Internet Engineering Task Force S. Cheshire
Internet-Draft Apple Inc.
Intended status: Standards Track September 13, 2017
Expires: March 17, 2018
Discovery Proxy for Multicast DNS-Based Service Discovery
draft-ietf-dnssd-hybrid-07
Abstract
This document specifies a mechanism that uses Multicast DNS to
automatically populate the wide-area unicast Domain Name System
namespace with records describing devices and services found on the
local link.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on March 17, 2018.
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Cheshire Expires March 17, 2018 [Page 1]
Internet-Draft Multicast Service Discovery Proxy September 2017
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Operational Analogy . . . . . . . . . . . . . . . . . . . . . 6
3. Conventions and Terminology Used in this Document . . . . . . 7
4. Compatibility Considerations . . . . . . . . . . . . . . . . 7
5. Discovery Proxy Operation . . . . . . . . . . . . . . . . . . 8
5.1. Delegated Subdomain for Service Discovery Records . . . . 9
5.2. Domain Enumeration . . . . . . . . . . . . . . . . . . . 11
5.2.1. Domain Enumeration via Unicast Queries . . . . . . . 11
5.2.2. Domain Enumeration via Multicast Queries . . . . . . 13
5.3. Delegated Subdomain for LDH Host Names . . . . . . . . . 14
5.4. Delegated Subdomain for Reverse Mapping . . . . . . . . . 16
5.5. Data Translation . . . . . . . . . . . . . . . . . . . . 18
5.5.1. DNS TTL limiting . . . . . . . . . . . . . . . . . . 18
5.5.2. Suppressing Unusable Records . . . . . . . . . . . . 19
5.5.3. NSEC and NSEC3 queries . . . . . . . . . . . . . . . 20
5.5.4. No Text Encoding Translation . . . . . . . . . . . . 20
5.5.5. Application-Specific Data Translation . . . . . . . . 21
5.6. Answer Aggregation . . . . . . . . . . . . . . . . . . . 23
6. Administrative DNS Records . . . . . . . . . . . . . . . . . 26
6.1. DNS SOA (Start of Authority) Record . . . . . . . . . . . 26
6.2. DNS NS Records . . . . . . . . . . . . . . . . . . . . . 27
6.3. DNS SRV Records . . . . . . . . . . . . . . . . . . . . . 27
7. DNSSEC Considerations . . . . . . . . . . . . . . . . . . . . 28
7.1. On-line signing only . . . . . . . . . . . . . . . . . . 28
7.2. NSEC and NSEC3 Records . . . . . . . . . . . . . . . . . 28
8. IPv6 Considerations . . . . . . . . . . . . . . . . . . . . . 29
9. Security Considerations . . . . . . . . . . . . . . . . . . . 30
9.1. Authenticity . . . . . . . . . . . . . . . . . . . . . . 30
9.2. Privacy . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.3. Denial of Service . . . . . . . . . . . . . . . . . . . . 31
10. Intelectual Property Rights . . . . . . . . . . . . . . . . . 32
11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 32
12. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 32
13. References . . . . . . . . . . . . . . . . . . . . . . . . . 33
13.1. Normative References . . . . . . . . . . . . . . . . . . 33
13.2. Informative References . . . . . . . . . . . . . . . . . 34
Appendix A. Implementation Status . . . . . . . . . . . . . . . 36
A.1. Already Implemented and Deployed . . . . . . . . . . . . 36
A.2. Already Implemented . . . . . . . . . . . . . . . . . . . 36
A.3. Partially Implemented . . . . . . . . . . . . . . . . . . 36
A.4. Not Yet Implemented . . . . . . . . . . . . . . . . . . . 37
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 37
Cheshire Expires March 17, 2018 [Page 2]
Internet-Draft Multicast Service Discovery Proxy September 2017
1. Introduction
Multicast DNS [RFC6762] and its companion technology DNS-based
Service Discovery [RFC6763] were created to provide IP networking
with the ease-of-use and autoconfiguration for which AppleTalk was
well known [RFC6760] [ZC].
For a small home network consisting of just a single link (or a few
physical links bridged together to appear as a single logical link
from the point of view of IP) Multicast DNS [RFC6762] is sufficient
for client devices to look up the ".local" host names of peers on the
same home network, and to use Multicast DNS-Based Service Discovery
(DNS-SD) [RFC6763] to discover services offered on that home network.
For a larger network consisting of multiple links that are
interconnected using IP-layer routing instead of link-layer bridging,
link-local Multicast DNS alone is insufficient because link-local
Multicast DNS packets, by design, are not propagated onto other
links.
Using link-local multicast packets for Multicast DNS was a conscious
design choice [RFC6762]. Even when limited to a single link,
multicast traffic is still generally considered to be more expensive
than unicast, because multicast traffic impacts many devices, instead
of just a single recipient. In addition, with some technologies like
Wi-Fi [IEEE-11], multicast traffic is inherently less efficient and
less reliable than unicast, because Wi-Fi multicast traffic is sent
using the lower data rates, and is not acknowledged. Multiplying the
amount of expensive multicast traffic by flooding it across multiple
links would make the traffic load even worse.
Partitioning the network into many small links curtails the spread of
expensive multicast traffic, but limits the discoverability of
services. Using a very large local link with thousands of hosts
enables better service discovery, but at the cost of larger amounts
of multicast traffic.
Performing DNS-Based Service Discovery using purely Unicast DNS is
more efficient and doesn't require excessively large multicast
domains, but requires that the relevant data be available in the
Unicast DNS namespace. The Unicast DNS namespace in question could
fall within a traditionally assigned globally unique domain name, or
could use a private local unicast domain name such as ".home.arpa"
[HOME].)
In the DNS-SD specification [RFC6763], Section 10 ("Populating the
DNS with Information") discusses various possible ways that a
service's PTR, SRV, TXT and address records can make their way into
Cheshire Expires March 17, 2018 [Page 3]
Internet-Draft Multicast Service Discovery Proxy September 2017
the Unicast DNS namespace, including manual zone file configuration
[RFC1034] [RFC1035], DNS Update [RFC2136] [RFC3007] and proxies of
various kinds.
Making the relevant data available in the Unicast DNS namespace by
manual DNS configuration (as has been done for many years at IETF
meetings to advertise the IETF Terminal Room printer) is labor
intensive, error prone, and requires a reasonable degree of DNS
expertise.
Populating the Unicast DNS namespace via DNS Update by the devices
offering the services themselves requires configuration of DNS Update
keys on those devices, which has proven onerous and impractical for
simple devices like printers and network cameras.
Hence, to facilitate efficient and reliable DNS-Based Service
Discovery, a compromise is needed that combines the ease-of-use of
Multicast DNS with the efficiency and scalability of Unicast DNS.
This document specifies a type of proxy called a "Multicast Discovery
Proxy" (or just "Discovery Proxy") that uses Multicast DNS [RFC6762]
to discover Multicast DNS records on its local link, and makes
corresponding DNS records visible in the Unicast DNS namespace.
In principle, similar mechanisms could be defined using other local
service discovery protocols, to discover local information and then
make corresponding DNS records visible in the Unicast DNS namespace.
Such mechanisms for other local service discovery protocols could be
addressed in future documents.
The design of the Discovery Proxy is guided by the previously
published Requirements for Scalable DNS-Based Service [RFC7558].
In simple terms, a descriptive DNS name is chosen for each link in an
organization. Using a DNS NS record, responsibility for that DNS
name is delegated to a Discovery Proxy physically attached to that
link. Now, when a remote client issues a unicast query for a name
falling within the delegated subdomain, the normal DNS delegation
mechanism results in the unicast query arriving at the Discovery
Proxy, since it has been declared authoritative for those names.
Now, instead of consulting a textual zone file on disk to discover
the answer to the query, as a traditional DNS server would, a
Discovery Proxy consults its local link, using Multicast DNS, to find
the answer to the question.
For fault tolerance reasons there may be more than one Discovery
Proxy serving a given link.
Cheshire Expires March 17, 2018 [Page 4]
Internet-Draft Multicast Service Discovery Proxy September 2017
Note that the Discovery Proxy uses a "pull" model. The local link is
not queried using Multicast DNS until some remote client has
requested that data. In the idle state, in the absence of client
requests, the Discovery Proxy sends no packets and imposes no burden
on the network. It operates purely "on demand".
An alternative proposal that has been suggested is a proxy that
performs DNS updates to a remote DNS server on behalf of the
Multicast DNS devices on the local network. The difficulty of this
is that the proxy would have to be issuing all possible Multicast DNS
queries all the time, to discover all the answers it needed to push
up to the remote DNS server using DNS Update. It would thus generate
very high load on the network continuously, even when there were no
clients with any interest in that data.
Hence, having a model where the query comes to the Discovery Proxy is
much more efficient than a model where the Discovery Proxy pushes the
answers out to some other remote DNS server.
A client seeking to discover services and other information achieves
this by sending traditional DNS queries to the Discovery Proxy, or by
sending DNS Push Notification subscription requests [PUSH].
Cheshire Expires March 17, 2018 [Page 5]
Internet-Draft Multicast Service Discovery Proxy September 2017
2. Operational Analogy
A Discovery Proxy does not operate as a multicast relay, or multicast
forwarder. There is no danger of multicast forwarding loops that
result in traffic storms, because no multicast packets are forwarded.
A Discovery Proxy operates as a *proxy* for a remote client,
performing queries on its behalf and reporting the results back.
A reasonable analogy would be making a telephone call to a colleague
at your workplace and saying, "I'm out of the office right now.
Would you mind bringing up a printer browser window and telling me
the names of the printers you see?" That entails no risk of a
forwarding loop causing a traffic storm, because no multicast packets
are sent over the telephone call.
A similar analogy, instead of enlisting another human being to
initiate the service discovery operation on your behalf, would be to
log into your own desktop work computer using screen sharing, and
then run the printer browser yourself to see the list of printers.
Or log in using ssh and type "dns-sd -B _ipp._tcp" and observe the
list of discovered printer names. In neither case is there any risk
of a forwarding loop causing a traffic storm, because no multicast
packets are being sent over the screen sharing or ssh connection.
The Discovery Proxy provides another way of performing remote
queries, just using a different protocol instead of screen sharing or
ssh.
When the Discovery Proxy software performs Multicast DNS operations,
the exact same Multicast DNS caching mechanisms are applied as when
any other client software on that Discovery Proxy device performs
Multicast DNS operations, whether that be running a printer browser
client locally, or a remote user running the printer browser client
via a screen sharing connection, or a remote user logged in via ssh
running a command-line tool like "dns-sd".
Cheshire Expires March 17, 2018 [Page 6]
Internet-Draft Multicast Service Discovery Proxy September 2017
3. Conventions and Terminology Used in this Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
"Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].
The Discovery Proxy builds on Multicast DNS, which works between
hosts on the same link. A set of hosts is considered to be "on the
same link" if:
o when any host A from that set sends a packet to any other host B
in that set, using unicast, multicast, or broadcast, the entire
link-layer packet payload arrives unmodified, and
o a broadcast sent over that link by any host from that set of hosts
can be received by every other host in that set
The link-layer *header* may be modified, such as in Token Ring Source
Routing [IEEE-5], but not the link-layer *payload*. In particular,
if any device forwarding a packet modifies any part of the IP header
or IP payload then the packet is no longer considered to be on the
same link. This means that the packet may pass through devices such
as repeaters, bridges, hubs or switches and still be considered to be
on the same link for the purpose of this document, but not through a
device such as an IP router that decrements the IP TTL or otherwise
modifies the IP header.
4. Compatibility Considerations
No changes to existing devices are required to work with a Discovery
Proxy.
Existing devices that advertise services using Multicast DNS work
with Discovery Proxy.
Existing clients that support DNS-Based Service Discovery over
Unicast DNS work with Discovery Proxy. Service Discovery over
Unicast DNS was introduced in Mac OS X 10.4 in April 2005, as is
included in Apple products introduced since then, including iPhone
and iPad, as well as products from other vendors, such as Microsoft
Windows 10.
Cheshire Expires March 17, 2018 [Page 7]
Internet-Draft Multicast Service Discovery Proxy September 2017
5. Discovery Proxy Operation
In a typical configuration, a Discovery Proxy is configured to be
authoritative [RFC1034] [RFC1035] for four DNS subdomains, and
authority for these subdomains is delegated to it via NS records:
A DNS subdomain for service discovery records.
This subdomain name may contain rich text, including spaces and
other punctuation. This is because this subdomain name is used
only in graphical user interfaces, where rich text is appropriate.
A DNS subdomain for host name records.
This subdomain name SHOULD be limited to letters, digits and
hyphens, to facilitate convenient use of host names in command-
line interfaces.
A DNS subdomain for IPv6 Reverse Mapping records.
This subdomain name will be a name that ends in "ip6.arpa."
A DNS subdomain for IPv4 Reverse Mapping records.
This subdomain name will be a name that ends in "in-addr.arpa."
In an enterprise network the naming and delegation of these
subdomains is typically performed by conscious action of the network
administrator. In a home network naming and delegation would
typically be performed using some automatic configuration mechanism
such as HNCP [RFC7788].
These three varieties of delegated subdomains (service discovery,
host names, and reverse mapping) are described below in sections
Section 5.1, Section 5.3 and Section 5.4.
How a client discovers where to issue its service discovery queries
is described below in section Section 5.2.
Cheshire Expires March 17, 2018 [Page 8]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.1. Delegated Subdomain for Service Discovery Records
In its simplest form, each link in an organization is assigned a
unique Unicast DNS domain name, such as "Building 1.example.com" or
"2nd Floor.Building 3.example.com". Grouping multiple links under a
single Unicast DNS domain name is to be specified in a future
companion document, but for the purposes of this document, assume
that each link has its own unique Unicast DNS domain name. In a
graphical user interface these names are not displayed as strings
with dots as shown above, but something more akin to a typical file
browser graphical user interface (which is harder to illustrate in a
text-only document) showing folders, subfolders and files in a file
system.
+---------------+--------------+-------------+-------------------+
| *example.com* | Building 1 | 1st Floor | Alice's printer |
| | Building 2 | *2nd Floor* | Bob's printer |
| | *Building 3* | 3rd Floor | Charlie's printer |
| | Building 4 | 4th Floor | |
| | Building 5 | | |
| | Building 6 | | |
+---------------+--------------+-------------+-------------------+
Figure 1: Illustrative GUI
Each named link in an organization has one or more Discovery Proxies
which serve it. This Discovery Proxy function for each link could be
performed by a device like a router or switch that is physically
attached to that link. In the parent domain, NS records are used to
delegate ownership of each defined link name
(e.g., "Building 1.example.com") to the one or more Discovery Proxies
that serve the named link. In other words, the Discovery Proxies are
the authoritative name servers for that subdomain.
With appropriate VLAN configuration [IEEE-1Q] a single Discovery
Proxy device could have a logical presence on many links, and serve
as the Discovery Proxy for all those links. In such a configuration
the Discovery Proxy device would have a single physical Ethernet
[IEEE-3] port, configured as a VLAN trunk port, which would appear to
software on that device as multiple virtual Ethernet interfaces, one
connected to each of the VLAN links.
Cheshire Expires March 17, 2018 [Page 9]
Internet-Draft Multicast Service Discovery Proxy September 2017
When a DNS-SD client issues a Unicast DNS query to discover services
in a particular Unicast DNS subdomain
(e.g., "_printer._tcp.Building 1.example.com. PTR ?") the normal DNS
delegation mechanism results in that query being forwarded until it
reaches the delegated authoritative name server for that subdomain,
namely the Discovery Proxy on the link in question. Like a
conventional Unicast DNS server, a Discovery Proxy implements the
usual Unicast DNS protocol [RFC1034] [RFC1035] over UDP and TCP.
However, unlike a conventional Unicast DNS server that generates
answers from the data in its manually-configured zone file, a
Discovery Proxy generates answers using Multicast DNS. A Discovery
Proxy does this by consulting its Multicast DNS cache and/or issuing
Multicast DNS queries for the corresponding Multicast DNS name, type
and class, (e.g., in this case, "_printer._tcp.local. PTR ?"). Then,
from the received Multicast DNS data, the Discovery Proxy synthesizes
the appropriate Unicast DNS response. How long the Discovery Proxy
should wait to accumulate Multicast DNS responses is described below
in section Section 5.6.
Naturally, the existing Multicast DNS caching mechanism is used to
minimize unnecessary Multicast DNS queries on the wire. The
Discovery Proxy is acting as a client of the underlying Multicast DNS
subsystem, and benefits from the same caching and efficiency measures
as any other client using that subsystem.
Cheshire Expires March 17, 2018 [Page 10]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.2. Domain Enumeration
A DNS-SD client performs Domain Enumeration [RFC6763] via certain PTR
queries, using both unicast and multicast. If it receives a Domain
Name configuration via DHCP option 15 [RFC2132], then it issues
unicast queries using this domain. It issues unicast queries using
names derived from its IPv6 prefix(es) and IPv4 subnet address(es).
These are described below in Section 5.2.1. It also issues multicast
Domain Enumeration queries in the "local" domain [RFC6762]. These
are described below in Section 5.2.2. The results of all the Domain
Enumeration queries are combined for Service Discovery purposes.
5.2.1. Domain Enumeration via Unicast Queries
The administrator creates Domain Enumeration PTR records [RFC6763] to
inform clients of available service discovery domains, e.g.,:
b._dns-sd._udp.example.com. PTR Building 1.example.com.
PTR Building 2.example.com.
PTR Building 3.example.com.
PTR Building 4.example.com.
db._dns-sd._udp.example.com. PTR Building 1.example.com.
lb._dns-sd._udp.example.com. PTR Building 1.example.com.
The "b" ("browse") records tell the client device the list of
browsing domains to display for the user to select from and the "db"
("default browse") record tells the client device which domain in
that list should be selected by default. The "lb" ("legacy browse")
record tells the client device which domain to automatically browse
on behalf of applications that don't implement UI for multi-domain
browsing (which is most of them, as of 2017). The "lb" domain is
often the same as the "db" domain, or sometimes the "db" domain plus
one or more others that should be included in the list of automatic
browsing domains for legacy clients.
Cheshire Expires March 17, 2018 [Page 11]
Internet-Draft Multicast Service Discovery Proxy September 2017
DNS responses are limited to a maximum size of 65535 bytes. This
limits the maximum number of domains that can be returned for a
Domain Enumeration query, as follows:
A DNS response header is 12 bytes. That's typically followed by a
single qname (up to 256 bytes) plus qtype (2 bytes) and qclass
(2 bytes), leaving 65275 for the Answer Section.
An Answer Section Resource Record consists of:
o Owner name, encoded as a two-byte compression pointer
o Two-byte rrtype (type PTR)
o Two-byte rrclass (class IN)
o Four-byte ttl
o Two-byte rdlength
o rdata (domain name, up to 256 bytes)
This means that each Resource Record in the Answer Section can take
up to 268 bytes total, which means that the Answer Section can
contain, in the worst case, no more than 243 domains.
In a more typical scenario, where the domain names are not all
maximum-sized names, and there is some similarity between names so
that reasonable name compression is possible, each Answer
Section Resource Record may average 140 bytes, which means that the
Answer Section can contain up to 466 domains.
It is anticipated that this should be sufficient for even a large
corporate network or university campus.
Cheshire Expires March 17, 2018 [Page 12]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.2.2. Domain Enumeration via Multicast Queries
Since a Discovery Proxy exists on many, if not all, the links in an
enterprise, it offers an additional way to provide Domain Enumeration
data for clients.
A Discovery Proxy can be configured to generate Multicast DNS
responses for the following Multicast DNS Domain Enumeration queries
issued by clients:
b._dns-sd._udp.local. PTR ?
db._dns-sd._udp.local. PTR ?
lb._dns-sd._udp.local. PTR ?
This provides the ability for Discovery Proxies to indicate
recommended browsing domains to DNS-SD clients on a per-link
granularity. In some enterprises it may be preferable to provide
this per-link configuration data in the form of Discovery Proxy
configuration, rather than populating the Unicast DNS servers with
the same data (in the "ip6.arpa" or "in-addr.arpa" domains).
Regardless of how the network operator chooses to provide this
configuration data, clients will perform Domain Enumeration via both
unicast and multicast queries, and then combine the results of these
queries.
Cheshire Expires March 17, 2018 [Page 13]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.3. Delegated Subdomain for LDH Host Names
DNS-SD service instance names and domains are allowed to contain
arbitrary Net-Unicode text [RFC5198], encoded as precomposed UTF-8
[RFC3629].
Users typically interact with service discovery software by viewing a
list of discovered service instance names on a display, and selecting
one of them by pointing, touching, or clicking. Similarly, in
software that provides a multi-domain DNS-SD user interface, users
view a list of offered domains on the display and select one of them
by pointing, touching, or clicking. To use a service, users don't
have to remember domain or instance names, or type them; users just
have to be able to recognize what they see on the display and touch
or click on the thing they want.
In contrast, host names are often remembered and typed. Also, host
names have historically been used in command-line interfaces where
spaces can be inconvenient. For this reason, host names have
traditionally been restricted to letters, digits and hyphens (LDH),
with no spaces or other punctuation.
While we still want to allow rich text for DNS-SD service instance
names and domains, it is advisable, for maximum compatibility with
existing usage, to restrict host names to the traditional letter-
digit-hyphen rules. This means that while a service name
"My Printer._ipp._tcp.Building 1.example.com" is acceptable and
desirable (it is displayed in a graphical user interface as an
instance called "My Printer" in the domain "Building 1" at
"example.com"), a host name "My-Printer.Building 1.example.com" is
less desirable (because of the space in "Building 1").
To accomodate this difference in allowable characters, a Discovery
Proxy SHOULD support having two separate subdomains delegated to it
for each link it serves, one whose name is allowed to contain
arbitrary Net-Unicode text [RFC5198], and a second more constrained
subdomain whose name is restricted to contain only letters, digits,
and hyphens, to be used for host name records (names of 'A' and
'AAAA' address records).
Cheshire Expires March 17, 2018 [Page 14]
Internet-Draft Multicast Service Discovery Proxy September 2017
For example, a Discovery Proxy could have the two subdomains
"Building 1.example.com" and "bldg1.example.com" delegated to it.
The Discovery Proxy would then translate these two Multicast DNS
records:
My Printer._ipp._tcp.local. SRV 0 0 631 prnt.local.
prnt.local. A 203.0.113.2
into Unicast DNS records as follows:
My Printer._ipp._tcp.Building 1.example.com.
SRV 0 0 631 prnt.bldg1.example.com.
prnt.bldg1.example.com. A 203.0.113.2
Note that the SRV record name is translated using the rich-text
domain name ("Building 1.example.com") and the address record name is
translated using the LDH domain ("bldg1.example.com").
A Discovery Proxy MAY support only a single rich text Net-Unicode
domain, and use that domain for all records, including 'A' and 'AAAA'
address records, but implementers choosing this option should be
aware that this choice may produce host names that are awkward to use
in command-line environments. Whether this is an issue depends on
whether users in the target environment are expected to be using
command-line interfaces.
A Discovery Proxy MUST NOT be restricted to support only a letter-
digit-hyphen subdomain, because that results in an unnecessarily poor
user experience.
Cheshire Expires March 17, 2018 [Page 15]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.4. Delegated Subdomain for Reverse Mapping
A Discovery Proxy can facilitate easier management of reverse mapping
domains, particularly for IPv6 addresses where manual management may
be more onerous than it is for IPv4 addresses.
To achieve this, in the parent domain, NS records are used to
delegate ownership of the appropriate reverse mapping domain to the
Discovery Proxy. In other words, the Discovery Proxy becomes the
authoritative name server for the reverse mapping domain. For fault
tolerance reasons there may be more than one Discovery Proxy serving
a given link.
For example, if a given link is using the
IPv6 prefix 2001:0DB8:1234:5678/64,
then the domain "8.7.6.5.4.3.2.1.8.b.d.0.1.0.0.2.ip6.arpa"
is delegated to the Discovery Proxy for that link.
If a given link is using the IPv4 subnet 203.0.113/24,
then the domain "113.0.203.in-addr.arpa"
is delegated to the Discovery Proxy for that link.
When a reverse mapping query arrives at the Discovery Proxy, it
issues the identical query on its local link as a Multicast DNS
query. The mechanism to force an apparently unicast name to be
resolved using link-local Multicast DNS varies depending on the API
set being used. For example, in the "/usr/include/dns_sd.h" APIs
(available on macOS, iOS, Bonjour for Windows, Linux and Android),
using kDNSServiceFlagsForceMulticast indicates that the
DNSServiceQueryRecord() call should perform the query using Multicast
DNS. Other APIs sets have different ways of forcing multicast
queries. When the host owning that IPv6 or IPv4 address responds
with a name of the form "something.local", the Discovery Proxy
rewrites that to use its configured LDH host name domain instead of
"local", and returns the response to the caller.
Cheshire Expires March 17, 2018 [Page 16]
Internet-Draft Multicast Service Discovery Proxy September 2017
For example, a Discovery Proxy with the two subdomains
"113.0.203.in-addr.arpa" and "bldg1.example.com" delegated to it
would translate this Multicast DNS record:
2.113.0.203.in-addr.arpa. PTR prnt.local.
into this Unicast DNS response:
2.113.0.203.in-addr.arpa. PTR prnt.bldg1.example.com.
Subsequent queries for the prnt.bldg1.example.com address record,
falling as it does within the bldg1.example.com domain, which is
delegated to the Discovery Proxy, will arrive at the Discovery Proxy,
where they are answered by issuing Multicast DNS queries and using
the received Multicast DNS answers to synthesize Unicast DNS
responses, as described above.
Cheshire Expires March 17, 2018 [Page 17]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.5. Data Translation
Generating the appropriate Multicast DNS queries involves,
at the very least, translating from the configured DNS domain
(e.g., "Building 1.example.com") on the Unicast DNS side to "local"
on the Multicast DNS side.
Generating the appropriate Unicast DNS responses involves translating
back from "local" to the appropriate configured DNS Unicast domain.
Other beneficial translation and filtering operations are described
below.
5.5.1. DNS TTL limiting
For efficiency, Multicast DNS typically uses moderately high DNS TTL
values. For example, the typical TTL on DNS-SD PTR records is 75
minutes. What makes these moderately high TTLs acceptable is the
cache coherency mechanisms built in to the Multicast DNS protocol
which protect against stale data persisting for too long. When a
service shuts down gracefully, it sends goodbye packets to remove its
PTR records immediately from neighbouring caches. If a service shuts
down abruptly without sending goodbye packets, the Passive
Observation Of Failures (POOF) mechanism described in Section 10.5 of
the Multicast DNS specification [RFC6762] comes into play to purge
the cache of stale data.
A traditional Unicast DNS client on a remote link does not get to
participate in these Multicast DNS cache coherency mechanisms on the
local link. For traditional Unicast DNS queries (those received
without using Long-Lived Query [LLQ] or DNS Push Notification [PUSH])
the DNS TTLs reported in the resulting Unicast DNS response SHOULD be
capped to be no more than ten seconds.
Similarly, for negative responses, the negative caching TTL indicated
in the SOA record [RFC2308] should also be ten seconds (Section 6.1).
This value of ten seconds is chosen based on user-experience
considerations.
For negative caching, suppose a user is attempting to access a remote
device (e.g., a printer), and they are unsuccessful because that
device is powered off. Suppose they then place a telephone call and
ask for the device to be powered on. We want the device to become
available to the user within a reasonable time period. It is
reasonable to expect it to take on the order of ten seconds for a
simple device with a simple embedded operating system to power on.
Once the device is powered on and has announced its presence on the
Cheshire Expires March 17, 2018 [Page 18]
Internet-Draft Multicast Service Discovery Proxy September 2017
network via Multicast DNS, we would like it to take no more than a
further ten seconds for stale negative cache entries to expire from
Unicast DNS caches, making the device available to the user desiring
to access it.
Similar reasoning applies to capping positive TTLs at ten seconds.
In the event of a device moving location, getting a new DHCP address,
or other renumbering events, we would like the updated information to
be available to remote clients in a relatively timely fashion.
However, network administrators should be aware that many recursive
(caching) DNS servers by default are configured to impose a minimum
TTL of 30 seconds. If stale data appears to be persisting in the
network to the extent that it adversely impacts user experience,
network administrators are advised to check the configuration of
their recursive DNS servers.
For received Unicast DNS queries that use LLQ or DNS Push
Notification, the Multicast DNS record's TTL SHOULD be returned
unmodified, because the Push Notification channel exists to inform
the remote client as records come and go. For further details about
Long-Lived Queries, and its newer replacement, DNS Push
Notifications, see Section 5.6.
5.5.2. Suppressing Unusable Records
A Discovery Proxy SHOULD suppress Unicast DNS answers for records
that are not useful outside the local link. For example, DNS AAAA
and A records for IPv6 link-local addresses [RFC4862] and IPv4 link-
local addresses [RFC3927] SHOULD be suppressed. Similarly, for sites
that have multiple private address realms [RFC1918], in cases where
the Discovery Proxy can determine that the querying client is in a
different address realm, private addresses MUST NOT be communicated
to that client. IPv6 Unique Local Addresses [RFC4193] SHOULD be
suppressed in cases where the Discovery Proxy can determine that the
querying client is in a different IPv6 address realm.
By the same logic, DNS SRV records that reference target host names
that have no addresses usable by the requester should be suppressed,
and likewise, DNS PTR records that point to unusable SRV records
should be similarly be suppressed.
Cheshire Expires March 17, 2018 [Page 19]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.5.3. NSEC and NSEC3 queries
Since a Discovery Proxy only knows what names exist on the local link
by issuing queries for them, and since it would be impractical to
issue queries for every possible name just to find out which names
exist and which do not, a Discovery Proxy cannot programatically
generate the traditional NSEC and NSEC3 records which assert the
nonexistence of a large range of names.
When queried for an NSEC or NSEC3 record type, the Discovery Proxy
issues a qtype "ANY" query using Multicast DNS on the local link, and
then generates an NSEC or NSEC3 response signifying which record
types do and do not exist just the specific name queried, and no
others.
Multicast DNS NSEC records received on the local link MUST NOT be
forwarded unmodified to a unicast querier, because there are slight
differences in the NSEC record data. In particular, Multicast DNS
NSEC records do not have the NSEC bit set in the Type Bit Map,
whereas conventional Unicast DNS NSEC records do have the NSEC bit
set.
5.5.4. No Text Encoding Translation
A Discovery Proxy does no translation between text encodings.
Specifically, a Discovery Proxy does no translation between Punycode
and UTF-8, either in the owner name of DNS records, or anywhere in
the RDATA of DNS records (such as the RDATA of PTR records, SRV
records, NS records, or other record types like TXT, where it is
ambiguous whether the RDATA may contain DNS names). All bytes are
treated as-is, with no attempt at text encoding translation. A
client implementing DNS-based Service Discovery [RFC6763] will use
UTF-8 encoding for its service discovery queries, which the Discovery
Proxy passes through without any text encoding translation to the
Multicast DNS subsystem. Responses from the Multicast DNS subsystem
are similarly returned, without any text encoding translation, back
to the requesting client.
Cheshire Expires March 17, 2018 [Page 20]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.5.5. Application-Specific Data Translation
There may be cases where Application-Specific Data Translation is
appropriate.
For example, AirPrint printers tend to advertise fairly verbose
information about their capabilities in their DNS-SD TXT record. TXT
record sizes in the range 500-1000 bytes are not uncommon. This
information is a legacy from LPR printing, because LPR does not have
in-band capability negotiation, so all of this information is
conveyed using the DNS-SD TXT record instead. IPP printing does have
in-band capability negotiation, but for convenience printers tend to
include the same capability information in their IPP DNS-SD TXT
records as well. For local mDNS use this extra TXT record
information is inefficient, but not fatal. However, when a Discovery
Proxy aggregates data from multiple printers on a link, and sends it
via unicast (via UDP or TCP) this amount of unnecessary TXT record
information can result in large responses. A DNS reply over TCP
carrying information about 70 printers with an average of 700 bytes
per printer adds up to about 50 kilobytes of data. Therefore, a
Discovery Proxy that is aware of the specifics of an application-
layer protocol such as AirPrint (which uses IPP) can elide
unnecessary key/value pairs from the DNS-SD TXT record for better
network efficiency.
Also, the DNS-SD TXT record for many printers contains an "adminurl"
key something like "adminurl=http://printername.local/status.html".
For this URL to be useful outside the local link, the embedded
".local" hostname needs to be translated to an appropriate name with
larger scope. It is easy to translate ".local" names when they
appear in well-defined places, either as a record's name, or in the
rdata of record types like PTR and SRV. In the printing case, some
application-specific knowledge about the semantics of the "adminurl"
key is needed for the Discovery Proxy to know that it contains a name
that needs to be translated. This is somewhat analogous to the need
for NAT gateways to contain ALGs (Application-Specific Gateways) to
facilitate the correct translation of protocols that embed addresses
in unexpected places.
As is the case with NAT ALGs, protocol designers are advised to avoid
communicating names and addresses in nonstandard locations, because
those "hidden" names and addresses are at risk of not being
translated when necessary, resulting in operational failures. In the
printing case, the operational failure of failing to translate the
"adminurl" key correctly is that, when accessed from a different
link, printing will still work, but clicking the "Admin" UI button
will fail to open the printer's administration page. Rather than
duplicating the host name from the service's SRV record in its
Cheshire Expires March 17, 2018 [Page 21]
Internet-Draft Multicast Service Discovery Proxy September 2017
"adminurl" key, thereby having the same host name appear in two
places, a better design might have been to omit the host name from
the "adminurl" key, and instead have the client implicitly substitute
the target host name from the service's SRV record in place of a
missing host name in the "adminurl" key. That way the desired host
name only appears once, and it is in a well-defined place where
software like the Discovery Proxy is expecting to find it.
Note that this kind of Application-Specific Data Translation is
expected to be very rare. It is the exception, rather than the rule.
This is an example of a common theme in computing. It is frequently
the case that it is wise to start with a clean, layered design, with
clear boundaries. Then, in certain special cases, those layer
boundaries may be violated, where the performance and efficiency
benefits outweigh the inelegance of the layer violation.
These layer violations are optional. They are done primarily for
efficiency reasons, and generally should not be required for correct
operation. A Discovery Proxy MAY operate solely at the mDNS layer,
without any knowledge of semantics at the DNS-SD layer or above.
Cheshire Expires March 17, 2018 [Page 22]
Internet-Draft Multicast Service Discovery Proxy September 2017
5.6. Answer Aggregation
In a simple analysis, simply gathering multicast answers and
forwarding them in a unicast response seems adequate, but it raises
the question of how long the Discovery Proxy should wait to be sure
that it has received all the Multicast DNS answers it needs to form a
complete Unicast DNS response. If it waits too little time, then it
risks its Unicast DNS response being incomplete. If it waits too
long, then it creates a poor user experience at the client end. In
fact, there may be no time which is both short enough to produce a
good user experience and at the same time long enough to reliably
produce complete results.
Similarly, the Discovery Proxy -- the authoritative name server for
the subdomain in question -- needs to decide what DNS TTL to report
for these records. If the TTL is too long then the recursive
(caching) name servers issuing queries on behalf of their clients
risk caching stale data for too long. If the TTL is too short then
the amount of network traffic will be more than necessary. In fact,
there may be no TTL which is both short enough to avoid undesirable
stale data and at the same time long enough to be efficient on the
network.
Both these dilemmas are solved by use of DNS Long-Lived Queries
(DNS LLQ) [LLQ] or its newer replacement, DNS Push Notifications
[PUSH].
Clients supporting unicast DNS Service Discovery SHOULD implement DNS
Push Notifications [PUSH] for improved user experience.
Clients and Discovery Proxies MAY support both DNS LLQ and DNS Push,
and when talking to a Discovery Proxy that supports both, the client
may use either protocol, as it chooses, though it is expected that
only DNS Push will continue to be supported in the long run.
When a Discovery Proxy receives a query using DNS LLQ or DNS Push
Notification, it responds immediately using the Multicast DNS records
it already has in its cache (if any). This provides a good client
user experience by providing a near-instantaneous response.
Simultaneously, the Discovery Proxy issues a Multicast DNS query on
the local link to discover if there are any additional Multicast DNS
records it did not already know about. Should additional Multicast
DNS responses be received, these are then delivered to the client
using additional DNS LLQ or DNS Push Notification update messages.
The timeliness of such update messages is limited only by the
timeliness of the device responding to the Multicast DNS query. If
the Multicast DNS device responds quickly, then the update message is
delivered quickly. If the Multicast DNS device responds slowly, then
Cheshire Expires March 17, 2018 [Page 23]
Internet-Draft Multicast Service Discovery Proxy September 2017
the update message is delivered slowly. The benefit of using update
messages is that the Discovery Proxy can respond promptly because it
doesn't have to delay its unicast response to allow for the expected
worst-case delay for receiving all the Multicast DNS responses. Even
if a proxy were to try to provide reliability by assuming an
excessively pessimistic worst-case time (thereby giving a very poor
user experience) there would still be the risk of a slow Multicast
DNS device taking even longer than that (e.g., a device that is not
even powered on until ten seconds after the initial query is
received) resulting in incomplete responses. Using update message
solves this dilemma: even very late responses are not lost; they are
delivered in subsequent update messages.
There are two factors that determine specifically how responses are
generated:
The first factor is whether the query from the client used LLQ or DNS
Push Notification (typical with long-lived service browsing PTR
queries) or not (typical with one-shot operations like SRV or address
record queries). Note that queries using LLQ or DNS Push
Notification are received directly from the client. Queries not
using LLQ or DNS Push Notification are generally received via the
client's configured recursive (caching) name server.
The second factor is whether the Discovery Proxy already has at least
one record in its cache that positively answers the question.
o Not using LLQ or Push Notification; no answer in cache:
Issue an mDNS query, exactly as a local client would issue an mDNS
query on the local link for the desired record name, type and
class, including retransmissions, as appropriate, according to the
established mDNS retransmission schedule [RFC6762]. As soon as
any Multicast DNS response packet is received that contains one or
more positive answers to that question (with or without the Cache
Flush bit [RFC6762] set), or a negative answer (signified via a
Multicast DNS NSEC record [RFC6762]), the Discovery Proxy
generates a Unicast DNS response packet containing the
corresponding (filtered and translated) answers and sends it to
the remote client. If after six seconds no Multicast DNS answers
have been received, return a negative response to the remote
client. Six seconds is enough time to transmit three mDNS
queries, and allow some time for responses to arrive.
DNS TTLs in responses are capped to at most ten seconds.
o Not using LLQ or Push Notification; at least one answer in cache:
Cheshire Expires March 17, 2018 [Page 24]
Internet-Draft Multicast Service Discovery Proxy September 2017
Send response right away to minimise delay.
DNS TTLs in responses are capped to at most ten seconds.
No local mDNS queries are performed.
(Reasoning: Given RRSet TTL harmonisation, if the proxy has one
Multicast DNS answer in its cache, it can reasonably assume that
it has all of them.)
o Using LLQ or Push Notification; no answer in cache:
As in the case above with no answer in the cache, perform mDNS
querying for six seconds, and send a response to the remote client
as soon as any relevant mDNS response is received.
If after six seconds no relevant mDNS response has been received,
return negative response to the remote client (for LLQ; not
applicable for PUSH).
(Reasoning: We don't need to rush to send an empty answer.)
Whether or not a relevant mDNS response is received within six
seconds, the query remains active for as long as the client
maintains the LLQ or PUSH state, and if mDNS answers are received
later, LLQ or PUSH update messages are sent.
DNS TTLs in responses are returned unmodified.
o Using LLQ or Push Notification; at least one answer in cache:
As in the case above with at least one answer in cache, send
response right away to minimise delay.
The query remains active for as long as the client maintains the
LLQ or PUSH state, and if additional mDNS answers are received
later, LLQ or PUSH update messages are sent.
(Reasoning: We want UI that is displayed very rapidly, yet
continues to remain accurate even as the network environment
changes.)
DNS TTLs in responses are returned unmodified.
Note that the "negative responses" referred to above are "no error no
answer" negative responses, not NXDOMAIN. This is because the
Discovery Proxy cannot know all the Multicast DNS domain names that
may exist on a link at any given time, so any name with no answers
may have child names that do exist, making it an "empty nonterminal"
name.
Cheshire Expires March 17, 2018 [Page 25]
Internet-Draft Multicast Service Discovery Proxy September 2017
6. Administrative DNS Records
6.1. DNS SOA (Start of Authority) Record
The MNAME field SHOULD contain the host name of the Discovery Proxy
device (i.e., the same domain name as the rdata of the NS record
delegating the relevant zone(s) to this Discovery Proxy device).
The RNAME field SHOULD contain the mailbox of the person responsible
for administering this Discovery Proxy device.
The SERIAL field MUST be zero.
Zone transfers are undefined for Discovery Proxy zones, and
consequently the REFRESH, RETRY and EXPIRE fields have no useful
meaning for Discovery Proxy zones. These fields SHOULD contain
reasonable default values. The RECOMMENDED values are: REFRESH 7200,
RETRY 3600, EXPIRE 86400.
The MINIMUM field (used to control the lifetime of negative cache
entries) SHOULD contain the value 10. The value of ten seconds is
chosen based on user-experience considerations (see Section 5.5.1).
In the event that there are multiple Discovery Proxy devices on a
link for fault tolerance reasons, this will result in clients
receiving inconsistent SOA records (different MNAME, and possibly
RNAME) depending on which Discovery Proxy answers their SOA query.
However, since clients generally have no reason to use the MNAME or
RNAME data, this is unlikely to cause any problems.
Cheshire Expires March 17, 2018 [Page 26]
Internet-Draft Multicast Service Discovery Proxy September 2017
6.2. DNS NS Records
In the event that there are multiple Discovery Proxy devices on a
link for fault tolerance reasons, the parent zone MUST be configured
with glue records giving the names and addresses of all the Discovery
Proxy devices on the link.
Each Discovery Proxy device MUST be configured with its own NS
record, and with the NS records of its fellow Discovery Proxy devices
on the same link, so that it can return the correct answers for NS
queries.
6.3. DNS SRV Records
In the event that a Discovery Proxy implements Long-Lived Queries
[LLQ] and/or DNS Push Notifications [PUSH] (as most SHOULD) they MUST
generate answers for the appropriate corresponding
_dns-llq._udp.<zone> and/or _dns-push-tls._tcp.<zone> SRV record
queries. These records are conceptually inserted into the namespace
of the corresponding zones. They do not exist in the ".local"
namespace of the local link.
Cheshire Expires March 17, 2018 [Page 27]
Internet-Draft Multicast Service Discovery Proxy September 2017
7. DNSSEC Considerations
7.1. On-line signing only
The Discovery Proxy acts as the authoritative name server for
designated subdomains, and if DNSSEC is to be used, the Discovery
Proxy needs to possess a copy of the signing keys, in order to
generate authoritative signed data from the local Multicast DNS
responses it receives. Off-line signing not applicable to Discovery
Proxy.
7.2. NSEC and NSEC3 Records
In DNSSEC, NSEC and NSEC3 records are used to assert the nonexistence
of certain names, also described as "authenticated denial of
existence".
Since a Discovery Proxy only knows what names exist on the local link
by issuing queries for them, and since it would be impractical to
issue queries for every possible name just to find out which names
exist and which do not, a Discovery Proxy cannot programatically
synthesize the traditional NSEC and NSEC3 records which assert the
nonexistence of a large range names. Instead, when generating a
negative response, a Discovery Proxy programatically synthesizes a
single NSEC record assert the nonexistence of just the specific name
queried, and no others. Since the Discovery Proxy has the zone
signing key, it can do this on demand. Since the NSEC record asserts
the nonexistence of only a single name, zone walking is not a
concern, so NSEC3 is not necessary.
Note that this applies only to traditional immediate DNS queries,
which may return immediate negative answers when no immediate
positive answer is available. When used with a DNS Push Notification
subscription [PUSH] there are no negative answers, merely the absence
of answers so far, which may change in the future if answers become
available.
Cheshire Expires March 17, 2018 [Page 28]
Internet-Draft Multicast Service Discovery Proxy September 2017
8. IPv6 Considerations
An IPv6-only host and an IPv4-only host behave as "ships that pass in
the night". Even if they are on the same Ethernet [IEEE-3], neither
is aware of the other's traffic. For this reason, each link may have
*two* unrelated ".local." zones, one for IPv6 and one for IPv4.
Since for practical purposes, a group of IPv6-only hosts and a group
of IPv4-only hosts on the same Ethernet act as if they were on two
entirely separate Ethernet segments, it is unsurprising that their
use of the ".local." zone should occur exactly as it would if they
really were on two entirely separate Ethernet segments.
It will be desirable to have a mechanism to 'stitch' together these
two unrelated ".local." zones so that they appear as one. Such
mechanism will need to be able to differentiate between a dual-stack
(v4/v6) host participating in both ".local." zones, and two different
hosts, one IPv6-only and the other IPv4-only, which are both trying
to use the same name(s). Such a mechanism will be specified in a
future companion document.
At present, it is RECOMMENDED that a Discovery Proxy be configured
with a single domain name for both the IPv4 and IPv6 ".local." zones
on the local link, and when a unicast query is received, it should
issue Multicast DNS queries using both IPv4 and IPv6 on the local
link, and then combine the results.
Cheshire Expires March 17, 2018 [Page 29]
Internet-Draft Multicast Service Discovery Proxy September 2017
9. Security Considerations
9.1. Authenticity
A service proves its presence on a link by its ability to answer
link-local multicast queries on that link. If greater security is
desired, then the Discovery Proxy mechanism should not be used, and
something with stronger security should be used instead, such as
authenticated secure DNS Update [RFC2136] [RFC3007].
9.2. Privacy
The Domain Name System is, generally speaking, a global public
database. Records that exist in the Domain Name System name
hierarchy can be queried by name from, in principle, anywhere in the
world. If services on a mobile device (like a laptop computer) are
made visible via the Discovery Proxy mechanism, then when those
services become visible in a domain such as "My House.example.com"
that might indicate to (potentially hostile) observers that the
mobile device is in my house. When those services disappear from
"My House.example.com" that change could be used by observers to
infer when the mobile device (and possibly its owner) may have left
the house. The privacy of this information may be protected using
techniques like firewalls, split-view DNS, and Virtual Private
Networks (VPNs), as are customarily used today to protect the privacy
of corporate DNS information.
The Discovery Proxy could also provide sensitive records only to
authenticated users. This is a general DNS problem, not specific to
the Discovery Proxy. Work is underway in the IETF to tackle this
problem [RFC7626].
Cheshire Expires March 17, 2018 [Page 30]
Internet-Draft Multicast Service Discovery Proxy September 2017
9.3. Denial of Service
A remote attacker could use a rapid series of unique Unicast DNS
queries to induce a Discovery Proxy to generate a rapid series of
corresponding Multicast DNS queries on one or more of its local
links. Multicast traffic is generally more expensive than unicast
traffic -- especially on Wi-Fi links -- which makes this attack
particularly serious. To limit the damage that can be caused by such
attacks, a Discovery Proxy (or the underlying Multicast DNS subsystem
which it utilizes) MUST implement Multicast DNS query rate limiting
appropriate to the link technology in question. For today's
802.11b/g/n/ac Wi-Fi links (for which approximately 200 multicast
packets per second is sufficient to consume approximately 100% of the
wireless spectrum) a limit of 20 Multicast DNS query packets per
second is RECOMMENDED. On other link technologies like Gigabit
Ethernet higher limits may be appropriate. A consequence of this
rate limiting is that a rogue remote client could issue an excessive
number of queries, resuling in denial of service to other remote
clients attempting to use that Discovery Proxy. However, this is
preferable to a rogue remote client being able to inflict even
greater harm on the local network, which could impact the correct
operation of all local clients on that network.
Cheshire Expires March 17, 2018 [Page 31]
Internet-Draft Multicast Service Discovery Proxy September 2017
10. Intelectual Property Rights
Apple has submitted an IPR disclosure concerning the technique
proposed in this document. Details are available on the IETF IPR
disclosure page [IPR2119].
11. IANA Considerations
This document has no IANA Considerations.
12. Acknowledgments
Thanks to Markus Stenberg for helping develop the policy regarding
the four styles of unicast response according to what data is
immediately available in the cache. Thanks to Anders Brandt, Tim
Chown, Ralph Droms, Ray Hunter, Ted Lemon, Tom Pusateri, Markus
Stenberg, Dave Thaler, and Andrew Yourtchenko for their comments.
Cheshire Expires March 17, 2018 [Page 32]
Internet-Draft Multicast Service Discovery Proxy September 2017
13. References
13.1. Normative References
[RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
<http://www.rfc-editor.org/info/rfc1034>.
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
November 1987, <http://www.rfc-editor.org/info/rfc1035>.
[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
and E. Lear, "Address Allocation for Private Internets",
BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
<http://www.rfc-editor.org/info/rfc1918>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.
[RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
<http://www.rfc-editor.org/info/rfc2308>.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
2003, <http://www.rfc-editor.org/info/rfc3629>.
[RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
Configuration of IPv4 Link-Local Addresses", RFC 3927,
DOI 10.17487/RFC3927, May 2005,
<http://www.rfc-editor.org/info/rfc3927>.
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", RFC 4862,
DOI 10.17487/RFC4862, September 2007,
<http://www.rfc-editor.org/info/rfc4862>.
[RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
<http://www.rfc-editor.org/info/rfc5198>.
[RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
December 2012.
Cheshire Expires March 17, 2018 [Page 33]
Internet-Draft Multicast Service Discovery Proxy September 2017
[RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
Discovery", RFC 6763, December 2012.
[PUSH] Pusateri, T. and S. Cheshire, "DNS Push Notifications",
draft-ietf-dnssd-push-12 (work in progress), July 2017.
13.2. Informative References
[HOME] Pfister, P. and T. Lemon, "Special Use Domain
'.home.arpa'", draft-ietf-homenet-dot-07 (work in
progress), June 2017.
[IPR2119] "Apple Inc.'s Statement about IPR related to Hybrid
Unicast/Multicast DNS-Based Service Discovery",
<https://datatracker.ietf.org/ipr/2119/>.
[ohp] "Discovery Proxy (Hybrid Proxy) implementation for
OpenWrt", <https://github.com/sbyx/ohybridproxy/>.
[LLQ] Sekar, K., "DNS Long-Lived Queries", draft-sekar-dns-
llq-01 (work in progress), August 2006.
[RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
<http://www.rfc-editor.org/info/rfc2132>.
[RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
"Dynamic Updates in the Domain Name System (DNS UPDATE)",
RFC 2136, DOI 10.17487/RFC2136, April 1997,
<http://www.rfc-editor.org/info/rfc2136>.
[RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
<http://www.rfc-editor.org/info/rfc3007>.
[RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
<http://www.rfc-editor.org/info/rfc4193>.
[RFC7558] Lynn, K., Cheshire, S., Blanchet, M., and D. Migault,
"Requirements for Scalable DNS-Based Service Discovery
(DNS-SD) / Multicast DNS (mDNS) Extensions", RFC 7558,
DOI 10.17487/RFC7558, July 2015,
<http://www.rfc-editor.org/info/rfc7558>.
[RFC7626] Bortzmeyer, S., "DNS Privacy Considerations", RFC 7626,
DOI 10.17487/RFC7626, August 2015,
<http://www.rfc-editor.org/info/rfc7626>.
Cheshire Expires March 17, 2018 [Page 34]
Internet-Draft Multicast Service Discovery Proxy September 2017
[RFC7788] Stenberg, M., Barth, S., and P. Pfister, "Home Networking
Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
2016, <http://www.rfc-editor.org/info/rfc7788>.
[RFC6760] Cheshire, S. and M. Krochmal, "Requirements for a Protocol
to Replace the AppleTalk Name Binding Protocol (NBP)",
RFC 6760, December 2012.
[ZC] Cheshire, S. and D. Steinberg, "Zero Configuration
Networking: The Definitive Guide", O'Reilly Media, Inc. ,
ISBN 0-596-10100-7, December 2005.
[IEEE-1Q] "IEEE Standard for Local and metropolitan area networks --
Bridges and Bridged Networks", IEEE Std 802.1Q-2014,
November 2014, <http://standards.ieee.org/getieee802/
download/802-1Q-2014.pdf>.
[IEEE-3] "Information technology - Telecommunications and
information exchange between systems - Local and
metropolitan area networks - Specific requirements - Part
3: Carrier Sense Multiple Access with Collision Detection
(CMSA/CD) Access Method and Physical Layer
Specifications", IEEE Std 802.3-2008, December 2008,
<http://standards.ieee.org/getieee802/802.3.html>.
[IEEE-5] Institute of Electrical and Electronics Engineers,
"Information technology - Telecommunications and
information exchange between systems - Local and
metropolitan area networks - Specific requirements - Part
5: Token ring access method and physical layer
specification", IEEE Std 802.5-1998, 1995.
[IEEE-11] "Information technology - Telecommunications and
information exchange between systems - Local and
metropolitan area networks - Specific requirements - Part
11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications", IEEE Std 802.11-2007, June
2007, <http://standards.ieee.org/getieee802/802.11.html>.
Cheshire Expires March 17, 2018 [Page 35]
Internet-Draft Multicast Service Discovery Proxy September 2017
Appendix A. Implementation Status
Some aspects of the mechanism specified in this document already
exist in deployed software. Some aspects are new. This section
outlines which aspects already exist and which are new.
A.1. Already Implemented and Deployed
Domain enumeration by the client (the "b._dns-sd._udp" queries) is
already implemented and deployed.
Unicast queries to the indicated discovery domain is already
implemented and deployed.
These are implemented and deployed in Mac OS X 10.4 and later
(including all versions of Apple iOS, on all iPhone and iPads), in
Bonjour for Windows, and in Android 4.1 "Jelly Bean" (API Level 16)
and later.
Domain enumeration and unicast querying have been used for several
years at IETF meetings to make Terminal Room printers discoverable
from outside the Terminal room. When an IETF attendee presses Cmd-P
on a Mac, or selects AirPrint on an iPad or iPhone, and the Terminal
room printers appear, that is because the client is sending unicast
DNS queries to the IETF DNS servers.
A.2. Already Implemented
A minimal portable Discovery Proxy implementation has been produced
by Markus Stenberg and Steven Barth, which runs on OS X and several
Linux variants including OpenWrt [ohp]. It was demonstrated at the
Berlin IETF in July 2013.
Tom Pusateri also has an implementation that runs on any Unix/Linux.
It has a RESTful interface for management and an experimental demo
CLI and web interface.
A.3. Partially Implemented
The current APIs make multiple domains visible to client software,
but most client UI today lumps all discovered services into a single
flat list. This is largely a chicken-and-egg problem. Application
writers were naturally reluctant to spend time writing domain-aware
UI code when few customers today would benefit from it. If Discovery
Proxy deployment becomes common, then application writers will have a
reason to provide better UI. Existing applications will work with
the Discovery Proxy, but will show all services in a single flat
list. Applications with improved UI will group services by domain.
Cheshire Expires March 17, 2018 [Page 36]
Internet-Draft Multicast Service Discovery Proxy September 2017
The Long-Lived Query mechanism [LLQ] referred to in this
specification exists and is deployed, but has not been standardized
by the IETF. The IETF is considering standardizing a superior Long-
Lived Query mechanism called DNS Push Notifications [PUSH]. The
pragmatic short-term deployment approach is for vendors to produce
Discovery Proxies that implement both the deployed Long-Lived Query
mechanism [LLQ] (for today's clients) and the new DNS Push
Notifications mechanism [PUSH] as the preferred long-term direction.
The translating/filtering Discovery Proxy specified in this document.
Implementations are under development, and operational experience
with these implementations has guided updates to this document.
A.4. Not Yet Implemented
Client implementations of the new DNS Push Notifications mechanism
[PUSH] are currently underway.
A mechanism to 'stitch' together multiple ".local." zones so that
they appear as one. Such a stitching mechanism will be specified in
a future companion document. This stitching mechanism addresses the
issue that if a printer is physically moved from one link to another,
then conceptually the old service has disappeared from the DNS
namespace, and a new service with a similar name has appeared. This
stitching mechanism will allow a service to change its point of
attachment without changing the name by which it can be found.
Author's Address
Stuart Cheshire
Apple Inc.
1 Infinite Loop
Cupertino, California 95014
USA
Phone: +1 408 974 3207
Email: cheshire@apple.com
Cheshire Expires March 17, 2018 [Page 37]