CCAMP Working Group D. Ceccarelli, Ed.
Internet-Draft Ericsson
Intended status: Standards Track F. Zhang
Expires: June 14, 2014 Huawei Technologies
S. Belotti
Alcatel-Lucent
R. Rao
Infinera Corporation
J. Drake
Juniper
December 11, 2013
Traffic Engineering Extensions to OSPF for Generalized MPLS (GMPLS)
Control of Evolving G.709 OTN Networks
draft-ietf-ccamp-gmpls-ospf-g709v3-13
Abstract
This document describes Open Shortest Path First - Traffic
Engineering (OSPF-TE) routing protocol extensions to support
Generalized MPLS (GMPLS) control of Optical Transport Networks (OTN)
specified in ITU-T Recommendation G.709 as published in 2012. It
extends mechanisms defined in RFC4203.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on June 14, 2014.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Ceccarelli, et al. Expires June 14, 2014 [Page 1]
Internet-Draft OSPF-TE extensions for OTN support December 2013
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3
2. OSPF-TE Extensions . . . . . . . . . . . . . . . . . . . . . . 3
3. TE-Link Representation . . . . . . . . . . . . . . . . . . . . 5
4. ISCD format extensions . . . . . . . . . . . . . . . . . . . . 5
4.1. Switching Capability Specific Information . . . . . . . . 7
4.1.1. Switching Capability Specific Information for
fixed containers . . . . . . . . . . . . . . . . . . . 8
4.1.2. Switching Capability Specific Information for
variable containers . . . . . . . . . . . . . . . . . 8
4.1.3. Switching Capability Specific Information - Field
values and explanation . . . . . . . . . . . . . . . . 9
5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1. MAX LSP Bandwidth fields in the ISCD . . . . . . . . . . . 12
5.2. Example of T,S and TS granularity utilization . . . . . . 14
5.2.1. Example of different TS Granularities . . . . . . . . 15
5.3. Example of ODUflex advertisement . . . . . . . . . . . . . 18
5.4. Example of single stage muxing . . . . . . . . . . . . . . 20
5.5. Example of multi stage muxing - Unbundled link . . . . . . 22
5.6. Example of multi stage muxing - Bundled links . . . . . . 24
5.7. Example of component links with non-homogeneous
hierarchies . . . . . . . . . . . . . . . . . . . . . . . 25
6. OSPFv2 scalability . . . . . . . . . . . . . . . . . . . . . . 28
7. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 29
8. Security Considerations . . . . . . . . . . . . . . . . . . . 29
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 29
9.1. Switching types . . . . . . . . . . . . . . . . . . . . . 30
9.2. New sub-TLVs . . . . . . . . . . . . . . . . . . . . . . . 30
10. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 31
11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 33
12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.1. Normative References . . . . . . . . . . . . . . . . . . . 33
12.2. Informative References . . . . . . . . . . . . . . . . . . 34
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 35
Ceccarelli, et al. Expires June 14, 2014 [Page 2]
Internet-Draft OSPF-TE extensions for OTN support December 2013
1. Introduction
G.709 Optical Transport Network (OTN) [G.709-2012] includes new fixed
and flexible ODU (Optical channel Data Unit) containers, two types of
Tributary Slots (i.e., 1.25Gbps and 2.5Gbps), and supports various
multiplexing relationships (e.g., ODUj multiplexed into ODUk (j<k)),
two different tributary slots for ODUk (K=1, 2, 3) and ODUflex
service type. In order to present this information in routing, this
document provides OTN technology specific encoding for use in GMPLS
OSPF-TE as defined in [RFC4203].
For a short overview of OTN evolution and implications of OTN
requirements on GMPLS routing please refer to [OTN-FWK]. The
information model and an evaluation against the current solution are
provided in [OTN-INFO]. The reader is supposed to be familiar with
both of these documents.
Routing information for Optical Channel Layer (OCh) (i.e.,
wavelength) is beyond the scope of this document. Please refer to
[RFC6163] and [RFC6566] for further information.
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2. OSPF-TE Extensions
In terms of GMPLS based OTN networks, each OTUk can be viewed as a
component link, and each component link can carry one or more types
of ODUj (j<k).
Each TE Link State Advertisement (LSA) can carry a top-level link
Type Length Value (TLV) with several nested sub-TLVs to describe
different attributes of a TE link. Two top-level TLVs are defined in
[RFC3630]. (1) The Router Address TLV (referred to as the Node TLV)
and (2) the TE link TLV. One or more sub-TLVs can be nested into the
two top-level TLVs. The sub-TLV set for the two top-level TLVs are
also defined in [RFC3630] and [RFC4203].
As discussed in [OTN-FWK] and [OTN-INFO], OSPF-TE must be extended to
be able to advertise the termination and switching capabilities of
each different ODUj and ODUk/OTUk (Optical Transport Unit) and the
advertisement of related multiplexing capabilities. These
capabilities are carried in the Interface Switching Capability
Descriptor (ISCD) Switching Capability-specific information field
Ceccarelli, et al. Expires June 14, 2014 [Page 3]
Internet-Draft OSPF-TE extensions for OTN support December 2013
using formats defined in this document. As discussed in [SWCAP-
UPDT], the use of a technology specific Switching Capability-specific
information field necessitates the definition of a new Switching
Capability value and associated new Switching Capability.
In the following, we will use ODUj to indicate a service type that is
multiplexed into a higher order ODU, ODUk to indicate a higher order
ODU including an ODUj and ODUk/OTUk to indicate the layer mapped into
the OTUk. Moreover, ODUj(S) and ODUk(S) are used to indicate ODUj
and ODUk supporting switching capability only, and the ODUj->ODUk
format is used to indicate the ODUj into ODUk multiplexing
capability.
This notation can be repeated as needed depending on the number of
multiplexing levels. In the following, the term "multiplexing tree"
is used to identify a multiplexing hierarchy where the root is always
a server ODUk/OTUk and any other supported multiplexed container is
represented with increasing granularity until reaching the leaf of
the tree. The tree can be structured with more than one branch if
the server ODUk/OTUk supports more than one hierarchy.
For example, if a multiplexing hierarchy like the following one is
considered:
ODU2 ODU0 ODUflex ODU0
\ / \ /
| |
ODU3 ODU2
\ /
\ /
\ /
\ /
ODU4
The ODU4 is the root of the muxing tree, ODU3 and ODU2 are containers
directly multiplexed into the server and then ODU2, ODU0 are the
leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of
the ODU2 one. This means that it is possible to have the following
multiplexing capabilities:
ODU2->ODU3->ODU4
ODU0->ODU3->ODU4
ODUflex->ODU2->ODU4
ODU0->ODU2->ODU4
Ceccarelli, et al. Expires June 14, 2014 [Page 4]
Internet-Draft OSPF-TE extensions for OTN support December 2013
3. TE-Link Representation
G.709 ODUk/OTUk Links are represented as TE-Links in GMPLS Traffic
Engineering Topology for supporting ODUj layer switching. These TE-
Links can be modeled in multiple ways.
OTUk physical Link(s) can be modeled as a TE-Link(s). Figure 1 below
provides an illustration of one hop OTUk TE-links.
+-------+ +-------+ +-------+
| OTN | | OTN | | OTN |
|Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
| A | | B | | C |
+-------+ +-------+ +-------+
|<-- TE-Link -->| |<-- TE-Link -->|
Figure 1: OTUk TE-Links
It is possible to create TE-Links that span more than one hop by
creating FAs between non-adjacent nodes (see Figure 2). As in the
one hop case, multiple hop TE-links advertise ODU switching capacity.
+-------+ +-------+ +-------+
| OTN | | OTN | | OTN |
|Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch |
| A | | B | | C |
+-------+ +-------+ +-------+
ODUk Switched
|<------------- ODUk Link ------------->|
|<-------------- TE-Link--------------->|
Figure 2: Multiple hop TE-Link
4. ISCD format extensions
The ISCD describes the switching capability of an interface and is
defined in [RFC4203]. This document defines a new Switching
Capability value for OTN [G.709-2012] as follows:
Value Type
Ceccarelli, et al. Expires June 14, 2014 [Page 5]
Internet-Draft OSPF-TE extensions for OTN support December 2013
----- ----
110 (TBA by IANA) OTN-TDM capable (OTN-TDM)
When supporting the extensions defined in this document, for both
fixed and flexible ODUs, the Switching Capability and Encoding values
MUST be used as follows:
- Switching Capability = OTN-TDM
- Encoding Type = G.709 ODUk (Digital Path) as defined in [RFC4328]
The same switching type and encoding values must be used for both
fixed and flexible ODUs. When Switching Capability and Encoding
fields are set to values as stated above, the Interface Switching
Capability Descriptor MUST be interpreted as defined in [RFC4203].
Maximum LSP Bandwidth
The MAX LSP Bandwidth field is used according to [RFC4203]: i.e., 0
<= MAX LSP Bandwidth <= ODUk/OTUk, and intermediate values are those
on the branch of OTN switching hierarchy supported by the interface.
For example, in the OTU4 link it could be possible to have ODU4 as
MAX LSP Bandwidth for some priorities, ODU3 for others, ODU2 for some
others, etc. The bandwidth unit is in bytes per second and the
encoding MUST be in Institute of Electrical and Electronic Engineers
(IEEE) floating point format. The discrete values for various ODUs
are shown in the table below (please note that there are 1000 bits in
a kbit according to normal practices in telecommunications).
Ceccarelli, et al. Expires June 14, 2014 [Page 6]
Internet-Draft OSPF-TE extensions for OTN support December 2013
+---------------------+------------------------------+-----------------+
| ODU Type | ODU nominal bit rate |Value in Byte/Sec|
| | |(floating p. val)|
+---------------------+------------------------------+-----------------+
| ODU0 | 1,244,160 kbit/s | 0x4D1450C0 |
| ODU1 | 239/238 x 2,488,320 kbit/s | 0x4D94F048 |
| ODU2 | 239/237 x 9,953,280 kbit/s | 0x4E959129 |
| ODU3 | 239/236 x 39,813,120 kbit/s | 0x4F963367 |
| ODU4 | 239/227 x 99,532,800 kbit/s | 0x504331E3 |
| ODU2e | 239/237 x 10,312,500 kbit/s | 0x4E9AF70A |
| | | |
| ODUflex for CBR | 239/238 x client signal | MAX LSP |
| Client signals | bit rate | BANDWIDTH |
| | | |
| ODUflex for GFP-F | | MAX LSP |
|Mapped client signal | Configured bit rate | BANDWIDTH |
| | | |
| | | |
|ODU flex resizable | Configured bit rate | MAX LSP |
| | | BANDWIDTH |
+---------------------+------------------------------+-----------------+
A single ISCD MAY be used for the advertisement of unbundled or
bundled links supporting homogeneous multiplexing hierarchies and the
same TS (Tributary Slot) granularity. A different ISCD MUST be used
for each different muxing hierarchy (muxing tree in the following
examples) and different TS granularity supported within the TE Link.
When a received LSA includes a sub-TLV not formatted accordingly to
the precise specifications in this document, the problem SHOULD be
logged and the wrongly formatted sub-TLV MUST NOT be used for path
computation.
4.1. Switching Capability Specific Information
The technology specific part of the OTN-TDM ISCD may include a
variable number of sub-TLVs called Bandwidth sub-TLVs. Each sub-TLV
is encoded with the sub-TLV header as defined in [RFC3630] section
2.3.2. The muxing hierarchy tree MUST be encoded as an order
independent list. Two types of Bandwidth sub-TLV are defined (TBA by
IANA). Note that type values are defined in this document and not in
[RFC3630].
- Type 1 - Unreserved Bandwidth for fixed containers
- Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers
Ceccarelli, et al. Expires June 14, 2014 [Page 7]
Internet-Draft OSPF-TE extensions for OTN support December 2013
The Switching Capability-Specific Information (SCSI) MUST include one
Type 1 sub-TLV for each fixed container and one Type 2 sub-TLV for
each variable container. Each container type is identified by a
Signal Type. Signal Type values are defined in [OTN-SIG].
With respect to ODUflex, three different signal types are allowed: 20
- ODUflex Constant Bit Rate (CBR), 21 - ODUflex Generic Framing
Procedure-Frame mapped (GFP-F) resizable and 22 - ODUflex (GFP-F)
non-resizable. Each MUST always be advertised in separate Type 2
sub-TLVs as each uses different adaptation functions [G.805]. In the
case that both GFP-F resizable and non-resizable (i.e., 21 and 22)
are supported, only Signal Type 21 SHALL be advertised as this type
also implies support for type 22 adaptation.
4.1.1. Switching Capability Specific Information for fixed containers
The format of the Bandwidth sub-TLV for fixed containers is depicted
in the following figure:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signal type | Num of stages |T|S| TSG | Res | Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1 | ... | Stage#N | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved ODUj at Prio 0 | ..... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved ODUj at Prio 7 | Unreserved Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Bandwidth sub-TLV - Type 1 -
The values of the fields shown in figure 3 are explained in section
4.1.3.
4.1.2. Switching Capability Specific Information for variable
containers
The format of the Bandwidth sub-TLV for variable containers is
depicted in the following figure:
Ceccarelli, et al. Expires June 14, 2014 [Page 8]
Internet-Draft OSPF-TE extensions for OTN support December 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signal type | Num of stages |T|S| TSG | Res | Priority |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1 | ... | Stage#N | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Bandwidth sub-TLV - Type 2 -
The values of the fields shown in figure 4 are explained in section
4.1.3.
4.1.3. Switching Capability Specific Information - Field values and
explanation
The fields in the Bandwidth sub-TLV MUST be filled as follows:
- Signal Type (8 bits): Indicates the ODU type being advertised.
Values are defined in [OTN-SIG].
- Number of stages (8 bits): This field indicates the number of
multiplexing stages used to transport the indicated signal type.
It MUST be set to the number of stages represented in the sub-TLV.
- Flags (8 bits):
- T Flag (bit 17): Indicates whether the advertised bandwidth
can be terminated. When the signal type can be terminated T
MUST be set, while when the signal type cannot be terminated T
MUST be cleared.
Ceccarelli, et al. Expires June 14, 2014 [Page 9]
Internet-Draft OSPF-TE extensions for OTN support December 2013
- S Flag (bit 18): Indicates whether the advertised bandwidth
can be switched. When the signal type can be switched S MUST
be set, while when the signal type cannot be switched S MUST be
cleared.
The value 0 in both T and S bits MUST NOT be used.
- TS Granularity: Tributary Slot Granularity (3 bits): Used for
the advertisement of the supported Tributary Slot granularity.
The following values MUST be used:
- 0 - Ignored
- 1 - 1.25Gbps/2.5Gbps
- 2 - 2.5Gbps only
- 3 - 1.25Gbps only
- 4-7 - Reserved
A value of 1 MUST be used on interfaces which are configured to
support the fall back procedures defined in [G.798-a2]. A value
of 2 MUST be used on interfaces that only support 2.5Gbps time
slots, such as [RFC4328] interfaces. A value of 3 MUST be used on
interfaces that are configured to only support 1.25Gbps time
slots. A value of 0 MUST be used for non-multiplexed signal types
(i.e., a non-OTN client).
- Res (3 bits): reserved bits. MUST be set to 0 and ignored on
receipt.
- Priority (8 bits): A bitmap used to indicate which priorities
are being advertised. The bitmap is in ascending order, with the
leftmost bit representing priority level 0 (i.e., the highest) and
the rightmost bit representing priority level 7 (i.e., the
lowest). A bit MUST be set (1) corresponding to each priority
represented in the sub-TLV, and MUST NOT be set (0) when the
corresponding priority is not represented. At least one priority
level MUST be advertised that, unless overridden by local policy,
SHALL be at priority level 0.
- Stage (8 bits): Each Stage field indicates a signal type in the
multiplexing hierarchy used to transport the signal indicated in
the Signal Type field. The number of Stage fields included in a
sub-TLV MUST equal the value of the Number of Stages field. The
Stage fields MUST be ordered to match the data plane in ascending
order (from the lowest order ODU to the highest order ODU). The
Ceccarelli, et al. Expires June 14, 2014 [Page 10]
Internet-Draft OSPF-TE extensions for OTN support December 2013
values of the Stage field are the same as those defined for the
Signal Type field. When the Number of stage field carries a 0,
then the Stage and Padding fields MUST be omitted.
- Padding (variable): The Padding field is used to ensure the 32
bit alignment of stage fields. The length of the Padding field is
always a multiple of 8 bits (1 byte). Its length can be
calculated, in bytes, as: 4 - ( "value of Number of Stages field"
% 4). The Padding field MUST be set to a zero (0) value on
transmission and MUST be ignored on receipt.
- Unreserved ODUj (16 bits): This field indicates the Unreserved
Bandwidth at a particular priority level. This field MUST be set
to the number of ODUs at the indicated the Signal Type for a
particular priority level. One field MUST be present for each bit
set in the Priority field, and is ordered to match the Priority
field. Fields MUST NOT be present for priority levels that are
not indicated in the Priority field.
- Unreserved Padding (16 bits): The Padding field is used to
ensure the 32 bit alignment of Unreserved ODUj fields. When
present the Unreserved Padding field is 16 bits (2 byte) long.
When the number of priorities is odd, the Unreserved Padding field
MUST be included. When the number of priorities is even, the
Unreserved Padding MUST be omitted.
- Unreserved Bandwidth (32 bits): This field indicates the
Unreserved Bandwidth at a particular priority level. This field
MUST be set to the bandwidth, in Bytes/sec in IEEE floating point
format, available at the indicated Signal Type for a particular
priority level. One field MUST be present for each bit set in the
Priority field, and is ordered to match the Priority field.
Fields MUST NOT be present for priority levels that are not
indicated in the Priority field.
- Maximum LSP Bandwidth (32 bit): This field indicates the maximum
bandwidth that can be allocated for a single LSP at a particular
priority level. This field MUST be set to the maximum bandwidth,
in Bytes/sec in IEEE floating point format, available to a single
LSP at the indicated Signal Type for a particular priority level.
One field MUST be present for each bit set in the Priority field,
and is ordered to match the Priority field. Fields MUST NOT be
present for priority levels that are not indicated in the Priority
field. The advertisement of the MAX LSP Bandwidth MUST take into
account HO OPUk bit rate tolerance and be calculated according to
the following formula:
Ceccarelli, et al. Expires June 14, 2014 [Page 11]
Internet-Draft OSPF-TE extensions for OTN support December 2013
Max LSP BW = (# available TSs) * (ODTUk.ts nominal bit rate) *
(1-HO OPUk bit rate tolerance)
5. Examples
The examples in the following pages are not normative and are not
intended to imply or mandate any specific implementation.
5.1. MAX LSP Bandwidth fields in the ISCD
This example shows how the MAX LSP Bandwidth fields of the ISCD are
filled accordingly to the evolving of the TE-link bandwidth
occupancy. In the example an OTU4 link is considered, with supported
priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4.
At time T0, with the link completely free, the advertisement would
be:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Capability Specific Information |
| (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Example 1 - MAX LSP Bandwidth fields in the ISCD at T0
Ceccarelli, et al. Expires June 14, 2014 [Page 12]
Internet-Draft OSPF-TE extensions for OTN support December 2013
At time T1, an ODU3 at priority 2 is set-up, so for priority 0 the
MAX LSP Bandwidth is still equal to the ODU4 bandwidth, while for
priorities from 2 to 7 (excluding the non-supported ones) the MAX LSP
Bandwidth is equal to ODU3, as no more ODU4s are available and the
next supported ODUj in the hierarchy is ODU3. The advertisement is
updated as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Capability Specific Information |
| (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Example 1 - MAX LSP Bandwidth fields in the ISCD at T1
At time T2, an ODU2 at priority 4 is set-up. The first ODU3 is no
longer available since T1, as it was kept by the ODU3 LSP, while the
second is no more available and just 3 ODU2 are left in it. ODU2 is
now the MAX LSP Bandwidth for priorities higher than 4. The
advertisement is updated as follows:
Ceccarelli, et al. Expires June 14, 2014 [Page 13]
Internet-Draft OSPF-TE extensions for OTN support December 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 = 100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 = 40Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 = 10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 = 10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Switching Capability Specific Information |
| (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Example 1 - MAX LSP Bandwidth fields in the ISCD at T2
5.2. Example of T,S and TS granularity utilization
In this example, an interface with Tributary Slot Type 1.25Gbps and
fallback procedure enabled is considered (TS granularity=1). It
supports the simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and
3. Suppose that in this interface the ODU3 signal type can be both
switched or terminated, the ODU2 can only be terminated, and the ODU1
switched only. Please note that since the ODU1 is not being
advertised to support ODU0, the value of is "ignored" (TS
granularity=0). For the advertisement of the capabilities of such
interface, a single ISCD is used and its format is as follows:
Ceccarelli, et al. Expires June 14, 2014 [Page 14]
Internet-Draft OSPF-TE extensions for OTN support December 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |1|1| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Example 2 - TS granularity, T and S utilization
5.2.1. Example of different TS Granularities
In this example, two interfaces with homogeneous hierarchies but
different Tributary Slot Types are considered. The first one
supports a [RFC4328] interface (TS granularity=2) while the second
one supports G.709-2012 interface with fallback procedure disabled
(TS granularity=3). Both of them support ODU1->ODU2->ODU3 hierarchy
and priorities 0 and 3. Suppose that in this interface the ODU3
signal type can be both switched or terminated, the ODU2 can only be
terminated, and the ODU1 switched only. For the advertisement of the
capabilities of such interfaces, two different ISCDs are used and the
format of their SCSIs is as follows:
Ceccarelli, et al. Expires June 14, 2014 [Page 15]
Internet-Draft OSPF-TE extensions for OTN support December 2013
SCSI of ISCD 1 - TS granularity=2
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |1|1| 2 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Example 2.1 - Different TS Granularities utilization - ISCD
1
Ceccarelli, et al. Expires June 14, 2014 [Page 16]
Internet-Draft OSPF-TE extensions for OTN support December 2013
SCSI of ISCD 2 - TS granularity=3
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |0|1| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |1|0| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 0 |1|1| 3 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Example 2.1 - Different TS Granularities utilization -
ISCD 2
A particular case in which hierarchies with the same muxing tree but
with different exported TS granularity MUST be considered as non-
homogenous hierarchies. This is the case in which an H-LPS and the
client LSP are terminated on the same egress node. What can happen
is that a loose Explicit Route Object (ERO) is used at the hop where
the signaled LSP is nested into the Hierarchical-LSP (H-LSP)
(penultimate hop of the LSP).
In the following figure, node C receives from A a loose ERO towards
node E and must choose between the ODU2 H-LSP on if1 or the one on
if2. In this case, the H-LSP on if1 exports a TS=1.25Gbps, and if2 a
TS=2.5Gbps, the service LSP being signaled needs a 1.25Gbps tributary
slot, only the H-LSP on if1 can be used to reach node E. For further
details, please see section 4.1 of the [OTN-INFO].
Ceccarelli, et al. Expires June 14, 2014 [Page 17]
Internet-Draft OSPF-TE extensions for OTN support December 2013
ODU0-LSP
..........................................................+
| |
| ODU2-H-LSP |
| +-------------------------------+
| | |
+--+--+ +-----+ +-----+ if1 +-----+ +-----+
| | OTU3 | | OTU3 | |---------| |---------| |
| A +------+ B +------+ C | if2 | D | | E |
| | | | | |---------| |---------| |
+-----+ +-----+ +-----+ +-----+ +-----+
... Service LSP
--- H-LSP
Figure 11: Example - Service LSP and H-LSP terminating on the same
node
5.3. Example of ODUflex advertisement
In this example, the advertisement of an ODUflex->ODU3 hierarchy is
shown. In case of ODUflex advertisement, the MAX LSP Bandwidth needs
to be advertised and, in some cases, information about the Unreserved
bandwidth could also be useful. The amount of Unreserved bandwidth
does not give a clear indication of how many ODUflex LSP can be set
up either at the MAX LSP Bandwidth or at different rates, as it gives
no information about the spatial allocation of the free TSs.
An indication of the amount of Unreserved bandwidth could be useful
during the path computation process, as shown in the following
example. Supposing there are two TE-links (A and B) with MAX LSP
Bandwidth equal to 10 Gbps each. In the case where 50Gbps of
Unreserved Bandwidth are available on Link A, 10Gbps on Link B, and 3
ODUflex LSPs of 10 GBps each have to be restored, for sure only one
can be restored along Link B and it is probable, but not certain,
that two of them can be restored along Link A. T, S and TS
granularity fields are not relevant to this example (filled with Xs).
In the case of ODUflex advertisement, the Type 2 Bandwidth sub-TLV is
used.
Ceccarelli, et al. Expires June 14, 2014 [Page 18]
Internet-Draft OSPF-TE extensions for OTN support December 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length = 72 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S. type=ODUflex| #stages= 1 |X|X|X X X|0 0 0| Priority(8) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 5 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 7 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: Example 3 - ODUflex advertisement
Ceccarelli, et al. Expires June 14, 2014 [Page 19]
Internet-Draft OSPF-TE extensions for OTN support December 2013
5.4. Example of single stage muxing
Supposing there is 1 OTU4 component link supporting single stage
muxing of ODU1, ODU2, ODU3 and ODUflex, the supported hierarchy can
be summarized in a tree as in the following figure. For sake of
simplicity, we also assume that only priorities 0 and 3 are
supported. T, S and TS granularity fields are not relevant to this
example(filled with Xs).
ODU1 ODU2 ODU3 ODUflex
\ \ / /
\ \ / /
\ \/ /
ODU4
and the related SCSIs as follows:
Ceccarelli, et al. Expires June 14, 2014 [Page 20]
Internet-Draft OSPF-TE extensions for OTN support December 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length = 24 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S. type=ODUflex| #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 =100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 3 =100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 =100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 =100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Ceccarelli, et al. Expires June 14, 2014 [Page 21]
Internet-Draft OSPF-TE extensions for OTN support December 2013
Figure 13: Example 4 - Single stage muxing
5.5. Example of multi stage muxing - Unbundled link
Supposing there is 1 OTU4 component link with muxing capabilities as
shown in the following figure:
ODU2 ODU0 ODUflex ODU0
\ / \ /
| |
ODU3 ODU2
\ /
\ /
\ /
\ /
ODU4
and supported priorities 0 and 3, the advertisement is composed by
the following Bandwidth sub-TLVs (T and S fields are not relevant to
this example and filled with Xs):
Ceccarelli, et al. Expires June 14, 2014 [Page 22]
Internet-Draft OSPF-TE extensions for OTN support December 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |X|X| 1 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 |
Ceccarelli, et al. Expires June 14, 2014 [Page 23]
Internet-Draft OSPF-TE extensions for OTN support December 2013
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 (Unres/MAX-var) | Length = 24 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S.type=ODUflex | #stages= 2 |X|X| 0 |0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 0 =100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unreserved Bandwidth at priority 3 =100Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 0 =10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAX LSP Bandwidth at priority 3 =10Gbps |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 14: Example 5 - Multi stage muxing - Unbundled link
5.6. Example of multi stage muxing - Bundled links
In this example, 2 OTU4 component links with the same supported TS
granularity and homogeneous muxing hierarchies are considered. The
following muxing capabilities trees are supported:
Component Link#1 Component Link#2
ODU2 ODU0 ODU2 ODU0
\ / \ /
| |
ODU3 ODU3
| |
ODU4 ODU4
Considering only supported priorities 0 and 3, the advertisement is
as follows (T, S and TS granularity fields are not relevant to this
example and filled with Xs):
Ceccarelli, et al. Expires June 14, 2014 [Page 24]
Internet-Draft OSPF-TE extensions for OTN support December 2013
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =2 | Unres ODU4 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =4 | Unres ODU3 at Prio 3 =4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =16 | Unres ODU2 at Prio 3 =16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =128 | Unres ODU0 at Prio 3 =128 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 15: Example 6 - Multi stage muxing - Bundled links
5.7. Example of component links with non-homogeneous hierarchies
In this example, 2 OTU4 component links with the same supported TS
granularity and non-homogeneous muxing hierarchies are considered.
The following muxing capabilities trees are supported:
Ceccarelli, et al. Expires June 14, 2014 [Page 25]
Internet-Draft OSPF-TE extensions for OTN support December 2013
Component Link#1 Component Link#2
ODU2 ODU0 ODU1 ODU0
\ / \ /
| |
ODU3 ODU2
| |
ODU4 ODU4
Considering only supported priorities 0 and 3, the advertisement uses
two different ISCDs, one for each hierarchy (T, S and TS granularity
fields are not relevant to this example and filled with Xs). In the
following figure, the SCSI of each ISCD is shown:
Ceccarelli, et al. Expires June 14, 2014 [Page 26]
Internet-Draft OSPF-TE extensions for OTN support December 2013
SCSI of ISCD 1 - Component Link#1
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU3 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 16: Example 7 - Multi stage muxing - Non-homogeneous
hierarchies - ISCD 1
Ceccarelli, et al. Expires June 14, 2014 [Page 27]
Internet-Draft OSPF-TE extensions for OTN support December 2013
SCSI of ISCD 2 - Component Link#2
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 8 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU4 | #stages= 0 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU2 | #stages= 1 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU1 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 (Unres-fix) | Length = 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Sig type=ODU0 | #stages= 2 |X|X|X X X|0 0 0|1|0|0|1|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 17: Example 7 - Multi stage muxing - Non-homogeneous
hierarchies - ISCD 2
6. OSPFv2 scalability
This document does not introduce OSPF scalability issues with respect
to existing GMPLS encoding and does not require any modification to
flooding frequency. Moreover, the design of the encoding has been
carried out taking into account bandwidth optimization, and in
particular:
Ceccarelli, et al. Expires June 14, 2014 [Page 28]
Internet-Draft OSPF-TE extensions for OTN support December 2013
- Only unreserved and MAX LSP Bandwidth related to supported
priorities are advertised
- With respect of fixed containers, only the number of available
containers is advertised instead of available bandwidth so to use
only 16 bits per container instead of 32 (as per former GMPLS
encoding
In order to further reduce the amount of data advertised it is
RECOMMENDED to bundle component links with homogeneous hierarchies as
described in [RFC4201] and illustrated in Section 5.6.
7. Compatibility
All implementations of this document MAY also support advertisement
as defined in [RFC4328]. When nodes support both advertisement
methods, implementations MUST support the configuration of which
advertisement method is followed. The choice of which is used is
based on policy and beyond the scope of this document. This enables
nodes following each method to identify similar supporting nodes and
compute paths using only the appropriate nodes.
8. Security Considerations
This document extends [RFC4203]. As with[RFC4203], it specifies the
contents of Opaque LSAs in OSPFv2. As Opaque LSAs are not used for
SPF computation or normal routing, the extensions specified here have
no direct effect on IP routing. Tampering with GMPLS TE LSAs may
have an effect on the underlying transport (optical and/or SONET-SDH)
network. [RFC3630] notes that the security mechanisms described in
[RFC2328] apply to Opaque LSAs carried in OSPFv2. An analysis of the
security of OSPF is provided in [RFC6863] and applies to the
extensions to OSPF as described in this document. Any new mechanisms
developed to protect the transmission of information carried in
Opaque LSAs will also automatically protect the extensions defined in
this document.
For security threats, defensive techniques, monitoring/detection/
reporting of security attacks and requirements please refer to
[RFC5920].
9. IANA Considerations
Ceccarelli, et al. Expires June 14, 2014 [Page 29]
Internet-Draft OSPF-TE extensions for OTN support December 2013
9.1. Switching types
Upon approval of this document, IANA will make the assignment in the
"Switching Types" section of the "GMPLS Signaling Parameters"
registry located at
http://www.iana.org/assignments/gmpls-sig-parameters:
Value Name Reference
--------- -------------------------- ----------
110 (*) OTN-TDM capable (OTN-TDM) [This.I-D]
(*) Suggested value
Same type of modification needs to applied to the IANA-GMPLS-TC-MIB
at https://www.iana.org/assignments/ianagmplstc-mib/ianagmplstc-mib,
where the value:
OTN-TDM (110), -- Time-Division-Multiplex OTN-TDM capable
Will be added to the IANAGmplsSwitchingTypeTC ::= TEXTUAL-CONVENTION
syntax list.
9.2. New sub-TLVs
This document defines 2 new sub-TLVs that are carried in Interface
Switching Capability Descriptors [RFC4203] with Signal Type OTN-TDM.
Each sub-TLV includes a 16-bit type identifier (the T-field). The
same T-field values are applicable to the new sub-TLV.
Upon approval of this document, IANA will create and maintain a new
sub-registry, the "Types for sub-TLVs of OTN-TDM SCSI (Switch
Capability-Specific Information)" registry under the "Open Shortest
Path First (OSPF) Traffic Engineering TLVs" registry, see http://
www.iana.org/assignments/ospf-traffic-eng-tlvs/
ospf-traffic-eng-tlvs.xml, with the sub-TLV types as follows:
This document defines new sub-TLV types as follows:
Value Sub-TLV Reference
--------- -------------------------- ----------
0 Reserved [This.I-D]
1 Unreserved Bandwidth for [This.I-D]
fixed containers
2 Unreserved/MAX Bandwidth for [This.I-D]
flexible containers
Ceccarelli, et al. Expires June 14, 2014 [Page 30]
Internet-Draft OSPF-TE extensions for OTN support December 2013
3-65535 Unassigned
Types are to be assigned via Standards Action as defined in
[RFC5226].
10. Contributors
Diego Caviglia, Ericsson
Via E.Melen, 77 - Genova - Italy
Email: diego.caviglia@ericsson.com
Dan Li, Huawei Technologies
Bantian, Longgang District - Shenzhen 518129 P.R.China
Email: danli@huawei.com
Pietro Vittorio Grandi, Alcatel-Lucent
Via Trento, 30 - Vimercate - Italy
Email: pietro_vittorio.grandi@alcatel-lucent.com
Khuzema Pithewan, Infinera Corporation
140 Caspian CT., Sunnyvale - CA - USA
Email: kpithewan@infinera.com
Xiaobing Zi, Huawei Technologies
Email: zixiaobing@huawei.com
Francesco Fondelli, Ericsson
Ceccarelli, et al. Expires June 14, 2014 [Page 31]
Internet-Draft OSPF-TE extensions for OTN support December 2013
Email: francesco.fondelli@ericsson.com
Marco Corsi
EMail: corsi.marco@gmail.com
Eve Varma, Alcatel-Lucent
EMail: eve.varma@alcatel-lucent.com
Jonathan Sadler, Tellabs
EMail: jonathan.sadler@tellabs.com
Lyndon Ong, Ciena
EMail: lyong@ciena.com
Ashok Kunjidhapatham
akunjidhapatham@infinera.com
Snigdho Bardalai
sbardalai@infinera.com
Steve Balls
Steve.Balls@metaswitch.com
Jonathan Hardwick
Ceccarelli, et al. Expires June 14, 2014 [Page 32]
Internet-Draft OSPF-TE extensions for OTN support December 2013
Jonathan.Hardwick@metaswitch.com
Xihua Fu
fu.xihua@zte.com.cn
Cyril Margaria
cyril.margaria@nsn.com
Malcolm Betts
Malcolm.betts@zte.com.cn
11. Acknowledgements
The authors would like to thank Fred Gruman and Lou Berger for the
precious comments and suggestions.
12. References
12.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
(TE) Extensions to OSPF Version 2", RFC 3630,
September 2003.
[RFC4201] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
in MPLS Traffic Engineering (TE)", RFC 4201, October 2005.
[RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support
of Generalized Multi-Protocol Label Switching (GMPLS)",
RFC 4203, October 2005.
[RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Extensions for G.709 Optical
Transport Networks Control", RFC 4328, January 2006.
Ceccarelli, et al. Expires June 14, 2014 [Page 33]
Internet-Draft OSPF-TE extensions for OTN support December 2013
12.2. Informative References
[OTN-FWK] F.Zhang, D.Li, H.Li, S.Belotti, D.Ceccarelli, "Framework
for GMPLS and PCE Control of G.709 Optical Transport
networks, work in progress
draft-ietf-ccamp-gmpls-g709-framework-13", June 2013.
[OTN-INFO]
S.Belotti, P.Grandi, D.Ceccarelli, D.Caviglia, F.Zhang,
D.Li, "Information model for G.709 Optical Transport
Networks (OTN), work in progress
draft-ietf-ccamp-otn-g709-info-model-09", June 2013.
[OTN-SIG] F.Zhang, G.Zhang, S.Belotti, D.Ceccarelli, K.Pithewan,
"Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Extensions for the evolving G.709 Optical
Transport Networks Control, work in progress
draft-ietf-ccamp-gmpls-signaling-g709v3-11", June 2013.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5920] Fang, L., "Security Framework for MPLS and GMPLS
Networks", RFC 5920, July 2010.
[RFC6163] Lee, Y., Bernstein, G., and W. Imajuku, "Framework for
GMPLS and Path Computation Element (PCE) Control of
Wavelength Switched Optical Networks (WSONs)", RFC 6163,
April 2011.
[RFC6566] Lee, Y., Bernstein, G., Li, D., and G. Martinelli, "A
Framework for the Control of Wavelength Switched Optical
Networks (WSONs) with Impairments", RFC 6566, March 2012.
[RFC6863] Hartman, S. and D. Zhang, "Analysis of OSPF Security
According to the Keying and Authentication for Routing
Protocols (KARP) Design Guide", RFC 6863, March 2013.
[SWCAP-UPDT]
F.Zhang, D.Li, H.Li, S.Belotti, D.Ceccarelli, "Framework
for GMPLS and PCE Control of G.709 Optical Transport
networks, work in progress
draft-ietf-ccamp-gmpls-g709-framework-13", June 2013.
Ceccarelli, et al. Expires June 14, 2014 [Page 34]
Internet-Draft OSPF-TE extensions for OTN support December 2013
Authors' Addresses
Daniele Ceccarelli (editor)
Ericsson
Via E.Melen 77
Genova - Erzelli
Italy
Email: daniele.ceccarelli@ericsson.com
Fatai Zhang
Huawei Technologies
F3-5-B R&D Center, Huawei Base
Shenzhen 518129 P.R.China Bantian, Longgang District
Phone: +86-755-28972912
Email: zhangfatai@huawei.com
Sergio Belotti
Alcatel-Lucent
Via Trento, 30
Vimercate
Italy
Email: sergio.belotti@alcatel-lucent.com
Rajan Rao
Infinera Corporation
140, Caspian CT.
Sunnyvale, CA-94089
USA
Email: rrao@infinera.com
John E Drake
Juniper
Email: jdrake@juniper.net
Ceccarelli, et al. Expires June 14, 2014 [Page 35]