      IDUP_S_UNKNOWN_OPER_ID   requested operation id. is unsupported


      Informatory Status Codes

      IDUP_S_ENCAPSULATION_UNAVAIL
         encapsulation of M-IDU into pidu_buffer is not supported

      IDUP_S_MORE_PIDU_NEEDED
         more p-idu data is needed for IDUP_Start_Unprotect()

      IDUP_S_MORE_DATA_NEEDED
         more data is needed for protection or unprotection


1.2.2. Per-IDU Security Service Availability

   Per-IDU security service availability in IDUP-GSS-API is to be
   understood and used as described in GSS-API [RFC-1508], with the
   exception that any combination of services requested by the calling
   application and supported by the underlying mechanism can be applied
   simultaneously to any IDU.

   GSS-API callers desiring per-message security services should check
   the relevant service OBJECT IDs at environment establishment time to
   ensure that what is available in the established environment is
   suitable for their security needs.


1.2.3. Per-IDU Replay Detection and Sequencing

   The concept of per-IDU replay detection and sequencing discussed
   in GSS-API [RFC-1508] is not relevant to the IDUP-GSS-API.


1.2.4.  Quality of Protection

   The concept of QOP control in IDUP-GSS-API is to be understood
   essentially as described in GSS-API [RFC-1508].  However, the actual
   description and use of the QOP parameter is given as follows.










Adams               Document Expiration:  11 Dec. 1996                 7

   The qop_algs parameter for IDUP is defined to be a 32-bit unsigned
   integer with the following bit-field assignments:

            31 (MSB)                               (LSB) 0
            ----------------------------------------------
            |        U(19)       | TS(5) | IA(4) | MA(4) |
            ----------------------------------------------

   where

      U is a 19-bit Unspecified field (available for future
      use/expansion) -- must be set to zero;

      TS is a 5-bit Type Specifier (a semantic qualifier whose value
      specifies the type of algorithm which may be used to protect the
      corresponding IDU -- see below for details);

      IA is a 4-bit field enumerating Implementation-specific
      Algorithms; and

      MA is a 4-bit field enumerating Mechanism-defined Algorithms.

   The interpretation of the qop_algs parameter is as follows.  The MA
   field is examined first.  If it is non-zero then the algorithm used
   to protect the IDU is the mechanism-specified algorithm corresponding
   to that integer value.

   If MA is zero then IA is examined.  If this field value is non-zero
   then the algorithm used to protect the IDU is the implementation-
   specified algorithm corresponding to that integer value.  Note that
   use of this field may hinder portability since a particular value may
   specify one algorithm in one implementation of the mechanism and may
   not be supported or may specify a completely different algorithm in
   another implementation of the mechanism.

   Finally, if both MA and IA are zero then TS is examined.  A value of
   zero for TS specifies the default algorithm for the established
   mechanism.  A non-zero value for TS corresponds to a particular
   algorithm qualifier and selects any algorithm from the mechanism
   specification which satisfies that qualifier (which actual algorithm
   is selected is an implementation choice; the calling application need
   not be aware of the choice made).


   The following TS values (i.e., algorithm qualifiers) are specified;
   other values may be added in the future.

   When qop_algs is used to select a confidentiality algorithm:

      00000  (0) = default confidentiality algorithm
      00001  (1) = IDUP_SYM_ALG_STRENGTH_STRONG
      00010  (2) = IDUP_SYM_ALG_STRENGTH_MEDIUM
      00011  (3) = IDUP_SYM_ALG_STRENGTH_WEAK
      11111 (31) = IDUP_NO_CONFIDENTIALITY


Adams               Document Expiration:  11 Dec. 1996                 8
   When qop_algs is used to select a DOA/integrity algorithm:

      00000  (0) = default integrity algorithm
      00001  (1) = IDUP_INT_ALG_DIG_SIGNATURE
                   (integrity provided through a digital signature)
      00010  (2) = IDUP_INT_ALG_NON_DIG_SIGNATURE
                   (integrity without a dig. sig. (e.g., with a MAC))
      11111 (31) = IDUP_NO_INTEGRITY

   Clearly, qualifiers such as strong, medium, and weak are debatable
   and likely to change with time, but for the purposes of this version
   of the specification we define these terms as follows.  A confiden-
   tiality algorithm is "weak" if the effective key length of the cipher
   is 40 bits or less; it is "medium-strength" if the effective key
   length is strictly between 40 and 80 bits; and it is "strong" if the
   effective key length is 80 bits or greater.  ("Effective key length"
   describes the computational effort required to break a cipher using
   the best-known cryptanalytic attack against that cipher.)

   A five-bit TS field allows up to 30 qualifiers for each of confiden-
   tiality and integrity (since "0" is reserved for "default" and "31"
   is reserved for "none", as shown above).  This document specifies
   three for confidentiality and two for integrity, leaving a lot of
   room for future specification.  Suggestions of qualifiers such as
   "fast", "medium-speed", and "slow" have been made, but such terms are
   difficult to quantify (and in any case are platform- and processor-
   dependent), and so have been left out of this initial specification.
   The intention is that the TS terms be quantitative, environment-
   independent qualifiers of algorithms, as much as this is possible.

   Use of the qop_algs parameter as defined above is ultimately meant to
   be as follows.

    - TS values are specified at the IDUP-GSS-API level and are
      therefore portable across mechanisms.  Applications which know
      nothing about algorithms are still able to choose "quality" of
      protection for their message tokens.

    - MA values are specified at the mechanism level and are therefore
      portable across implementations of a mechanism.

    - IA values are specified at the implementation level (in user
      documentation, for example) and are therefore typically non-
      portable.  An application which is aware of its own mechanism
      implementation and the mechanism implementation of its intended
      P-IDU recipient, however, is free to use these values since they
      will be perfectly valid and meaningful for protecting IDUs
      between those entities.

   The receiver of a P-IDU must pass back to its calling application
   (in IDUP_Start_Unprotect()) a qop_algs parameter with all relevant
   fields set.  For example, if triple-DES has been specified by a
   mechanism as algorithm 8, then a receiver of a triple-DES-protected
   P-IDU must pass to its application (TS=1, IA=0, MA=8).  In this way,
   the application is free to read whatever part of the qop_algs
   parameter it understands (TS or IA/MA).

Adams               Document Expiration:  11 Dec. 1996                 9

1.2.5.  The Provision of Time

   IDUP mechanisms should make provision in their protocols for the
   carrying of time information from originator to target(s).  That is,
   a target (a legitimate recipient) should get some indication during
   unprotection regarding the time at which the protection operation
   took place.  This is particularly important if the mechanism offers
   non-repudiation services because in some cases evidence verification
   may only be achievable if the time at which the evidence was
   generated is known.

   Depending upon the platform and resources available to the
   implementation, an IDUP environment may have access to a source of
   trusted (secure) time, untrusted (local) time, both kinds of time, or
   no time.  OBJECT IDs indicating such availability are returned by the
   IDUP_Establish_Env() call.  When starting a protection operation, an
   application may specify which time services it wishes to have applied
   to the IDU.  Similarly, for unprotection, an application may specify
   which kind of time (if any) to consult when the validity of the P-IDU
   is to be established.  Specifying both kinds of time is interpreted
   to mean that the calling application does not care which kind of time
   is used.



2.  Interface Descriptions

   This section describes the IDUP-GSS-API's operational interface,
   dividing the set of calls offered into five groups.  Credential
   management calls are related to the acquisition and release of
   credentials by API callers. Environment-level calls are related to
   the management of the security environment by an API caller.  Per-IDU
   calls are related to the protection or unprotection of individual
   IDUs in established security environments.  Special-purpose calls
   deal with unusual or auxiliary evidence generation/verification
   requirements.  Support calls provide extra functions useful to
   IDUP-GSS-API callers. Table 2 groups and summarizes the calls in
   tabular fashion (an asterisk marks the calls which are identical to
   the GSS-API specification).

      Table 2:  IDUP-GSS-API Calls

      CREDENTIAL MANAGEMENT

    * GSS_Acquire_cred     acquire credentials for use
    * GSS_Release_cred     release credentials after use
    * GSS_Inquire_cred     display information about credentials
    * GSS_Add_cred         add credential info. (see [GSSv2])

      ENVIRONMENT-LEVEL CALLS

      IDUP_Establish_Env   establish IDUP environment (to protect and
                           unprotect IDUs)
      IDUP_Abolish_Env     abolish env. when no longer needed
      IDUP_Inquire_Env     indicate characteristics of env.

Adams               Document Expiration:  11 Dec. 1996                10

      PER-IDU CALLS

      IDUP_Start_Protect   begin the protection process
      IDUP_Protect         protect the IDU (perhaps 1 buffer at a time)
      IDUP_End_Protect     end the protection process; create a token
                           which contains info. necessary for the
                           legitimate receiver(s) of the P-IDU to
                           unprotect it
      IDUP_File_Protect    protect an IDU (input as a file)

      IDUP_Start_Unprotect begin the unprotect process
      IDUP_Unprotect       use the token to unprotect the P-IDU
                           (possibly one buffer at a time)
      IDUP_End_Unprotect   end the unprotect process
      IDUP_File_Unprotect  unprotect a P-IDU (input as a file)

      SPECIAL-PURPOSE CALLS  (might not be supported by all mechanisms)

      IDUP_Form_Complete_PIDU  insert in P-IDU any data not provided
                              by the protection call(s)


      SUPPORT CALLS

    * GSS_Display_status   translate status codes to printable form
    * GSS_Indicate_mechs   indicate mech_types supported on local
                           system
    * GSS_Compare_name     compare two names for equality
    * GSS_Display_name     translate name to printable form
    * GSS_Import_name      convert printable name to normalize form
    * GSS_Release_name     free storage of normalized-form name
    * GSS_Release_buffer   free storage of printable name
    * GSS_Release_oid_set  free storage of OID set
      IDUP_Parse_Token     examine an input token to determine mech_type
      IDUP_Get_Policy_Info return policy info. for a given policy_id



2.1.  Credential management calls


2.1.1.  Relationship to GSS-API

   Credential management in IDUP-GSS-API is to be understood and used as
   described in GSS-API [RFC-1508].  The calls GSS_Acquire_cred(),
   GSS_Release_cred(), and GSS_Inquire_cred() are unchanged (the call
   GSS_Add_cred() from GSS-API v2 [GSSv2] is also included).  However,
   the interpretation (and possible modification) of the cred_usage
   parameter for IDUP purposes is for further study.







Adams               Document Expiration:  11 Dec. 1996                11

2.2.  Environment-level calls

   This group of calls is devoted to the establishment and management of
   an environment for the purpose of IDU protection and unprotection.
   Before protecting or unprotecting any IDU, an application must call
   IDUP_Establish_Env() to initialize environment information and select
   the underlying IDUP-GSS mechanism to be used.  A series of protection
   or unprotection calls is made to process each IDU, the protection
   calls resulting in a P-IDU for each.  Finally, IDUP_Abolish_Env()
   is called to flush all environment information.

   Semantically, acquiring credentials and establishing an environment
   is (in many cases) analogous to logging in to a system -- it
   authenticates a local user to the system and gives that user access
   to a set of operations which can be performed.


2.2.1.  Relationship to GSS-API

   The set of calls described in this section are used in place of the
   calls GSS_Init_sec_context(), GSS_Accept_sec_context(),
   GSS_Delete_sec_context(), GSS_Process_context_token(), and
   GSS_Context_time() which are described in [RFC-1508], since those
   calls are specific to a session-oriented environment.
































Adams               Document Expiration:  11 Dec. 1996                12

2.2.2.  IDUP_Establish_Env call

   Inputs:

   o  claimant_cred_handle CREDENTIAL HANDLE,
      -- NULL parameter specifies "use default"

   o  req_mech_type OBJECT IDENTIFIER,
      -- NULL parameter specifies "use default"

   o  req_policy OBJECT IDENTIFIER,
      -- NULL parameter specifies "use default".
      -- This environment-level policy identifier is separate from
      -- the policy provisions connected with credentials, if they exist

   o  policy_time INTEGER,
      -- the security policy rules available at the specified time
      -- NULL parameter specifies "use default"

   o  req_services SET OF OBJECT IDENTIFIER,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  env_handle ENVIRONMENT HANDLE,

   o  actual_mech_type OBJECT IDENTIFIER,
      -- actual mechanism always indicated, never NULL

   o  actual_policy OBJECT IDENTIFIER,
      -- actual policy always indicated, never NULL

   o  actual_policy_time,
      -- actual time at which the above policy rules came into effect

   o  ret_services SET OF OBJECT IDENTIFIER,


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that environment-level information was
      successfully initialized, and that IDU / P-IDU processing can
      begin on the newly-established environment.

   o  GSS_S_DEFECTIVE_CREDENTIAL indicates that consistency checks
      performed on the credential structure referenced by
      claimant_cred_handle failed, preventing further processing from
      being performed using that credential structure.

   o  GSS_S_NO_CRED indicates that no environment was established,
      either because the input cred_handle was invalid or because the
      caller lacks authorization to access the referenced credentials.

Adams               Document Expiration:  11 Dec. 1996                13

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the credentials provided
      through the input claimant_cred_handle argument are no longer
      valid, so environment establishment cannot be completed.

   o  GSS_S_BAD_MECH indicates that a mech_type unsupported by the
      IDUP_GSS-API implementation was requested, causing the
      environment establishment operation to fail.

   o  GSS_S_FAILURE indicates that environment setup could not be
      accomplished for reasons unspecified at the IDUP-GSS-API level,
      and that no interface-defined recovery action is available.

   This routine is used by an application which protects or unprotects
   IDUs.  Using information in the credentials structure referenced by
   claimant_cred_handle, IDUP_Establish_Env() initializes the data
   structures required to protect or unprotect IDUs.  The
   claimant_cred_handle, if non-NULL, must correspond to a valid
   credentials structure.

   This routine returns an env_handle for all future references to
   this environment; when protection, unprotection, or
   IDUP_Abolish_Env() calls are made, this handle value will be used
   as the input env_handle argument.

   It is the caller's responsibility to establish a communications path
   to the intended recipients of the P-IDU, and to transmit the P-IDU to
   those recipients over that path.  This may occur subsequent to the
   IDUP_Abolish_Env() call.

   The req_services parameter may be used by the calling application to
   request that data origin authentication with integrity,
   confidentiality with integrity, evidence generation, and/or evidence
   verification services be available in the established environment.
   Requests can also be made for "trusted" or "untrusted" time services.
   Requesting evidence generation or verification indicates that the
   calling application may wish to generate or verify evidence
   information for non-repudiation purposes (note:  an IDU protector may
   request that a flag be inserted into a P-IDU asking a recipient to
   provide an evidence of the type "non-repudiation of delivery";
   however, the IDUP-GSS-API cannot by itself guarantee that the
   evidence will be sent because there is no way to force a target to
   send an evidence_token back to the IDU protector).

   Not all features will be available in all underlying mech_types; the
   returned value of ret_services indicates, as a function
   of mech_type processing capabilities and the initiator-provided input
   OBJECT IDs, the set of features which will be available in the
   environment. The value of this parameter is undefined unless the
   routine's major_status indicates COMPLETE.  Failure to provide the
   precise set of services desired by the caller does not cause
   environment establishment to fail; it is the caller's prerogative to
   abolish the environment if the service set provided is unsuitable for
   the caller's use.  The returned mech_type value indicates the
   specific mechanism employed in the environment, and will never
   indicate the value for "default".

Adams               Document Expiration:  11 Dec. 1996                14

   The following OBJECT IDs are defined for protection and unprotection
   services.  It is recognized that this list may grow over time.

      PER_CONF = { xx }
         -- perform data confidentiality (i.e., encrypt data)
      PER_DOA  = { xx }
         -- perform data origin authentication with data integrity
      PER_POO  = { xx }
         -- perform (i.e., create) non-repudiable "proof of origin"
      PER_POD  = { xx }
         -- perform (i.e., create) non-repudiable "proof of delivery"
      REC_CONF = { xx }
         -- receive data confidentiality (i.e., decrypt data)
      REC_DOA  = { xx }
         -- receive / verify DOA with data integrity
      REC_POO  = { xx }
         -- receive / verify "proof of origin"
      REC_POD  = { xx }
         -- receive / verify "proof of delivery"
      TTIME    = { xx }
         -- trusted time availability
      UTIME    = { xx }
         -- untrusted time availability

   The PER_CONF return value (in the ret_services paramater) indicates
   whether the environment supports confidentiality services, and so
   informs the caller whether or not a request for encryption through
   a confidentiality service input to IDUP_Start_Protect() can be
   honored.  In similar fashion, the PER_DOA return value indicates
   whether DOA services are available in the established environment,
   and the PER_POO and PER_POD return values indicate whether evidence
   generation services are available.  The TTIME and UTIME values
   indicate whether trusted time and untrusted time are available for
   protection / unprotection services.

   Note that, unlike a GSS "context", an IDUP environment does not have
   an explicit lifetime associated with it.  Instead, it relies on the
   lifetime of the calling entity's credential (set by the caller in the
   GSS_Acquire_cred() call).  When the credential expires (or is
   explicitly deleted using the gss_release_cred() call), no new
   operations are allowed in the IDUP environment (although operations
   which have begun, such as the Protection set of calls, can be taken
   to completion).

2.2.3. IDUP_Abolish_Env call

   Input:

   o  env_handle ENVIRONMENT HANDLE

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

Adams               Document Expiration:  11 Dec. 1996                15
   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the environment was recognized and
      that relevant environment-specific information was flushed.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided, so no deletion was performed.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   This call is made to flush environment-specific information. (Once an
   environment is established, cached credential and environment-related
   info. is expected to be retained until an IDUP_Abolish_Env() call is
   made or until the cred. lifetime expires.)  Attempts to perform IDU
   processing on a deleted environment will result in error returns.

2.2.4:   IDUP_Inquire_Env call

   Input:

   o  env_handle ENVIRONMENT HANDLE,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  mech_type OBJECT IDENTIFIER, -- the mechanism supporting this env.

   o  policy OBJECT IDENTIFIER, -- the policy used in this env.

   o  policy_time, -- time at which the policy rules came into effect

   o  ret_services SET OF OBJECT IDENTIFIER,

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the referenced environment is valid
      and that mech_type and other return values describe the
      corresponding characteristics of the environment.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the environment is
      recognized, but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided, so no return values can be provided.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   This routine provides environment-related information to the caller.

Adams               Document Expiration:  11 Dec. 1996                16

2.3.  Per-IDU calls

   This group of calls is used to perform IDU protection and
   unprotection processing on an established IDUP environment. Some of
   these calls may block pending network interactions (depending on the
   underlying mechanism in use).  These calls may be invoked by an IDU's
   protector or by the P-IDU's recipient.  The two sets of members of
   this group form a pair; the output from the protection set is
   typically meant to be input to the unprotection set.

   The per-IDU calls can support caller-requested data origin
   authentication with data integrity, confidentiality with data
   integrity, evidence, and evidence-requested-from-target services.
   The protection operations output a token which encapsulates all the
   information required to unprotect the IDU.  The token is passed to
   the target (possibly separate from the M-IDU) and is processed by the
   unprotection calls at that system.  Unprotection performs
   decipherment, DOA verification, evidence verification, or
   notification of evidence requested, as required.

   Each of the two main operations (protection and unprotection) may be
   separated into three parts:  "Start_Operation"; "Operation" (which
   may be called once for each buffer of input data); and
   "End_Operation".  This separation is available for the case where the
   IDU or P-IDU is to be processed one buffer at a time.
   "Start_Operation" allows the caller to specify or retrieve the
   appropriate "Quality" used during the processing.  "Operation" is
   concerned with the processing itself, receiving a buffer of input
   data and potentially returning a buffer of output data.
   "End_Operation" performs any required clean-up and creates the
   appropriate token or states whether the input token was verified.

   If the IDU or P-IDU is wholly contained in a single buffer, the
   three-part protection/unprotection processing need not be done.
   Instead, protection and unprotection can be accomplished using only
   the "Start_Operation" call, simplifying application code.

2.3.1.  Relationship to GSS-API

   The set of calls described in this section are used in place of the
   calls GSS_Sign(), GSS_Verify(), GSS_Seal(), and GSS_Unseal() -- now
   named GSS_GetMIC(), GSS_VerifyMIC, GSS_Wrap(), and GSS_Unwrap() --
   which are specified in [RFC-1508], since those calls are specific to
   a session-oriented environment.

2.3.2. Parameter Bundles

   The concept of "parameter bundles" is used in the calls presented in
   the following subsections in order to simplify their presentation and
   (hopefully) clarify their intended purpose and use.  A parameter
   bundle is simply a set of closely-related parameters of a call which
   are either all used by / available to the calling application or all
   not used by / unavailable to the calling application.  These
   parameters may be all input parameters, all output parameters, or
   any combination of the two.

Adams               Document Expiration:  11 Dec. 1996                17

   A typical use envisioned for parameter bundles in a language such as
   C would be as a structure, where individual parameters in the bundle
   are structure members.  The calling application wishing to use a
   particular bundle would then allocate the appropriate structure
   variable, assign the desired input values to the appropriate members,
   and pass the address of the structure as the bundle "parameter".  On
   output, the values of the appropriate output members may be read.  An
   application not wishing to use a particular bundle (or one which is
   satisfied with default values for all input parameters of the bundle
   and which doesn't care about output values), can pass NULL as the
   bundle "parameter".  From the mechanism implementor's perspective, if
   a parameter bundle is not supported (for example, if it represents a
   security service which is not supported by the implementation), then
   any non-NULL value passed as the bundle parameter will generate an
   error status return code.

   The following parameter bundles are used in the subsequent protection
   and unprotection sets of calls.  A parameter preceded by "(I)" is an
   input parameter; one preceded by "(O)" is an output parameter; one
   preceded by neither is an input if the bundle itself is an input and
   is an output if the bundle itself is an output.

      o Mech_Specific_Info PARAMETER BUNDLE
        -- actual parameters included in this bundle are defined by (and
        -- specific to) the underlying mechanism

      o Idu_Sensitivity PARAMETER BUNDLE,
        -- actual parameters included in this bundle are defined by (and
        -- specific to) the underlying mechanism, but may include
        -- codified values for "Unclassified", "Secret", "Top Secret",
        -- and so on

      o Service_Creation_Info PARAMETER BUNDLE
        -- actual parameters included in this bundle are defined by (and
        -- specific to) the underlying mechanism, but it is mandatory
        -- that they include at least service_id and Quality.

      o Service_Verification_Info PARAMETER BUNDLE
        -- actual parameters included in this bundle are defined by (and
        -- specific to) the underlying mechanism, but it is mandatory
        -- that they include at least service_id and Quality.

      o  Quality PARAMETER BUNDLE

         o  qop_algs UNSIGNED INTEGER,

         o  validity UNSIGNED INTEGER,
            -- protection guaranteed to be valid until time specified

         o  policy_id OBJECT IDENTIFIER,
            -- security policy under which protection is/was carried out

         o  allow_policy_mapping BOOLEAN,
            -- determines whether or not mapping between policy
            -- identifiers is allowed

Adams               Document Expiration:  11 Dec. 1996                18
      o  Idu_Information PARAMETER BUNDLE,

         o  idu_type_oid OBJECT IDENTIFIER,

         o  idu_type_string OCTET STRING,

         o  idu_title OCTET STRING,

         o  Idu_Sensitivity PARAMETER BUNDLE,


      o  Prot_Information PARAMETER BUNDLE,

         o  originator_name INTERNAL NAME,

         o  Idu_Information PARAMETER BUNDLE,

         o  protection_time INTEGER,


      o  Special_Conditions PARAMETER BUNDLE,

         o  prot_oper_id INTEGER,

         o  use_trusted_time BOOLEAN,

         o  use_untrusted_time BOOLEAN,


      o  Bad_Target_Name PARAMETER BUNDLE,

         o  (O) bad_targ_name INTERNAL NAME,

         o  (O) bad_targ_status INTEGER,
                -- a (mechanism-defined) status flag giving the reason
                -- for rejection of the name in bad_targ_name


      o  Target_Info PARAMETER BUNDLE,

         o      targ_names SET OF INTERNAL NAME,

         o  (O) bad_targ_count INTEGER,

         o  (O) Bad_Target_Name PARAMETER BUNDLE,


      o  General_Service_Data PARAMETER BUNDLE,

         o      Target_Info PARAMETER BUNDLE,

         o  (O) unencapsulated_token OCTET STRING,
                -- zero length if encapsulation_request is TRUE;
                -- unused in the unprotection set of calls

         o  (O) minor_status INTEGER,

Adams               Document Expiration:  11 Dec. 1996                19
   Three types of protection services are defined in IDUP.  These are

      1. perform unsolicited service (i.e., act on a locally-generated
         service request),
      2. perform solicited service (i.e., act on a remotely-generated
         service request), and
      3. perform service solicitation (i.e., send a service request to
         the remote end).

   As an originator, applying data confidentiality with data integrity,
   or data origin authentication with data integrity, or proof of origin
   evidence is an example of service type 1.  As a target, creating a
   proof of delivery (i.e., receipt) evidence token as the result of a
   request received from the originator is an example of service type 2.
   Finally, as an originator, submitting a request that one or more
   targets return a receipt for the data sent is an example of service
   type 3.

   The first four parameters in the Prot_Service parameter bundle
   pertain to all service types; the fifth parameter is used if and only
   if service type 2 is desired; parameters 6-8 are used if and only if
   service type 3 is desired.

      o  Prot_Service PARAMETER BUNDLE

         o  (I) prot_service_type INTEGER,

         o  (I) service_id OBJECT IDENTIFIER,

         o  (I) Quality PARAMETER BUNDLE,
                -- NULL specifies default Quality

         o  (I) General_Service_Data PARAMETER BUNDLE,

         o  (I) Service_Creation_Info PARAMETER BUNDLE,

         o  (I) service_to SET OF INTERNAL NAME,

         o  (O) Service_Verification_Info PARAMETER BUNDLE,

         o  (O) service_verification_info_id INTEGER,

   Also, three types of unprotection services are defined.  These are

      1. receive unsolicited service (i.e., process unrequested
         remotely-generated service),
      2. receive solicited service (i.e., process remotely-generated
         response to locally-generated request), and
      3. receive service solicitation (i.e., process req. from rem. end)

   As a target, unprotecting an encrypted message, or verifying the
   originator's proof of origin is an example of service type 1.  As an
   originator, verifying a proof of delivery which you requested from a
   target is an example of service type 2.  Finally, as a target,
   receiving a request from an originator for a proof of delivery is an
   example of service type 3.

Adams               Document Expiration:  11 Dec. 1996                20
   The first four parameters in the Unprot_Service parameter bundle
   pertain to all service types; parameters 5-6 are used if and only if
   service type 2 is required; parameters 7-8 are used only if service
   type 3 is required.

      o  Unprot_Service PARAMETER BUNDLE

         o  (O) unprot_service_type INTEGER,

         o  (O) service_id OBJECT IDENTIFIER,

         o  (O) Quality PARAMETER BUNDLE,
                -- actual Quality specified (never NULL)

         o  (O) General_Service_Data PARAMETER BUNDLE,

         o  (O) service_verification_info_id INTEGER,

         o  (I) Service_Verification_Info PARAMETER BUNDLE,

         o  (O) service_to SET OF INTERNAL NAME,

         o  (O) Service_Creation_Info PARAMETER BUNDLE,

2.3.3. IDUP_Start_Protect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   o  Mech_Specific_Info PARAMETER BUNDLE,
      -- NULL selects the mechanism-defined default values

   o  Idu_Information PARAMETER BUNDLE,

   o  Special_Conditions PARAMETER BUNDLE,

   o  encapsulation_request BOOLEAN,

   o  single_idu_buffer OCTET STRING,
      -- non-zero length for this buffer means that Protect/End_Protect
      -- won't be called (i.e., entire IDU is contained in this buffer)

   o  Target_Info PARAMETER BUNDLE,

   o  Services_to_Perform SET OF Prot_Service,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  midu_buffer OCTET STRING,
      -- zero length if encapsulation_request is TRUE or if
      -- single_idu_buffer has zero length

Adams               Document Expiration:  11 Dec. 1996                21

   o  pidu_buffer OCTET STRING,
      -- zero length if encapsulation_request is FALSE or if
      -- single_idu_buffer has zero length

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the protection process can begin
      (or has completed, if single_idu_buffer has non-zero length).

   o  GSS_S_CONTINUE_NEEDED indicates that at least one of the buffers
      supplied is too small to hold the generated data.  The application
      should continue calling this routine (until GSS_S_COMPLETE is
      returned) in order to get all remaining data.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the environment is
      recognized, but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  IDUP_S_ENCAPSULATION_UNAVAIL indicates that the underlying
      mechanism does not support encapsulation of the M-IDU into the
      token.

   o  IDUP_S_MORE_DATA_NEEDED indicates whether protection is completed
      by this call or by IDUP_End_Protect()  (e.g., whether more data
      buffers are required for evidence generation)

   o  IDUP_S_SERVICE_UNAVAIL indicates that the underlying mechanism
      does not support the service requested.

   o  IDUP_S_REQ_TIME_SERVICE_UNAVAIL indicates that the time service
      requested (TTIME or UTIME) is not available in the environment.

   o  IDUP_S_UNKNOWN_OPER_ID indicates that the input prot_oper_id value
      is not recognized or supported in the underlying mechanism.

   o  GSS_S_BAD_QOP indicates that the provided qop_algs value is not
      recognized or supported for the environment.

   o  IDUP_S_BAD_TARG_INFO indicates that all the information regarding
      the target(s) is invalid or is insufficient for the protection of
      an IDU, so P-IDU cannot be created.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.








Adams               Document Expiration:  11 Dec. 1996                22

   Using the security environment referenced by env_handle, initialize
   the data structures required to begin the process of protecting the
   IDU buffers.  The caller requests specific protection services by
   supplying the appropriate Prot_Service parameter bundles in
   Services_to_Perform.  Each service is able to return a minor status
   code to the calling application, if necessary.

   The calling application, knowing the size of the IDU it wishes to
   protect and the buffer size which it has available to it, can choose
   to input the entire IDU in a single buffer and omit the subsequent
   IDUP_Protect() and IDUP_End_Protect() calls.  Furthermore, the
   application can request that the resulting M-IDU be encapsulated in
   the token -- so that the token contains the entire P-IDU -- rather
   than having it be returned separately in midu_buffer.  Encapsulation,
   however, may not be supported by all underlying mechanisms or
   implementations; if this is the case, the
   IDUP_S_ENCAPSULATION_UNAVAIL major status code will be returned and
   M-IDU will be returned in midu_buffer.

   For those mechanisms which allow or require multiple stages of
   processing, each producing a different aspect of protection for the
   IDU, the operation identifier prot_oper_id is used to specify
   which stage is currently being requested by the application.  An
   example where this would be useful is a mechanism which implements
   the signed Message Security Protocol [MSP].  As another example, a
   mechanism may choose to do a digital signature in two stages:  one
   for the hashing of the message and another for the signature on the
   hash.  The calling application would therefore use the protection set
   of calls on the IDU in stage 1 and then use the protection set of
   calls on the token (from stage 1) in stage 2.

   Note that prot_oper_id is simply an integer (1, 2, 3, ..., n, where
   "n" is the number of stages as defined by the mechanism (typically 1
   or 2)).  The calling application uses this parameter to indicate to
   the underlying mechanism whether it wishes to do stage 1 of
   protection / unprotection processing, or stage 2, and so on.

   If one or more of the targets in targ_names cannot be used as a valid
   recipient of the P-IDU, these names will be returned in
   bad_targ_names (with associated status codes in bad_targ_status).  As
   long as at least one of the targets can be used, this does not cause
   this call to fail; it is the caller's prerogative to discontinue IDU
   protection if the target set which can be used is unsuitable for the
   caller's purposes.  Note that each Prot_Service parameter bundle can
   also input a list of targ_names; this is used if a separate list is
   to be used for that service only (the general list of targets is to
   be used for all services unless overridden in this way).









Adams               Document Expiration:  11 Dec. 1996                23

2.3.4. IDUP_Protect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   o  input_buffer OCTET STRING,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_buffer OCTET STRING
      -- may be zero length if encapsulation_request was set to TRUE in
      -- IDUP_Start_Protect() (depends on underlying mechanism)

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_buffer has successfully
      been included in the protection computation.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the required operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   Using the security environment referenced by env_handle, continue the
   protection processing on the data in input_buffer and, if the
   underlying mechanism defines this, put any resulting P-IDU/M-IDU data
   in output_buffer.  The application calls this routine over and over
   again with new buffers of data until it has protected all the data
   buffers of the IDU.  It then calls IDUP_End_Protect() to complete the
   protection processing.



















Adams               Document Expiration:  11 Dec. 1996                24

2.3.5. IDUP_End_Protect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  Services_to_Perform SET OF Prot_Service,

   o  final_midu_buffer OCTET STRING,
      -- zero length if encapsulation_request was set to TRUE in
      -- IDUP_Start_Protect(), in which case pidu is used

   o  final_pidu_buffer OCTET STRING,
      -- zero length if encapsulation_request was set to FALSE in
      -- IDUP_Start_Protect(), in which case token and midu are used


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the protection computation has been
      successfully completed and the resulting P-IDU is ready for
      transfer.  If defined by the underlying mechanism,
      final_midu_buffer will contain any residual M-IDU data.

   o  GSS_S_CONTINUE_NEEDED indicates that at least one of the buffers
      supplied is too small to hold the generated data.  The application
      should continue calling this routine (until GSS_S_COMPLETE is
      returned) in order to get all remaining data.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   Using the security environment referenced by env_handle, complete the
   protection processing on the data and place the computed output in
   final_pidu_buffer (or final_midu_buffer and the unencapsulated_token
   parameter for each Prot_Service).  If a service was requested from
   one or more targets in Start_Protect() - and if this is supported by
   the underlying mechanism - Service_Verification_Info will hold
   whatever data is necessary for the mechanism to verify a service
   returned by a target (unprotector) of the P-IDU.  Successful
   application of IDUP_End_Protect() does not guarantee that the
   corresponding unprotection set of calls can necessarily be performed
   successfully when the P-IDU arrives at the target (for example, it
   may be damaged in transit).


Adams               Document Expiration:  11 Dec. 1996                25

2.3.6. IDUP_File_Protect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   o  Mech_Specific_Info PARAMETER BUNDLE,
      -- NULL selects the mechanism-defined default values

   o  Idu_Information PARAMETER BUNDLE,

   o  Special_Conditions PARAMETER BUNDLE,

   o  input_filename INTERNAL FILE NAME,

   o  Target_Info PARAMETER BUNDLE,

   o  Services_to_Perform SET OF Prot_Service,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_filename INTERNAL FILE NAME,


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that file protection is complete.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the environment is
      recognized, but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  IDUP_S_SERVICE_UNAVAIL indicates that the underlying mechanism
      does not support the service requested.

   o  IDUP_S_REQ_TIME_SERVICE_UNAVAIL indicates that the time service
      requested (TTIME or UTIME) is not available in the environment.

   o  IDUP_S_UNKNOWN_OPER_ID indicates that the input prot_oper_id value
      is not recognized or supported in the underlying mechanism.

   o  GSS_S_BAD_QOP indicates that the provided qop_algs value is not
      recognized or supported for the environment.

   o  IDUP_S_BAD_TARG_INFO indicates that all the information regarding
      the target(s) is invalid or is insufficient for the protection of
      an IDU, so P-IDU cannot be created.


Adams               Document Expiration:  11 Dec. 1996                26

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.


   This call is almost identical to the IDUP_Start_Protect call except
   that instead of single_idu_buffer the input is a filename and instead
   of midu_buffer or pidu_buffer the output is again a filename.  This
   can greatly simplify and improve the performance of applications
   which work primarily with files instead of buffers of data.  It is
   important, however, to note two caveats.  Firstly, for reasons of
   simplicity, unencapsulation is not available to callers of this
   function (as it is to callers of IDUP_Start_Protect); encapsulation
   is the only option available.  Secondly, and more importantly,
   because of the INTERNAL FILE NAME parameters (input_filename and
   output_filename), callers of this function are very likely to be
   non-portable across different computing platforms (since handles to
   files may differ from platform to platform).

   Because of the above caveats, this call is specified to be optional,
   and may not be supported by all underlying mechanisms or
   implementations.


2.3.7. IDUP_Start_Unprotect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   o  Mech_Specific_Info PARAMETER BUNDLE,
      -- NULL selects the mechanism-defined default values

   o  single_pidu_buffer OCTET STRING,
      -- non-zero length for this buffer means that IDUP_Unprotect() and
      -- IDUP_End_Unprotect() will not be called (i.e., the entire P-IDU
      -- is contained in this buffer)

   o  partial_pidu_buffer OCTET STRING,
      -- may be an arbitrary-sized piece of the full pidu (if the
      -- applications buffer isnt large enough to hold entire pidu),
      -- or may be a service token (if encapsulation was not used).
      -- Used if pidu_buffer will be input a buffer at a time (except
      -- that the final buffer must be passed in final_pidu_buffer
      -- rather than partial_pidu_buffer).  Only one of
      -- single_pidu_buffer and partial(final)_pidu_buffer can have
      -- nonzero length.

   o  final_pidu_buffer OCTET STRING,

   o  Special_Conditions PARAMETER BUNDLE,





Adams               Document Expiration:  11 Dec. 1996                27

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  Services_to_Receive SET OF Unprot_Service,

   o  Prot_Information PARAMETER BUNDLE,

   o  single_idu_buffer OCTET STRING,
      -- if this buffer has non-zero length, then service processing has
      -- been completed on the data in single_pidu_buffer

   o  initial_idu_buffer OCTET STRING,
      -- holds any data from partial(final)_pidu_buffer which has been
      -- unprotected; remaining data will be returned by Unprotect and
      -- End_Unprotect as they are called with successive buffers of
      -- pidu

   o  Service_Verification_Info PARAMETER BUNDLE,
      -- used only if target is on "service_to" list in Unprot_Service

   o  service_verification_info_id INTEGER,
      -- used only if target is on "service_to" list in Unprot_Service

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that unprotection processing can begin
      (or has completed, if single_idu_buffer has non-zero length).

   o  IDUP_S_INCOMPLETE indicates that the unprotection of the P-IDU
      is not yet complete (i.e., a determination cannot yet be made on
      the validity of the P-IDU).  The application should call
      IDUP_Form_Complete_PIDU and then should call this function again
      with the complete P-IDU.  (This status code is used in
      IDUP_Start_Unprotect only if single_idu_buffer has non-zero
      length)

   o  GSS_S_CONTINUE_NEEDED indicates that at least one of the buffers
      supplied is too small to hold the generated data.  The application
      should continue calling this routine (until GSS_S_COMPLETE is
      returned) in order to get all remaining data.

   o  IDUP_S_MORE_PIDU_NEEDED indicates that not enough of the P-IDU
      has been input yet for the completion of Start_Protect.  The
      application should call this routine again with another buffer
      of P-IDU in partial_pidu_buffer.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
      on the received P-IDU failed, preventing further processing
      from being performed.

   o  IDUP_S_INAPPROPRIATE_CRED indicates that the credentials supplied
      do not contain the information necessary for P-IDU unprotection.

Adams               Document Expiration:  11 Dec. 1996                28

   o  IDUP_S_MORE_DATA_NEEDED indicates whether unprotection is
      completed by this call or by IDUP_End_Unprotect()  (e.g., whether
      more data buffers are required for unprotection)

   o  GSS_S_DEFECTIVE_VERIF indicates that consistency checks performed
      on Service_Verification_Info failed, preventing further processing
      from being performed with that parameter.

   o  IDUP_S_NO_MATCH indicates that Service_Verification_Info and
      the P-IDU to be verified do not match.

   o  IDUP_S_SERVICE_UNAVAIL indicates that the underlying mechanism
      does not support the service requested.

   o  IDUP_S_REQ_TIME_SERVICE_UNAVAIL indicates that the time service
      requested (TTIME or UTIME) is not available in the environment.

   o  IDUP_S_SERV_VERIF_INFO_NEEDED indicates that the
      Service_Verification_Info parameter bundle must be input in order
      for service verification to proceed.  The output parameter
      service_verification_info_id contains an identifier which may be
      used by the calling application to locate the necessary
      information.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the environment is
      recognized, but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  IDUP_S_UNKNOWN_OPER_ID indicates that the input prot_oper_id value
      is not recognized or supported in the underlying mechanism.

   o  GSS_S_BAD_QOP indicates that the qop_algs value specified in P-IDU
      for at least one of the services is unavailable in the local
      mechanism, so processing cannot continue.

   o  GSS_S_BAD_SIG indicates that the received P-IDU contains an
      incorrect integrity field (e.g., signature or MAC) for the data.

   o  IDUP_S_BAD_DOA_KEY indicates that the key used to provide IDU
      data origin auth. / integ. has either expired or been revoked.

   o  IDUP_S_BAD_KE_KEY indicates that the key used to establish a key
      for confidentiality purposes between originator and target has
      either expired or been revoked.

   o  IDUP_S_BAD_ENC_IDU indicates that decryption of the received IDU
      cannot be completed because the encrypted IDU was invalid/defec-
      tive (e.g., the final block was short or had incorrect padding).

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

Adams               Document Expiration:  11 Dec. 1996                29

   Using the security environment referenced by env_handle, initialize
   the data structures required to begin the process of unprotecting a
   P-IDU.  The caller will be alerted as to which services were applied
   to the P-IDU in the returned Services_to_Receive set of parameters.

   If unprotection will be applied more than once to a given P-IDU, it
   is the responsibility of the calling application to remember if a
   service solicitation has been responded to previously (i.e., if the
   requested service has already been generated / sent for that P-IDU)
   and thus ignore subsequent solicitations on unprotect.

   The time flags indicate whether to consult trusted, untrusted, or no
   time (if both flags are FALSE) during the unprotection operation.  If
   the current time is not to be checked, then unprotection may be
   successful even if the protector's key has expired since the P-IDU
   was generated (that is, if the Validity period -- as specified in
   the Quality parameter bundle -- has expired).

   If the underlying mechanism supports it and if this information is
   contained in the token, information regarding the originator (that
   is, the entity which used the protection set of calls to generate
   this token) is returned in the Prot_Information parameter bundle.


2.3.8. IDUP_Unprotect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   o  input_buffer OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  output_buffer OCTET STRING

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_buffer has successfully
      been included in the unprotection computation.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   Using the security environment referenced by env_handle, continue the
   unprotection processing on the data in input_buffer, putting any
   resulting IDU data in output_buffer (if required).

Adams               Document Expiration:  11 Dec. 1996                30

2.3.9. IDUP_End_Unprotect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  Prot_Information PARAMETER BUNDLE,

   o  Services_to_Receive SET OF Unprot_Service,

   o  final_idu_buffer OCTET STRING,

   o  Service_Verification_Info PARAMETER BUNDLE,
      -- used only if target is on "service_to" list in Unprot_Service

   o  service_verification_info_id INTEGER,
      -- used only if target is on "service_to" list in Unprot_Service

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the unprotect computation was
      successful.  Any residual IDU data will be returned in
      final_idu_buffer.

   o  IDUP_S_INCOMPLETE indicates that the unprotection of the P-IDU
      is not yet complete (i.e., a determination cannot yet be made on
      the validity of the P-IDU).  The application should call
      IDUP_Form_Complete_PIDU and then should call this function again
      with the complete P-IDU.

   o  GSS_S_CONTINUE_NEEDED indicates that at least one of the buffers
      supplied is too small to hold the generated data.  The application
      should continue calling this routine (until GSS_S_COMPLETE is
      returned) in order to get all remaining data.

   o  GSS_S_BAD_SIG indicates that the received P-IDU contains an
      incorrect integrity field (e.g., signature or MAC) for the data.

   o  IDUP_S_BAD_DOA_KEY indicates that the key used to provide IDU
      data origin auth. / integ. has either expired or been revoked.

   o  IDUP_S_BAD_KE_KEY indicates that the key used to establish a key
      for confidentiality purposes between originator and target has
      either expired or been revoked.

   o  IDUP_S_BAD_ENC_IDU indicates that decryption of the received IDU
      cannot be completed because the encrypted IDU was invalid/defec-
      tive (e.g., the final block was short or had incorrect padding).


Adams               Document Expiration:  11 Dec. 1996                31

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   Using the security environment referenced by env_handle, complete the
   unprotection processing on the data and return the appropriate status
   code.  If there is any residual IDU data it will be returned in
   final_idu_buffer.

   If the IDUP_S_INCOMPLETE major status value is returned, all output
   parameters are conditionally valid; the unprotection set of functions
   will have to be called again (perhaps with a complete P-IDU, as
   produced by IDUP_Form_Complete_PIDU) in order to get valid values for
   all parameters.  "Conditional validity" may arise, for example, if
   all relevant certificates verify correctly, but it is not yet past
   the time up to which the current policy allows the authorities
   involved to repudiate their keys.

   If the underlying mechanism supports it and if this information is
   contained in the token, information regarding the originator (that
   is, the entity which used the protection set of calls to generate
   this token) is returned in the Prot_Information parameter bundle.
   This information may or may not be omitted if it was returned by the
   IDUP_Start_Unprotect() call.

   Note that, unlike GSS-API, IDUP-GSS-API does not incorporate the
   concept of error tokens transferred between sender and recipient
   since the protection and unprotection of an IDU may be separated by
   an indefinite amount of time and may or may not be performed by the
   same entity.


2.3.10. IDUP_File_Unprotect call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   o  Mech_Specific_Info PARAMETER BUNDLE,
      -- NULL selects the mechanism-defined default values

   o  input_filename INTERNAL FILE NAME,

   o  Special_Conditions PARAMETER BUNDLE,









Adams               Document Expiration:  11 Dec. 1996                32

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  Services_to_Receive SET OF Unprot_Service,

   o  Prot_Information PARAMETER BUNDLE,

   o  output_filename INTERNAL FILE NAME,

   o  Service_Verification_Info PARAMETER BUNDLE,
      -- used only if target is on "service_to" list in Unprot_Service

   o  service_verification_info_id INTEGER,
      -- used only if target is on "service_to" list in Unprot_Service

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that unprotection processing can begin
      (or has completed, if single_idu_buffer has non-zero length).

   o  IDUP_S_INCOMPLETE indicates that the unprotection of the P-IDU
      file is not yet complete (i.e., a determination cannot yet be made
      on the validity of the P-IDU).  The application should call
      IDUP_Form_Complete_PIDU and then should call this function again
      with the complete P-IDU.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
      on the received P-IDU failed, preventing further processing
      from being performed.

   o  GSS_S_DEFECTIVE_VERIF indicates that consistency checks performed
      on Service_Verification_Info failed, preventing further processing
      from being performed with that parameter.

   o  IDUP_S_NO_MATCH indicates that Service_Verification_Info and
      the P-IDU to be verified do not match.

   o  IDUP_S_SERVICE_UNAVAIL indicates that the underlying mechanism
      does not support the service requested.

   o  IDUP_S_REQ_TIME_SERVICE_UNAVAIL indicates that the time service
      requested (TTIME or UTIME) is not available in the environment.

   o  IDUP_S_SERV_VERIF_INFO_NEEDED indicates that the
      Service_Verification_Info parameter bundle must be input in order
      for service verification to proceed.  The output parameter
      service_verification_info_id contains an identifier which may be
      used by the calling application to locate the necessary
      information.

   o  IDUP_S_INAPPROPRIATE_CRED indicates that the credentials supplied
      do not contain the information necessary for P-IDU unprotection.

Adams               Document Expiration:  11 Dec. 1996                33

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the environment is
      recognized, but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  IDUP_S_NO_ENV indicates that no valid environment was recognized
      for the env_handle provided.

   o  IDUP_S_UNKNOWN_OPER_ID indicates that the input prot_oper_id value
      is not recognized or supported in the underlying mechanism.

   o  GSS_S_BAD_QOP indicates that the qop_algs value specified in P-IDU
      for at least one of the services is unavailable in the local
      mechanism, so processing cannot continue.

   o  GSS_S_BAD_SIG indicates that the received P-IDU contains an
      incorrect integrity field (e.g., signature or MAC) for the data.

   o  IDUP_S_BAD_DOA_KEY indicates that the key used to provide IDU
      data origin auth. / integ. has either expired or been revoked.

   o  IDUP_S_BAD_KE_KEY indicates that the key used to establish a key
      for confidentiality purposes between originator and target has
      either expired or been revoked.

   o  IDUP_S_BAD_ENC_IDU indicates that decryption of the received IDU
      cannot be completed because the encrypted IDU was invalid/defec-
      tive (e.g., the final block was short or had incorrect padding).

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   This call is almost identical to the IDUP_Start_Unprotect call except
   that instead of single_pidu_buffer, partial_pidu_buffer, or
   final_pidu_buffer the input is a filename and instead of
   single_idu_buffer or initial_idu_buffer the output is again a
   filename.  This can greatly simplify and improve the performance of
   applications which work primarily with files instead of buffers of
   data.  It is important, however, to note two caveats.  Firstly, for
   reasons of simplicity, unencapsulation is not available to callers of
   this function (as it is to callers of IDUP_Start_Unprotect);
   encapsulation is the only option available.  Secondly, and more
   importantly, because of the INTERNAL FILE NAME parameters
   (input_filename and output_filename), callers of this function are
   very likely to be non-portable across different computing platforms
   (since handles to files may differ from platform to platform).

   Because of the above caveats, this call is specified to be optional,
   and may not be supported by all underlying mechanisms or
   implementations.






Adams               Document Expiration:  11 Dec. 1996                34

2.4. Special-Purpose Calls

2.4.1.  Relationship to GSS-API

   The special-purpose call described in this section has no analog
   in GSS-API [RFC-1508].  This call is used to complete a P-IDU (that
   is, to generate a P-IDU which can be unprotected successfully with
   no additional data at any time during its validity period).  This
   call may not be supported by all underlying IDUP mechanisms or
   implementations.

2.4.2. IDUP_Form_Complete_PIDU call

   Inputs:

   o  env_handle ENVIRONMENT HANDLE,

   o  single_pidu_buffer OCTET STRING,

   o  partial_pidu_buffer OCTET STRING,
      -- an arbitrary-sized piece of the full pidu token.  Used if pidu
      -- will be input a buffer at a time (except that the final buffer
      -- must be passed in final_pidu_buffer rather than
      -- partial_pidu_buffer).  Only one of single_pidu_buffer and
      -- partial(final)_pidu_buffer can have nonzero length.

   o  final_pidu_buffer OCTET STRING,

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  pidu_token_out OCTET STRING

   o  call_again_before INTEGER,

   o  call_again_after INTEGER,

















Adams               Document Expiration:  11 Dec. 1996                35

   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the completion of P-IDU generation
      was successful.

   o  GSS_S_CONTINUE_NEEDED indicates that the buffer supplied for
      pidu_token_out is too small to hold the generated data.  The
      application should continue calling this routine (until
      GSS_S_COMPLETE is returned) in order to get all remaining data.

   o  IDUP_S_INCOMPLETE indicates that the generation of the P-IDU
      is not yet complete.  The application should call this function
      again before the time given in call_again_before (if not NULL),
      or after the time given in call_again_after (if not NULL), or
      both (if neither are NULL).

   o  IDUP_S_SERVICE_UNAVAIL indicates that the underlying mechanism
      does not support the service requested.

   o  GSS_S_DEFECTIVE_TOKEN indicates that consistency checks performed
      on the input P-IDU token failed, preventing further processing
      from being performed with that token.

   o  GSS_S_FAILURE indicates that the environment is recognized, but
      that the requested operation could not be performed for reasons
      unspecified at the IDUP-GSS-API level.

   Using the security environment referenced by env_handle, complete the
   generation of a P-IDU token and return the appropriate status value
   along with the completed token (if available).  Such a call may be
   used, for example, for the purpose of batch evidence generation on an
   "evidence server".  A local machine may be able to use the protection
   set of calls to fill out most of an evidence token and then send a
   number of these to a batch processor which forms the complete
   evidence tokens (perhaps by adding a certification path, or a
   timestamp and signature from a timestamping authority).  As another
   example, on the receiving end an application may make such a call in
   order to collect all the information necessary to unprotect a P-IDU
   (such as all relevant certificates and Certificate Revocation Lists);
   this will ensure that the calls to the unprotection set of operations
   will be entirely local (i.e., can be performed off-line) and fast.

   Note that the complete P-IDU generated will be formed using trusted
   time if this is available in the environment referenced by env_handle
   and will use untrusted time or no time otherwise (depending on what
   is available).










Adams               Document Expiration:  11 Dec. 1996                36

2.5.  Support calls


2.5.1.  Relationship to GSS-API

   Support calls in IDUP-GSS-API are to be understood and used as
   described in GSS-API [RFC-1508].  The calls GSS_Display_status(),
   GSS_Indicate_mechs(), GSS_Compare_name(), GSS_Display_name(),
   GSS_Import_name(), GSS_Release_name(), GSS_Release_buffer(), and
   GSS_Release_oid_set() are unchanged.


2.5.2. IDUP_Parse_token call

   Inputs:

   o  input_token OCTET STRING

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  mech_type OBJECT IDENTIFIER,


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the input_token could be parsed for
      all relevant fields.

   o  GSS_S_CREDENTIALS_EXPIRED indicates that the environment is
      recognized, but that its associated credentials have expired, so
      that the requested operation cannot be performed.

   o  GSS_S_DEFECTIVE_TOKEN indicates that the mechanism type could be
      parsed, but that either the other fields could not be determined
      from the input_token, or their values did not correspond to valid
      values for that mechanism.

   o  GSS_S_FAILURE indicates that the mechanism type could not be
      parsed (for example, the token may be corrupted).

   IDUP_Parse_Token() is used to return to an application the attributes
   which correspond to a given input token.  Since IDUP-GSS-API tokens
   are meant to be opaque to the calling application, this function
   allows the application to determine information about the token
   without having to violate the opaqueness intention of IDUP.  Of
   primary importance is the mechanism type, which the application can
   then use as input to the IDUP_Establish_Env() call in order to
   establish the correct environment in which to have the token
   processed.  Other token attributes may be added as outputs of this
   call in future versions of this specification, if required.


Adams               Document Expiration:  11 Dec. 1996                37

   If all tokens are framed as suggested in RFC-1508, Appendix B
   (mandated in the Kerberos V5 GSS mechanism [KRB5], in the SPKM GSS
   Mechanism [SPKM], and in this document), then any mechanism
   implementation should be able to return the mech_type parameter for
   any uncorrupted input token.  If the mechanism implementation whose
   IDUP_Parse_token() function is being called does recognize the token,
   it can return other token attributes, if specified.


2.5.3. IDUP_Get_policy_info call

   Inputs:

   o  policy_id OBJECT IDENTIFIER

   Outputs:

   o  major_status INTEGER,

   o  minor_status INTEGER,

   o  policy_version INTEGER,

   o  policy_effective_time INTEGER,

   o  policy_expiry_time INTEGER,

   o  supported_services SET OF Service_Descriptor,

   o  supported_mechanisms SET OF Mechanism_Descriptor


   Return major_status codes:

   o  GSS_S_COMPLETE indicates that the policy_id was recognized and
      all relevant fields have been returned.

   o  GSS_S_FAILURE indicates that the policy_id was not recognized.


   This call (which need not be supported by all underlying mechanisms
   or implementations) allows the application to retrieve information
   pertaining to a given policy_id.  Policies define the following:

      -  rules for the protection of IDUs, such as trusted third
         parties which may be involved in P-IDU generation, the roles
         in which they may be involved, and the duration for which the
         generated P-IDU is valid;








Adams               Document Expiration:  11 Dec. 1996                38

      -  rules for the unprotection of P-IDUs, such as the interval
         during which a trusted third party may legitimately declare its
         key to have been compromised or revoked; and

      -  rules for adjudication, such as which authorities may be used
         to adjudicate disputes.

   The policy itself may be used by an adjudicator when resolving a
   dispute.  For example, the adjudicator might refer to the policy to
   determine whether the rules for generation of the P-IDU have been
   followed.

   The following parameter bundles are associated with this call.

      o  Service_Descriptor PARAMETER BUNDLE,

         o  service_type OBJECT IDENTIFIER,

         o  service_validity_duration INTEGER,

         o  must_use_trusted_time BOOLEAN

      o  Mechanism_Descriptor PARAMETER BUNDLE,

         o  mechanism_type OBJECT IDENTIFIER,

         o  Authority_List PARAMETER BUNDLE,

         o  maximum_time_skew INTEGER
              -- maximum permissible difference between P-IDU generation
              -- time and the time of countersignature from a time
              -- service (if required).  This parameter is unused if
              -- trusted time is not required.

      o  Authority_List PARAMETER BUNDLE,

         o  authority_name INTERNAL NAME,

         o  authority_role OCTET STRING,

         o  last_revocation_check_offset INTEGER
              -- may be greater than 0 or less than 0.  The value of
              -- this parameter is added to P-IDU generation time to
              -- get latest time at which the mechanism will check to
              -- see if this authority's key has been revoked.

   An example of the use of the last parameter in Authority_List is as
   follows.  If an authority has a defined last_revocation_check_offset
   of negative one hour, then all revocations taking effect earlier than
   one hour before the generation of a P-IDU will render that P-IDU
   invalid; no revocation taking place later than one hour before the
   generation of the P-IDU will affect the P-IDU's validity.

   Note that both the maximum_time_skew and the
   last_revocation_check_offset values are given in minutes.

Adams               Document Expiration:  11 Dec. 1996                39

3.  Related Activities

   In order to implement the IDUP-GSS-API atop existing, emerging, and
   future security mechanisms, the following is necessary:

    - object identifiers must be assigned to candidate IDUP-GSS-API
      mechanisms and the name types which they support; and

    - concrete data element (i.e., token and parameter bundle) formats
      must be defined for candidate mechanisms.

   Calling applications must implement formatting conventions which will
   enable them to distinguish IDUP-GSS-API P-IDUs from other
   IDUs in their environment.

   Concrete language bindings are required for the programming
   environments in which the IDUP-GSS-API is to be employed; such a
   binding for the C language are available in the Internet Draft
   [IDUP-C].



4.  Acknowledgments

   Many thanks are due to Warwick Ford, Paul Van Oorschot, and Tim Moses
   of Bell-Northern Research, and to Denis Pinkas of Bull, for a number
   of helpful comments.



5. Security Considerations

   Security issues are discussed throughout this memo.























Adams               Document Expiration:  11 Dec. 1996                40


6. REFERENCES

   [MSP]:       U.S. National Security Agency, "Message Security
   Protocol", Secure Data Network System SDN.701, March 1994.

   [RFC-1421]:  J. Linn, "Privacy Enhancement for Internet Electronic
   Mail:  Part I: Message Encryption and Authentication Procedures",
   RFC 1421.

   [RFC-1508]:  J. Linn, "Generic Security Service Application Program
   Interface", RFC 1508.

   [GSSv2]:     J. Linn, "Generic Security Service Application Program
   Interface, Version 2", Internet Draft draft-ietf-cat-gssv2-0x.txt
   (work in progress).

   [KRB5]:      J. Linn, "The Kerberos Version 5 GSS-API Mechanism",
   Internet Draft draft-ietf-cat-kerb5gss-0x.txt (work in progress).

   [SPKM]:      C. Adams, "The Simple Public-Key GSS-API Mechanism
   (SPKM)", Internet Draft draft-ietf-cat-spkmgss-0x.txt (work in
   progress).

   [IDUP-C]:    D. Thakkar, D. Grebovich, "Independent Data Unit
   Protection Generic Security Service Application Program Interface: C-
   bindings", Internet Draft draft-ietf-cat-idup-cbind-0x.txt (work in
   progress).

   [ISO/IEC]:   2nd ISO/IEC CD 13888-1, "Information technology -
   Security techniques - Non-repudiation - Part 1:  General Model",
   ISO/IEC JTC 1/SC 27, May 30, 1995









7. Author's Address

   Carlisle Adams
   NORTEL Secure Networks
   P.O.Box 3511, Station C
   Ottawa, Ontario, CANADA  K1Y 4H7

   Phone: +1 613.763.9008
   E-mail: cadams@nortel.ca






Adams               Document Expiration:  11 Dec. 1996                41

APPENDIX  A

MECHANISM-INDEPENDENT TOKEN FORMAT

   This appendix specifies a mechanism-independent level of
   encapsulating representation for IDUP-GSS-API tokens, incorporating
   an identifier of the mechanism type to be used when processing those
   tokens.  Use of this format (with ASN.1-encoded data elements
   represented in BER, constrained in the interests of parsing
   simplicity to the Distinguished Encoding Rule (DER) BER subset
   defined in X.509, clause 8.7) is recommended to the designers of
   IDUP-GSS-API implementations based on various mechanisms, so that
   tokens can be interpreted unambiguously at IDUP-GSS-API peers. There
   is no requirement that the mechanism-specific token data element be
   encoded in ASN.1 BER.


          -- top-level token definition to frame different mechanisms

          IDUP-GSS-API DEFINITIONS ::=
          BEGIN
          MechType ::= OBJECT IDENTIFIER

          Token ::= [APPLICATION 0] IMPLICIT SEQUENCE {
                  thisMech MechType,
                  token ANY DEFINED BY thisMech
                     -- contents mechanism-specific
                  }
          END










APPENDIX  B

MECHANISM DESIGN CONSTRAINTS

   The following constrain on IDUP-GSS-API mechanism designs is
   adopted in response to observed caller protocol requirements, and
   adherence thereto is anticipated in subsequent descriptions of
   IDUP-GSS-API mechanisms to be documented in standards-track Internet
   specifications.

   Use of the approach defined in Appendix A of this specification,
   applying a mechanism type tag to the Token is required.





Adams               Document Expiration:  11 Dec. 1996                42

APPENDIX  C

EXAMPLES OF IDUP USE

   This appendix provides examples of the use of IDUP to do IDU protec-
   tion and unprotection.  It should not be regarded as constrictive to
   implementations or as defining the only means through which
   IDUP-GSS-API functions can be realized with particular underlying
   technology, and does not demonstrate all IDUP-GSS-API features.


C.1.  Simple Mechanism, Single Buffer

   To illustrate the simplest possible case, consider an underlying IDUP
   mechanism which does straightforward encryption/decryption and
   signing/verification only; none of the other possible services, such
   as creation of proof-of-origin evidence, requests for proof-of-
   delivery evidence, or use of trusted time, are supported.  PEM
   [RFC-1421] is one example of a mechanism which fits this description.
   Furthermore (again for simplicity), assume that encapsulation is
   chosen by the calling application during IDU protection.

   The following parameter bundle uses and defaults would therefore be
   specified in the relevant IDUP mechanism document.


   Mech_Specific_Info
      - NOT USED (the only acceptable input, therefore, is NULL)

   Idu_Sensitivity
      - NOT USED (the only acceptable input, therefore, is NULL)

   Service_Creation_Info
      - NOT USED (the only acceptable input, therefore, is NULL)

   Service_Verification_Info
      - NOT USED (the only acceptable input, therefore, is NULL)

   Quality
      - the qop_algs parameter must be supported, with a suitable
        DEFAULT value specified;
      - suitable DEFAULT values for validity, policy_id, and
        allow_policy_mapping must be specified (it may be an
        implementation option as to whether these parameters are
        explicitly modifiable by the calling application, or whether
        NULLs are the only acceptable input)

   Idu_Information
      - the idu_type parameter must have a value representing a suitable
        IDU type (for example, in PEM a value representing the string
        "RFC822" or some other valid "Content-Domain" would be used),
        with a suitable DEFAULT value specified;
      - the idu_title parameter is NOT USED (the only acceptable input,
        therefore, is NULL)


Adams               Document Expiration:  11 Dec. 1996                43

   Prot_Information
      - the originator_name and idu_type (in Idu_Information) parameters
        are read from the encapsulating information and output by
        IDUP_Start_Unprotect;
      - all other parameters are NOT USED (and therefore NULL)

   Special_Conditions
      - NOT USED (the only acceptable input, therefore, is NULL)

   Target_Info
      - this bundle is used as described in IDUP; no DEFAULT values are
        specified

   General_Service_Data
      - the unencapsulated_token parameter is used if
        encapsulation_request is FALSE;
      - the minor_status parameter is used to return minor status values
        as specified by the mechanism document

   Prot_Service
      - the prot_service_type parameter may have a value of "1"
        ("perform unsolicited service") or NULL (which specifies the
        DEFAULT value of "1");
      - the service_id parameter must have a value representing
        "PER_CONF" or "PER_DOA";
      - the parameters Service_Creation_Info, service_to,
        Service_Verification_Info, and service_verification_info_id are
        NOT USED (and therefore NULL)

   Unprot_Service
      - the unprot_service_type parameter will always have a value of
        "1" ("receive unsolicited service");
      - the service_id parameter will have a value representing
        "REC_CONF" or "REC_DOA";
      - the parameters service_verification_info_id,
        Service_Verification_Info, service_to, and
        Service_Creation_Info, are NOT USED (and therefore NULL)



   Assuming that the calling application has only a single buffer of
   data to protect/unprotect, the following sequence of operations must
   be performed by the sender and receivers (subsequent to environment
   establishment).


   SENDER (any parameters not listed below are given the value NULL):

   Set
      env_handle                           = environment handle in use;
      encapsulation_request                = TRUE;
      single_idu_buffer                    = data buffer;
      Target_Info.targ_names               = receiver names;
      P_Services.Prot_Service_1.service_id = PER_CONF;
      P_Services.Prot_Service_2.service_id = PER_DOA;

Adams               Document Expiration:  11 Dec. 1996                44

   Call
      IDUP_Start_Protect() with above input parameters
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         Target_Info.bad_targ_names / Target_Info.bad_targ_status,
         P_Services.Prot_Service_1.General_Service_Data.minor_status,
         P_Services.Prot_Service_2.General_Service_Data.minor_status
      (as required) for more detailed information.

   Send
      Output parameter pidu_buffer to receiver.


   RECEIVER (any parameters not listed below are given the value NULL):

   Set
      env_handle         = environment handle in use;
      single_pidu_buffer = received data buffer;

   Call
      IDUP_Start_Unprotect() with above input parameters
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         R_Services.Unprot_Service_1.General_Service_Data.minor_status,
         R_Services.Unprot_Service_2.General_Service_Data.minor_status
      (as required) for more detailed information

   Utilize
      R_Services.Unprot_Service_1/2.service_id,
         (to determine which services were applied by the originator)
      R_Services.Unprot_Service_1/2.Quality,
         (to determine the corresponding qualities of the services)
      Prot_Information.originator_name,
         (to determine the name of the originator)
      single_idu_buffer
         (to retrieve the unprotected data).


















Adams               Document Expiration:  11 Dec. 1996                45

C.2.  Simple Mechanism, Multiple Buffers

   To illustrate the next step up in complexity, consider the use of the
   simple IDUP mechanism described above with multiple data buffers.  In
   particular, consider the case in which a large data file is to be
   signed.  For this example, assume that the calling application does
   not wish to use encapsulation.

   Note that the parameter bundle uses and defaults are as specified in
   C.1. above.


   SENDER (any parameters not listed below are given the value NULL):

   Set
      env_handle                           = environment handle in use;
      encapsulation_request                = FALSE;
      P_Services.Prot_Service.service_id   = PER_DOA;

   Call
      IDUP_Start_Protect() with above input parameters
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         P_Services.Prot_Service.General_Service_Data.minor_status
      (as required) for more detailed information.

   For each buffer of input data:
      Set
         input_buffer = buffer
      Call
         IDUP_Protect() with above input parameter
      Check
         major_status.  If not GSS_S_COMPLETE, check
            minor_status

   Call
      IDUP_End_Protect()
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         P_Services.Prot_Service.General_Service_Data.minor_status
      (as required) for more detailed information.

   Send
      P_Services.Prot_Service.General_Service_Data.unencapsulated_token,
         the file for which the signature was calculated (if required)
      to receiver.








Adams               Document Expiration:  11 Dec. 1996                46

   RECEIVER (any parameters not listed below are given the value NULL):

   Set
      env_handle          = environment handle in use;
      partial_pidu_buffer = received unencapsulated token;

   Call
      IDUP_Start_Unprotect() with above input parameters
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         R_Services.Unprot_Service_1.General_Service_Data.minor_status,
      (as required) for more detailed information

   For each buffer of input data:
      Set
         input_buffer = buffer
      Call
         IDUP_Unprotect() with above input parameter
      Check
         major_status.  If not GSS_S_COMPLETE, check
            minor_status

   Call
      IDUP_End_Unprotect()
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         R_Services.Unprot_Service_1.General_Service_Data.minor_status,
      (as required) for more detailed information.

   Utilize
      R_Services.Unprot_Service_1.service_id,
         (to determine which service was applied by the originator; note
          that Unprot_Service_2 will have NULL in unprot_service_type
          to indicate that it is not used)
      R_Services.Unprot_Service_1.Quality,
         (to determine the corresponding quality of the service)
      Prot_Information.originator_name, (from IDUP_Start_Unprotect)
         (to determine the name of the signer)
      major_status (from IDUP_End_Unprotect)
         (to determine pass/fail status of signature verification).














Adams               Document Expiration:  11 Dec. 1996                47

C.3.  More Sophisticated Mechanism, Small Application Buffers

   To illustrate a higher level of complexity, consider the use of a
   more sophisticated IDUP mechanism and a calling application with
   small data buffers.  In particular, consider the case in which a very
   small e-mail message is to be encrypted for a relatively large
   receiver list (R), some subset of whom (r) will be asked to send
   proofs of receipt of the message to some other subset (L) (which
   includes the originator).  So that the example is not unnecessarily
   complicated, assume again that the originating application uses
   encapsulation.

   The uses and defaults for the various parameter bundles for this
   mechanism would be specified in the relevant IDUP mechanism document
   as follows.

   Mech_Specific_Info
      - NOT USED (the only acceptable input, therefore, is NULL)

   Idu_Sensitivity
      - NOT USED (the only acceptable input, therefore, is NULL)

   Service_Creation_Info
      - used to create "proof of delivery" evidence (but actual
        structure is opaque to calling application)

   Service_Verification_Info
      - used to verify "proof of delivery" evidence (but actual
        structure is opaque to calling application)

   Quality
      - the qop_algs parameter must be supported, with a suitable
        DEFAULT value specified;
      - suitable DEFAULT values for validity, policy_id, and
        allow_policy_mapping must be specified (it may be an
        implementation option as to whether these parameters are
        explicitly modifiable by the calling application, or whether
        NULLs are the only acceptable input)

   Idu_Information
      - the idu_type parameter must have a value representing a suitable
        IDU type, with a suitable DEFAULT value specified;
      - the idu_title parameter must have a value representing a
        suitable IDU title, with a suitable DEFAULT value specified

   Prot_Information
      - the originator_name, protection_time, and idu_type / idu_title
        (in Idu_Information) parameters are read from the contained
        header information and output by IDUP_Start_Unprotect;

   Special_Conditions
      - the parameter prot_oper_id is NOT USED (the only acceptable
        input, therefore, is NULL);
      - trusted or untrusted time may be selected by the calling
        application, with a suitable DEFAULT value specified

Adams               Document Expiration:  11 Dec. 1996                48

   Target_Info
      - this bundle is used as described in IDUP; no DEFAULT values are
        specified

   General_Service_Data
      - the unencapsulated_token parameter is used if
        encapsulation_request is FALSE;
      - the minor_status parameter is used to return minor status values
        as specified by the mechanism document

   Prot_Service
      - the prot_service_type parameter may have a value of "1"
        ("perform unsolicited service"), "2" ("perform solicited
        service"), "3" (perform service solicitation), or NULL (which
        specifies the DEFAULT value of "1");
      - the service_id parameter must have a value representing
        "PER_CONF", "PER_DOA", "PER_POO", or "PER_POD";
      - the parameters Service_Creation_Info, service_to,
        Service_Verification_Info, and service_verification_info_id are
        used when required by the IDUP operation

   Unprot_Service
      - the unprot_service_type parameter may have a value of "1"
        ("receive unsolicited service"), "2" ("receive solicited
        service"), or "3" (receive service solicitation);
      - the service_id parameter will have a value representing
        "REC_CONF", "REC_DOA", "REC_POO", or "REC_POD";
      - the parameters service_verification_info_id,
        Service_Verification_Info, service_to, and
        Service_Creation_Info, are used when required by the IDUP
        operation


   SENDER (any parameters not listed below are given the value NULL):

   Set
      env_handle                          = environment handle in use;
      Idu_Information.idu_type            = value for "e-mail document";
      Idu_Information.idu_title           = "Contract 1234";
      Special_Conditions.use_trusted_time = TRUE;
      encapsulation_request               = TRUE;
      single_idu_buffer                   = very small e-mail message;
      Target_Info.targ_names              = receiver names (R);
      Prot_Service_1.prot_service_type    = "1";
      Prot_Service_1.service_id           = PER_CONF;
      Prot_Service_2.prot_service_type    = "3";
      Prot_Service_2.service_id           = PER_POD;
      Prot_Service_2.General_Service_Data.Target_Info.targ_names
                                          = "receipts from" list (r);
      Prot_Service_2.service_to           = "receipts to" list (L);
      P_Services.Prot_Service_1           = Prot_Service_1;
      P_Services.Prot_Service_2           = Prot_Service_2;




Adams               Document Expiration:  11 Dec. 1996                49

   Call
      IDUP_Start_Protect() with above input parameters
   Check
      major_status.  If not GSS_S_COMPLETE,
         while major_status == GSS_S_CONTINUE_NEEDED
            Save
               pidu_buffer,
            Call
               IDUP_Start_Protect() (to get next portion of pidu_buffer)
         Check
            major_status,
            minor_status,
            Target_Info.bad_targ_names / Target_Info.bad_targ_status,
            P_Services.Prot_Service_1.General_Service_Data.minor_status,
            P_Services.Prot_Service_2.General_Service_Data.minor_status
         (as required) for more detailed information.

   Save
      Prot_Service_2.Service_Verification_Info,
      Prot_Service_2.service_verification_info_id

   Send
      All saved buffers of pidu_buffer to receiver list (R).


   RECEIVER (ON RECEIVER LIST (R)):
      (any parameters not listed below are given the value NULL)

   Set
      env_handle          = environment handle in use;
      partial_pidu_buffer = initial buffer of received p-idu;

   Call
      IDUP_Start_Unprotect() with above input parameters
   While major_status == IDUP_S_MORE_PIDU_NEEDED,
      Set
         partial_pidu_buffer = next buffer of p-idu
      Call
         IDUP_Start_Unprotect()
   Check
      major_status,
      minor_status,
      R_Services.Unprot_Service_1.General_Service_Data.minor_status,
      R_Services.Unprot_Service_2.General_Service_Data.minor_status,
   (as required) for more detailed information

   Save
      initial_idu_buffer (if non-empty)








Adams               Document Expiration:  11 Dec. 1996                50

   Set
      input_buffer = remaining p-idu buffer
   Call
      IDUP_Unprotect() with above input parameter
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status
   Save
      output_buffer

   Call
      IDUP_End_Unprotect()
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         R_Services.Unprot_Service_1.General_Service_Data.minor_status,
         R_Services.Unprot_Service_2.General_Service_Data.minor_status,
      (as required) for more detailed information.

   Utilize
      R_Services.Unprot_Service_1/2.service_id,
         (to determine which services were applied by the originator)
      R_Services.Unprot_Service_1/2.Quality,
         (to determine the corresponding qualities of the service)
      Prot_Information.originator_name/protection_time and
         Prot_Information.Idu_Information.idu_type/idu_title,
         (from IDUP_Start_Unprotect) (to determine originator info.)
      R_Services.Unprot_Service_2.General_Service_Data.Target_Info.
         targ.names, (to determine if rec. is in "receipts from" (r))
      Service_Verification_Info/service_verification_info_id
         (to determine if receiver is in "receipts to" list (L))

   If receiver is in "receipts from" list (r)
      Save
         R_Services.Unprot_Service_2.service_to,
         R_Services.Unprot_Service_2.Service_Creation_Info

   If receiver is in "receipts to" list (L)
      Save
         Service_Verification_Info,
         service_verification_info_id















Adams               Document Expiration:  11 Dec. 1996                51

   RECEIVER (ON "RECEIPTS FROM" LIST (r)):
      (procedure to generate receipt)

   Set
      env_handle                           = environment handle in use;
      Target_Info.targ_names               = service_to
      Prot_Service_1.prot_service_type     = "2";
      Prot_Service_1.service_id            = "PER_POD";
      Prot_Service_1.Service_Creation_Info = Service_Creation_Info;
      P_Services.Prot_Service_1            = Prot_Service_1

   Call
      IDUP_Start_Protect() with above input parameters
   Check
      major_status.  If not GSS_S_COMPLETE, check
         minor_status,
         P_Services.Prot_Service_1.General_Service_Data.minor_status
      (as required) for more detailed information.

   Send
      pidu_buffer to "receipts to" list (L)


   RECEIVER (ON "RECEIPTS TO" LIST (L)):
      (procedure to process received receipt)

   Set
      env_handle         = environment handle in use;
      single_pidu_buffer = received p-idu buffer (if it fits in a single
         buffer; otherwise use partial_pidu_buffer and make multiple
         calls, as above)

   Call
      IDUP_Start_Unprotect() with above input parameters
   If major_status == IDUP_S_SERV_VERIF_INFO_NEEDED
      Utilize
         R_Services.Unprot_Service_1.service_verification_info.id
         (to assist in locating necessary Service_Verification_Info)
      Set
         R_Services.Unprot_Service_1.Service_Verification_Info
            = Service_Verification_Info
      Call
         IDUP_Start_Unprotect() with above input parameters
   Check
      major_status,
      minor_status,
      R_Services.Unprot_Service_1.General_Service_Data.minor_status
   (as required) for more detailed information.

   Utilize
      R_Services.Unprot_Service_1.service_id,
         (to determine that this is a "proof of delivery" evidence)
      R_Services.Unprot_Service_1.Quality,
      Prot_Information.originator_name, (for evidence generator info.)
      major_status (to determine pass/fail status of evi. verif.).

Adams               Document Expiration:  11 Dec. 1996                52