CCAMP Working Group                       K. Kompella (Juniper Networks)
Internet Draft                            Y. Rekhter  (Juniper Networks)
Expiration Date: October 2002             A. Banerjee (Calient Networks)
                                          J. Drake    (Calient Networks)
                                          G. Bernstein (Ciena)
                                          D. Fedyk    (Nortel Networks)
                                          E. Mannie   (GTS Network)
                                          D. Saha     (Tellium)
                                          V. Sharma   (Metanoia, Inc.)

             OSPF Extensions in Support of Generalized MPLS

             draft-ietf-ccamp-ospf-gmpls-extensions-06.txt


1. Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as ``work in progress.''

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.
















draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 1]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


2. Abstract

   This document specifies encoding of extensions to the OSPF routing
   protocol in support of Generalized Multi-Protocol Label Switching.


3. Summary for Sub-IP Area


3.1. Summary

   This document specifies encoding of extensions to the OSPF routing
   protocol in support of Generalized Multi-Protocol Label Switching
   (GMPLS).  The description of the extensions is specified in [GMPLS-
   ROUTING].


3.2. Where does it fit in the Picture of the Sub-IP Work

   This work fits squarely in either the CCAMP or OSPF box.


3.3. Why is it Targeted at this WG

   This draft is targeted at the CCAMP or the OSPF WG, because this
   draft specifies the extensions to the OSPF routing protocols in
   support of GMPLS, because GMPLS is within the scope of the CCAMP WG,
   and because OSPF is within the scope of the OSPF WG.


3.4. Justification

   The WG should consider this document as it specifies the extensions
   to the OSPF routing protocols in support of GMPLS.


4. Specification of Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].










draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 2]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


5. Introduction

   This document specifies extensions to the OSPF routing protocol in
   support of carrying link state information for Generalized Multi-
   Protocol Label Switching (GMPLS). The set of required enhancements to
   OSPF are outlined in [GMPLS-ROUTING].


6. OSPF Routing Enhancements

   In this section we define the enhancements to the TE properties of
   GMPLS TE links that can be announced in OSPF TE LSAs.  The Traffic
   Engineering (TE) LSA, which is an opaque LSA with area flooding scope
   [OSPF-TE], has only one top-level Type/Length/Value (TLV) triplet and
   has one or more nested sub-TLVs for extensibility. The top-level TLV
   can take one of two values (1) Router Address or (2) Link. In this
   document, we enhance the sub-TLVs for the Link TLV in support of
   GMPLS. Specifically, we add the following sub-TLVs to the Link TLV:

      Sub-TLV Type      Length    Name
                11           8    Link Local/Remote Identifiers
                14           4    Link Protection Type
                15    variable    Interface Switching Capability Descriptor
                16    variable    Shared Risk Link Group


6.1. Link Local/Remote Identifiers

   A  Link Local/Remote Identifiers is a sub-TLV of the Link TLV. The
   type of this sub-TLV is 11, and length is eight octets. The value
   field of this sub-TLV contains four octets of Link Local Identifier
   followed by four octets of Link Remote Idenfier (see Section "Support
   for unnumbered links" of [GMPLS-ROUTING]). If the Link Remote
   Identifier is unknown, it is set to 0.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Link Local Idenfiier                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Link Remote Idenfiier                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   A node can communicate its Link Local Identifier to its neighbor
   using a link local Opaque LSA, as described in Section "Exchanging
   Link Local TE Information".





draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 3]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


6.2. Link Protection Type

   The Link Protection Type is a sub-TLV of the Link TLV. The type of
   this sub-TLV is 14, and length is four octets.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Protection Cap |                    Reserved                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The first octet is a bit vector describing the protection
   capabilities of the link (see Section "Link Protection Type" of
   [GMPLS-ROUTING]).  They are:

      0x01  Extra Traffic

      0x02  Unprotected

      0x04  Shared

      0x08  Dedicated 1:1

      0x10  Dedicated 1+1

      0x20  Enhanced

      0x40  Reserved

      0x80  Reserved

   The remaining three octets SHOULD be set to zero by the sender, and
   SHOULD be ignored by the receiver.

   The Link Protection Type sub-TLV may occur at most once within the
   Link TLV.


6.3. Shared Risk Link Group (SRLG)

   The SRLG is a sub-TLV (of type 16) of the Link TLV. The length is the
   length of the list in octets. The value is an unordered list of 32
   bit numbers that are the SRLGs that the link belongs to. The format
   of the value field is as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 4]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


      |                  Shared Risk Link Group Value                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        ............                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Shared Risk Link Group Value                 |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   This sub-TLV carries the Shared Risk Link Group information (see
   Section "Shared Risk Link Group Information" of [GMPLS-ROUTING]).

   The SRLG sub-TLV may occur at most once within the Link TLV.


6.4. Interface Switching Capability Descriptor

   The Interface Switching Capability Descriptor is a sub-TLV (of type
   15) of the Link TLV. The length is the length of value field in
   octets. The format of the value field is as shown below:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Switching Cap |   Encoding    |           Reserved            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 0              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 1              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 2              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 3              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 4              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 5              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 6              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Max LSP Bandwidth at priority 7              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Switching Capability-specific information              |
      |                  (variable)                                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Switching Capability (Switching Cap) field contains one of the
   following values:





draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 5]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


           1     Packet-Switch Capable-1 (PSC-1)
           2     Packet-Switch Capable-2 (PSC-2)
           3     Packet-Switch Capable-3 (PSC-3)
           4     Packet-Switch Capable-4 (PSC-4)
           51    Layer-2 Switch Capable  (L2SC)
           100   Time-Division-Multiplex Capable (TDM)
           150   Lambda-Switch Capable   (LSC)
           200   Fiber-Switch Capable    (FSC)


   The Encoding field contains one of the values specified in Section
   3.1.1 of [GMPLS-SIG].

   Maximum LSP Bandwidth is encoded as a list of eight 4 octet fields in
   the IEEE floating point format, with priority 0 first and priority 7
   last. The units are bytes (not bits!) per second.

   The content of the Switching Capability specific information field
   depends on the value of the Switching Capability field.

   When the Switching Capability field is PSC-1, PSC-2, PSC-3, or PSC-4,
   the Switching Capability specific information field includes Minimum
   LSP Bandwidth, Interface MTU, and padding.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Minimum LSP Bandwidth                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Interface MTU       |            Padding            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Minimum LSP Bandwidth is is encoded in a 4 octets field in the
   IEEE floating point format. The units are bytes (not bits!) per
   second. The Interface MTU is encoded as a 2 octets integer.  The
   padding is 2 octets, and is used to make the Interface Switching
   Capability Descriptor sub-TLV 32-bits aligned. It SHOULD be set to
   zero by the sender and SHOULD be ignored by the receiver.

   When the Switching Capability field is L2SC, there is no Switching
   Capability specific information field present.

   When the Switching Capability field is TDM, the Switching Capability
   specific information field includes Minimum LSP Bandwidth, an
   indication whether the interface supports Standard or Arbitrary
   SONET/SDH, and padding.

       0                   1                   2                   3



draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 6]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                  Minimum LSP Bandwidth                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Indication  |                 Padding                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Minimum LSP Bandwidth is encoded in a 4 octets field in the IEEE
   floating point format. The units are bytes (not bits!) per second.
   The indication whether the interface supports Standard or Arbitrary
   SONET/SDH is encoded as 1 octet. The value of this octet is 0 if the
   interface supports Standard SONET/SDH, and 1 if the interface
   supports Arbitrary SONET/SDH.  The padding is 3 octets, and is used
   to make the Interface Switching Capability Descriptor sub-TLV 32-bits
   aligned. It SHOULD be set to zero by the sender and SHOULD be ignored
   by the receiver.

   When the Switching Capability field is LSC, there is no Switching
   Capability specific information field present.

   To support interfaces that have more than one Interface Switching
   Capability Descriptor (see Section "Interface Switching Capability
   Descriptor" of [GMPLS-ROUTING]) the Interface Switching Capability
   Descriptor sub-TLV may occur more than once within the Link TLV.


7. Implications on Graceful Restart

   The restarting node should follow the OSPF restart procedures [OSPF-
   RESTART], and the RSVP-TE restart procedures [GMPLS-RSVP].

   When a restarting node is going to originate its TE LSAs, the TE LSAs
   containing Link TLV should be originated with 0 unreserved bandwidth,
   and if the Link has LSC or FSC as its Switching Capability then also
   with 0 as Max LSP Bandwidth, until the node is able to determine the
   amount of unreserved resources taking into account the resources
   reserved by the already established LSPs that have been preserved
   across the restart. Once the restarting node determines the amount of
   unreserved resources, taking into account the resources reserved by
   the already established LSPs that have been preserved across the
   restart, the node should advertise these resources in its TE LSAs.

   In addition in the case of a planned restart prior to restarting, the
   restarting node SHOULD originate the TE LSAs containing Link TLV with
   0 as unreserved bandwidth, and if the Link has LSC or FSC as its
   Switching Capability then also with 0 as Max LSP Bandwidth.  This
   would discourage new LSP establishment through the restarting router.




draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 7]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


   Neighbors of the restarting node should continue advertise the actual
   unreserved bandwidth on the TE links from the neighbors to that node.

   Regular graceful restart should not be aborted if a TE LSA or TE
   topology changes. TE graceful restart need not be aborted if a TE LSA
   or TE topology changes.


8. Exchanging Link Local TE Information

   It is often useful for a node to communicate some Traffic Engineering
   information for a given interface to its neighbors on that interface.
   One example of this is a Link Local Identifier.  If nodes X and Y are
   connected by an unnumbered point-to-point interface I, then X's Link
   Local Identifier for I is Y's Link Remote Identifier for I.  X can
   communicate its Link Local Identifer for I by exchanging with Y a TE
   link local opaque LSA described below.  Note that this information
   need only be exchanged over interface I, hence the use of a link
   local Opaque LSA.

   A TE Link Local LSA is an opaque LSA of type 9 (link-local flooding
   scope) with Opaque Type [TBD] and Opaque ID of 0.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LS age             |    Options    |       9       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Opaque Type  |                   Opaque ID                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     Advertising Router                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     LS sequence number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         LS checksum           |             length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +-                            TLVs                             -+
      |                             ...                               |

   The format of the TLVs that make up the body of the TE Link Local LSA
   is the same as that of the TE TLVs: a 2-octet Type field followed by
   a 2-octet Length field which indicates the length of the Value field
   in octets.  The Value field is zero-padded at the end to a four octet
   boundary.

   The only TLV defined here is the Link Local Identifier TLV, with Type
   1, Length 4 and Value the 32 bit Link Local Identifier for the link



draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 8]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


   over which the TE Link Local LSA is exchanged.


9. Security Considerations

   The sub-TLVs proposed in this document do not raise any new security
   concerns.


10. Acknowledgements

   The authors would like to thank Suresh Katukam, Jonathan Lang,
   Quaizar Vohra, and Alex Zinin for their comments on the draft.


11. References

   [OSPF-TE] Katz, D., Yeung, D., "Traffic Engineering Extensions to
   OSPF",
       draft-katz-yeung-ospf-traffic-06.txt (work in progress)

   [GMPLS-SIG] "Generalized MPLS - Signaling Functional
       Description", draft-ietf-mpls-generalized-signaling-04.txt (work
       in progress)

   [GMPLS-RSVP] "Generalized MPLS Signaling - RSVP-TE Extensions",
       draft-ietf-mpls-generalized-rsvp-te-06.txt (work in progress)

   [GMPLS-ROUTING] "Routing Extensions in Support of Generalized MPLS",
       draft-ietf-ccamp-gmpls-routing-01.txt (work in progress)

   [OSPF-RESTART] "Hitless OSPF Restart", draft-ietf-ospf-hitless-
   restart-02.txt
       (work in progress)

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
   Requirement Levels", BCP 14, RFC 2119, March 1997.














draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                   [Page 9]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002


12. Authors' Information


Kireeti Kompella
Juniper Networks, Inc.
1194 N. Mathilda Ave
Sunnyvale, CA 94089
Email: kireeti@juniper.net



Yakov Rekhter
Juniper Networks, Inc.
1194 N. Mathilda Ave
Sunnyvale, CA 94089
Email: yakov@juniper.net



Ayan Banerjee
Calient Networks
5853 Rue Ferrari
San Jose, CA 95138
Phone: +1.408.972.3645
Email: abanerjee@calient.net



John Drake
Calient Networks
5853 Rue Ferrari
San Jose, CA 95138
Phone: (408) 972-3720
Email: jdrake@calient.net



Greg Bernstein
Ciena Corporation
10480 Ridgeview Court
Cupertino, CA 94014
Phone: (408) 366-4713
Email: greg@ciena.com








draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                  [Page 10]


Internet Draftdraft-ietf-ccamp-ospf-gmpls-extensions-06.txt   April 2002



Don Fedyk
Nortel Networks Corp.
600 Technology Park Drive
Billerica, MA 01821
Phone: +1-978-288-4506
Email: dwfedyk@nortelnetworks.com


Eric Mannie
GTS Network Services
RDI Department, Core Network Technology Group
Terhulpsesteenweg, 6A
1560 Hoeilaart, Belgium
Phone: +32-2-658.56.52
E-mail: eric.mannie@gtsgroup.com


Debanjan Saha
Tellium Optical Systems
2 Crescent Place
P.O. Box 901
Ocean Port, NJ 07757
Phone: (732) 923-4264
Email: dsaha@tellium.com

Vishal Sharma
Metanoia, Inc.
335 Elan Village Lane, Unit 203
San Jose, CA 95134-2539
Phone: +1 408-943-1794
Email: v.sharma@ieee.org



















draft-ietf-ccamp-ospf-gmpls-extensions-06.txt                  [Page 11]