Internet Engineering Task Force                                  W. Wang
Internet-Draft                             Zhejiang Gongshang University
Intended status: Informational                             E. Haleplidis
Expires: September 4, 2010                          University of Patras
                                                                K. Ogawa
                                                         NTT Corporation
                                                                  F. Jia
                                              National Digital Switching
                                                            Center(NDSC)
                                                              J. Halpern
                                                                Ericsson
                                                           March 3, 2010


                           ForCES LFB Library
                      draft-ietf-forces-lfb-lib-01

Abstract

   The forwarding and Control Element Separation (ForCES) protocol
   defines a standard communication and control mechanism through which
   a Control Element (CE) can control the behavior of a Forwarding
   Element (FE).  That control is accomplished through manipulating
   components of Logical Function Blocks (LFBs), whose structure is
   defined in a model RFC produced by the working group.In order to
   build an actual solution using this protocol, there needs to be a set
   of Logical Function Block definitions that can be instantiated by FEs
   and controlled by CEs.  This document provides a sample space of such
   definitions.  It is anticipated that additional defining documents
   will be produced over time.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.



Wang, et al.            Expires September 4, 2010               [Page 1]


Internet-Draft             ForCES LFB Library                 March 2010


   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on September 4, 2010.

Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the BSD License.
































Wang, et al.            Expires September 4, 2010               [Page 2]


Internet-Draft             ForCES LFB Library                 March 2010


Table of Contents

   1.  Terminology and Conventions  . . . . . . . . . . . . . . . . .  4
     1.1.  Requirements Language  . . . . . . . . . . . . . . . . . .  4
   2.  Definitions  . . . . . . . . . . . . . . . . . . . . . . . . .  5
   3.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  7
   4.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  8
   5.  Base Types . . . . . . . . . . . . . . . . . . . . . . . . . . 11
     5.1.  Data Types . . . . . . . . . . . . . . . . . . . . . . . . 11
     5.2.  Frame Types  . . . . . . . . . . . . . . . . . . . . . . . 13
     5.3.  MetaData Types . . . . . . . . . . . . . . . . . . . . . . 14
     5.4.  XML Definition for Base Type Library . . . . . . . . . . . 15
   6.  LFB Classes Description  . . . . . . . . . . . . . . . . . . . 39
     6.1.  Core LFBs  . . . . . . . . . . . . . . . . . . . . . . . . 39
       6.1.1.  FE Protocol LFB  . . . . . . . . . . . . . . . . . . . 39
       6.1.2.  FE Object LFB  . . . . . . . . . . . . . . . . . . . . 39
     6.2.  Port LFBs  . . . . . . . . . . . . . . . . . . . . . . . . 40
       6.2.1.  Generic Connectivity LFB . . . . . . . . . . . . . . . 40
       6.2.2.  Ethernet Port LFBs . . . . . . . . . . . . . . . . . . 41
       6.2.3.  POS Port LFBs  . . . . . . . . . . . . . . . . . . . . 41
       6.2.4.  ATM Port LFBs  . . . . . . . . . . . . . . . . . . . . 41
     6.3.  Address Resolution LFBs  . . . . . . . . . . . . . . . . . 41
     6.4.  ICMP LFBs  . . . . . . . . . . . . . . . . . . . . . . . . 42
     6.5.  IP Packet Validation LFBs  . . . . . . . . . . . . . . . . 42
     6.6.  Classifier LFBs  . . . . . . . . . . . . . . . . . . . . . 42
     6.7.  Forwarding LFBs  . . . . . . . . . . . . . . . . . . . . . 43
       6.7.1.  Unicast Longest Prefix Match LFBs  . . . . . . . . . . 43
       6.7.2.  Nexthop Applicator LFBs  . . . . . . . . . . . . . . . 43
     6.8.  QoS Control LFBs . . . . . . . . . . . . . . . . . . . . . 43
       6.8.1.  Scheduler LFBs . . . . . . . . . . . . . . . . . . . . 44
       6.8.2.  Queue LFBs . . . . . . . . . . . . . . . . . . . . . . 45
     6.9.  Miscellaneous Packet Manipulation LFBs . . . . . . . . . . 45
     6.10. Redirect LFB . . . . . . . . . . . . . . . . . . . . . . . 45
   7.  XML Definition for Base LFB Library  . . . . . . . . . . . . . 46
   8.  Base LFB Library Use Case for Typical Router Functions . . . . 75
     8.1.  IP Forwardings . . . . . . . . . . . . . . . . . . . . . . 75
     8.2.  Address Resolution . . . . . . . . . . . . . . . . . . . . 76
     8.3.  ICMP . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
     8.4.  Running Routing Protocol . . . . . . . . . . . . . . . . . 76
     8.5.  Network Management . . . . . . . . . . . . . . . . . . . . 76
   9.  Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 77
   10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 78
   11. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 79
   12. Security Considerations  . . . . . . . . . . . . . . . . . . . 80
   13. References . . . . . . . . . . . . . . . . . . . . . . . . . . 81
     13.1. Normative References . . . . . . . . . . . . . . . . . . . 81
     13.2. Informative References . . . . . . . . . . . . . . . . . . 81
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 82



Wang, et al.            Expires September 4, 2010               [Page 3]


Internet-Draft             ForCES LFB Library                 March 2010


1.  Terminology and Conventions

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].












































Wang, et al.            Expires September 4, 2010               [Page 4]


Internet-Draft             ForCES LFB Library                 March 2010


2.  Definitions

   This document follows the terminology defined by the ForCES
   Requirements in [RFC3654]and by the ForCES framework in [RFC3746].
   The definitions below are repeated below for clarity.

      Control Element (CE) - A logical entity that implements the ForCES
      protocol and uses it to instruct one or more FEs on how to process
      packets.  CEs handle functionality such as the execution of
      control and signaling protocols.

      Forwarding Element (FE) - A logical entity that implements the
      ForCES protocol.  FEs use the underlying hardware to provide per-
      packet processing and handling as directed/controlled by one or
      more CEs via the ForCES protocol.

      ForCES Network Element (NE) - An entity composed of one or more
      CEs and one or more FEs.  To entities outside an NE, the NE
      represents a single point of management.  Similarly, an NE usually
      hides its internal organization from external entities.

      LFB (Logical Function Block) - The basic building block that is
      operated on by the ForCES protocol.  The LFB is a well defined,
      logically separable functional block that resides in an FE and is
      controlled by the CE via ForCES protocol.  The LFB may reside at
      the FE's datapath and process packets or may be purely an FE
      control or configuration entity that is operated on by the CE.
      Note that the LFB is a functionally accurate abstraction of the
      FE's processing capabilities, but not a hardware-accurate
      representation of the FE implementation.

      FE Topology - A representation of how the multiple FEs within a
      single NE are interconnected.  Sometimes this is called inter-FE
      topology, to be distinguished from intra-FE topology (i.e., LFB
      topology).

      LFB Class and LFB Instance - LFBs are categorized by LFB Classes.
      An LFB Instance represents an LFB Class (or Type) existence.
      There may be multiple instances of the same LFB Class (or Type) in
      an FE.  An LFB Class is represented by an LFB Class ID, and an LFB
      Instance is represented by an LFB Instance ID.  As a result, an
      LFB Class ID associated with an LFB Instance ID uniquely specifies
      an LFB existence.

      LFB Metadata - Metadata is used to communicate per-packet state
      from one LFB to another, but is not sent across the network.  The
      FE model defines how such metadata is identified, produced and
      consumed by the LFBs.  It defines the functionality but not how



Wang, et al.            Expires September 4, 2010               [Page 5]


Internet-Draft             ForCES LFB Library                 March 2010


      metadata is encoded within an implementation.

      LFB Component - Operational parameters of the LFBs that must be
      visible to the CEs are conceptualized in the FE model as the LFB
      components.  The LFB components include, for example, flags,
      single parameter arguments, complex arguments, and tables that the
      CE can read and/or write via the ForCES protocol (see below).

      LFB Topology - Representation of how the LFB instances are
      logically interconnected and placed along the datapath within one
      FE.  Sometimes it is also called intra-FE topology, to be
      distinguished from inter-FE topology.

      ForCES Protocol - While there may be multiple protocols used
      within the overall ForCES architecture, the term "ForCES protocol"
      and "protocol" refer to the Fp reference points in the ForCES
      Framework in [RFC3746].  This protocol does not apply to CE-to-CE
      communication, FE-to-FE communication, or to communication between
      FE and CE managers.  Basically, the ForCES protocol works in a
      master- slave mode in which FEs are slaves and CEs are masters.
      This document defines the specifications for this ForCES protocol.






























Wang, et al.            Expires September 4, 2010               [Page 6]


Internet-Draft             ForCES LFB Library                 March 2010


3.  Introduction

   Forwarding and Control Element Separation (ForCES) defines an
   architectural framework and associated protocols to standardize
   information exchange between the control plane and the forwarding
   plane in a ForCES Network Element (ForCES NE).  [RFC3654]has defined
   the ForCES requirements, and [RFC3746] has defined the ForCES
   framework.

   The ForCES protocol Protocol FE-protocol FE-protocol
   [I-D.ietf-forces-protocol] defines a protocol for communications
   between Control Elements (CEs) Forwarding Elements (FEs) and for
   Control Elements to manipulate resources in Forwarding Elements.
   Resources in Forwarding Elements are described by classes of Logical
   Function Blocks (LFBs).  The FE model documentFE-MODEL
   [I-D.ietf-forces-model]. specifies the structure and abstract
   semantics of LFBs, and provides XML schema for the definitions of
   LFBs.

   This document comforts to the specifications of the FE modelFE-MODEL
   [I-D.ietf-forces-model] and specifies definitions of classes of LFBs
   which can be combined to provide functions of a typical router.  It
   basically provides functions to implement IP forwarding.  More
   definitions of LFB classes with more functions may be developed in
   future time and documented by IETF, and users may also develop
   individual LFB classes for purposes of their specific functions
   according to the FE modelFE-MODEL [I-D.ietf-forces-model].
























Wang, et al.            Expires September 4, 2010               [Page 7]


Internet-Draft             ForCES LFB Library                 March 2010


4.  Overview

   The LFB classes described in this document are designed to provide
   the functions of a typical router [RFC1812] .  They are expected to
   provide functions for a typical router to:

   o  Interface to packet networks and implement the functions required
      by that network.  These functions typically include:

      *  Encapsulating and decapsulating the IP datagrams with the
         connected network framing (e.g., an Ethernet header and
         checksum),

      *  Sending and receiving IP datagrams up to the maximum size
         supported by that network, this size is the network's Maximum
         Transmission Unit or MTU,

      *  Translating the IP destination address into an appropriate
         network-level address for the connected network (e.g., an
         Ethernet hardware address), if needed, and.

      *  Responding to network flow control and error indications, if
         any.

   o  Conform to specific Internet protocols including the Internet
      Protocol (IPv4 and/or IPv6), Internet Control Message Protocol
      (ICMP), and others as necessary.

   o  Receive and forwards Internet datagrams.  Important issues in this
      process are buffer management, congestion control, and fairness.

      *  Recognizes error conditions and generates ICMP error and
         information messages as required.

      *  Drops datagrams whose time-to-live fields have reached zero.

      *  Fragments datagrams when necessary to fit into the MTU of the
         next network.

   o  Choose a next-hop destination for each IP datagram, based on the
      information in its routing database.

   o  Usually support an interior gateway protocol (IGP) to carry out
      distributed routing and reachability algorithms with the other
      routers in the same autonomous system.  In addition, some routers
      will need to support an exterior gateway protocol (EGP) to
      exchange topological information with other autonomous systems.




Wang, et al.            Expires September 4, 2010               [Page 8]


Internet-Draft             ForCES LFB Library                 March 2010


   o  Provide network management and system support facilities,
      including loading, debugging, status reporting, exception
      reporting and control.

   According to ForCES architecture, all above typical router functions
   should be implemented upon the concept of Logical Functional Blocks
   (LFBs).  It is critical to classify above functional requirements
   into various classes of LFBs and construct a typical but also
   flexible enough base LFB library for various IP forwarding
   equipments.  In the process, some principles may be applied:

   o  if a function can be designed by either one LFB or two or more
      LFBs with the same cost, it will be designed by two or more LFBs
      so as to provide more flexibility for implementers.

   o  when flexibility is not required, an LFB should take advantage of
      its as much as possible independence and leave least couples with
      other LFBs.  The couples may be from LFB attributes definitions as
      well as physical implementations.

   o  unless there is a difference in actual functionality, it should
      not represent the same thing in two different fashions.  Or else,
      it may add extra burden on implementation.

   The document intends to meet the above typical router function
   requirements by defining groups of LFB classes like Core LFBs,Port
   LFBs,etc.

   For every group of LFB classes, a set of LFBs are defined for
   individual function purposes.  Section 6(LFB Descriptions Section)
   describes individual LFBs in every group of LFBs in details.

   Based on the classes of LFBs, the typical organization of the
   processing path and their interconnections can be established by the
   CE using the ForCES protocol, so as to achieve typical router
   functions.  Taking a typical forwarding function as an example, Port
   LFBs receive packets and decapsulate the IP datagrams to form IP
   level packets.  Different port media have different manipulating
   requirements from CE, therefore various port LFBs for various media
   may have to be defined.  IP packets from port LFBs are then validated
   before being further forwarded.  A kind of valildation LFBs like IPv4
   validator and/or IPv6 valildator are applied for the purpose.  After
   validation, some packets for control purpose will be specifically
   processed, like ARP packets will be processed by an Address
   resolution LFB and ICMP packets by an ICMP LFB.  To separate the
   control packets, a metadata classifier LFB is applied in the process.
   After validation process, Forwarding LFBs can then be applied.  In
   the Forwarding LFBs, a Longest Prefix Match LFB is used to look up



Wang, et al.            Expires September 4, 2010               [Page 9]


Internet-Draft             ForCES LFB Library                 March 2010


   the destination information in a packet, and select the next hop
   index to be used for sending the packet onward.  A next hop
   applicator LFB uses the next hop index metadata to apply the proper
   headers to the IP packets, and direct them to the proper egress.

   Section 8 provides more detailed descriptions on how various typical
   router functions are implemented based on the defined base LFB
   classes.

   To define various LFB classes, a set of base type definitions with
   the data types, packet frame types, and metadata types have to be
   specified in advance.  Section 5 (Base Types Section) provide a
   description on the base types used by this LFB library.  In order to
   provide an extensive use of these base types for other LFB
   definitions, the base type definitions are provided by a specific xml
   file as a base type library which is separate from the LFB definition
   library.

   LFB classes are finally defined by XML with specifications and schema
   from the ForCES FE modelFE-MODEL [I-D.ietf-forces-model].  Section 6
   (LFB Definitions Section) provide the complete XML definitions of the
   base LFB classes library.





























Wang, et al.            Expires September 4, 2010              [Page 10]


Internet-Draft             ForCES LFB Library                 March 2010


5.  Base Types

   The FE modelFE-MODEL [I-D.ietf-forces-model] has specified the
   following data types as predefined (built-in) atomic data-types:

   char, uchar, int16, uint16, int32, uint32, int64, uint64, string[N],
   string, byte[N], boolean, octetstring[N], float16, float32, float64.

   Based on these atomic data types and with the use of type definition
   elements in the FE model XML schema, new data types, packet frame
   types, and metadata types can further be defined.

   To define a base LFB library for typical router functions, a base
   data types, frame types, and metadata types MUST be defined.  This
   section provides a description of these types and a detailed XML
   definitions of the base types.

   In order for extensive use of the base type definitions for other LFB
   definitions than this base LFB library, the base type definitions are
   provided with a separate xml library file labeled with
   "BaseTypeLibrary".  Users can refer to this library by the statement:

   <load library="BaseTypeLibrary", location="..."/>

5.1.  Data Types

   The following data types are currently defined and put in the base
   type library:

   1.   ifIndex - A Port Identifier.

   2.   IEEEMAC - IEEE MAC Address.

   3.   NetSpeedType - Network speed values.

   4.   IEEENegotiationType - IEEENegotiation types.

   5.   PortStatsType - Port statistics.

   6.   PortStatusValues - The possible values of status Used for both
        administrative and operation status.

   7.   LocalIpAddrType - Local IP address belonging to FE.

   8.   LocalIpv6AddrType - The device local IPv6 address infomation.

   9.   IPv4Addr - IPv4 address.




Wang, et al.            Expires September 4, 2010              [Page 11]


Internet-Draft             ForCES LFB Library                 March 2010


   10.  IPv6Addr - IPv6 address.

   11.  IPv4Prefix - IPv4 prefix defined by an address and a prefix
        length.

   12.  IPv4NextHopInfoType - IPv4 nexthop information,include nexthop
        ip address,output FE and interface etc.

   13.  IPv4FibEntryType - IPv4 forwarding table entry.

   14.  IPv4PrefixTableEntry - IPv4 prefix table entry.

   15.  IPv4UcastLPMStatisticsType - Statistics of IPv4UcastLPM LFB.

   16.  IPv4ValidatorStatisticsType - IPv4 validator LFB statistics
        type.

   17.  IPv6Prefix - IPv6 prefix defined by an address and a prefix
        length.

   18.  IPv6NextHopInfoType - IPv6 next hop information, include next
        hop ip address,output FE and interfac eetc.

   19.  IPv6PrefixTableEntry - IPv6 prefix table entry.

   20.  IPv6LPMClassiferStatisticsType - Statistics of IPv6 LPM
        ClassifierLFB.

   21.  IPv6ValidatorStatisticsType - IPv6 validator LFB statistics
        type.

   22.  NextHopFlagsType - Flags used to define different next hop
        behaviors.

   23.  WeightTableEntryType - Weight table for queues.

   24.  NbrState - IPv6 neighbour entry resolution state.

   25.  ArpTableEntryType - Arp Entry.

   26.  NbrTableEntryType - IPv6 neighbour table entry.

   27.  DCHostTableEntryTypev4 - Direct connected ARP table entry for
        IPv4.

   28.  DCHostTableEntryTypev6 - Direct connected ARP table entry for
        IPv6.




Wang, et al.            Expires September 4, 2010              [Page 12]


Internet-Draft             ForCES LFB Library                 March 2010


   29.  IPPacketType - The packet type code.

   30.  IPDispatchTableType - The dispatch table type.

   31.  MetaType - Metadata type definition.

   32.  MetadataClassTableType - The meta data classifying table.

   33.  LinkEncapType - Encapsulation type.

   34.  IPAddress - IP layer address.

   35.  ArpStateType - The arp entry state.

   36.  MatchTargetType - Indicator for the kind of field to be matched
        by this entry in a classifier.

   37.  MatchTargetIdentifier - Identify the specific target of a match
        condition.

   38.  MatchBitString - A bit string for use in a match condition.

   39.  MatchCondition - Structure for a single condition to be applied.

   40.  MatchConditiontType - Indicator for the kind of match condition
        to be applied.

   41.  MatchMetaDataAction - An action to set a metadata item to either
        a specific value or a field from the incoming meta data or
        packet.

   42.  NextHopIndex - An index used by the next hop table Typically
        stored in and generated as metadata by the longest-prefix-match
        LFB.

5.2.  Frame Types

   According to FE modelFE-MODEL [I-D.ietf-forces-model], frame types
   are used in LFB definitions to define the types of frames the LFB
   expects at its input port(s) and emits at its output port(s).  The
   <frameDef> element in the FE model is used to define a new frame
   type.

   The following frame types are currently defined and put in the base
   type library as base frame types for the LFB library:






Wang, et al.            Expires September 4, 2010              [Page 13]


Internet-Draft             ForCES LFB Library                 March 2010


   1.  EthernetII - An Ethernet II frame type.

   2.  Ethernet802.3 - An Ethernet 802.3 frame type.

   3.  Ethernet802.2 - An Ethernet 802.2 frame type.

   4.  Ethernet802.2SNAP - An Ethernet 802.2 with SNAP frame.

   5.  IPv4Frame - An IPv4 packet.

   6.  IPv6Frame - An IPv6 packet.

   7.  TaggedFrame - A frame of any type with associated metadata.

   8.  MetadataFrame - Frame only contains meta data.

   9.  Arbitrary - Any kind of frame except Metadata Frame.

5.3.  MetaData Types

   LFB Metadata is used to communicate per-packet state from one LFB to
   another.  The <metadataDef> element in the FE model is used to define
   a new metadata type.

   The following metadata types are currently defined and put in the
   base type library as base metadata types for the LFB library
   definitions:

   1.   NextHopID - An index into a Next Hop entry in Nexthop table.

   2.   ExceptionID - Exception Types.

   3.   IngressPort - At which interface the packet arrive.

   4.   EgressPort - The interface out which the packet will emmit.

   5.   NextHopIP - Nexthop IPv4 address.

   6.   NexthopIPv6 - Nexthop IPv6 address.

   7.   PacketLength - The length of the packet in octets.

   8.   IPPacketType - Type of the packet.

   9.   QueueID - The queue ID.

   10.  QueueOperationCmd - The type of operation on the queue,there are
        two types defined here: enqueue and dequeue.



Wang, et al.            Expires September 4, 2010              [Page 14]


Internet-Draft             ForCES LFB Library                 March 2010


   11.  SrcFEID - Source FE ID.

   12.  DstFEID - Destination FE ID.

   13.  NexthopIndex - Next hop index into the link layer address
        resolution table.

   14.  NHEncapMethod - How should the following LFBs do to encapsulate
        the packets.

   15.  ErrorId - Error Type.

5.4.  XML Definition for Base Type Library


  <?xml version="1.0" encoding="UTF-8"?>
  <LFBLibrary provides="BaseTypeLibrary"
   xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="urn:ietf:params:xml:ns:forces:lfbmodel:1.0
  SchemaFile.xsd">
  <description>
  This library provides base types definitions for LFB library.
  </description>
   <frameDefs>
      <frameDef>
        <name>EthernetII</name>
        <synopsis>an Ethernet II frame type</synopsis>
      </frameDef>
      <frameDef>
        <name>Ethernet802.3</name>
        <synopsis>An Ethernet 802.3 frame type</synopsis>
      </frameDef>
      <frameDef>
        <name>Ethernet802.2</name>
        <synopsis>An Ethernet 802.2 frame type</synopsis>
      </frameDef>
      <frameDef>
        <name>Ethernet802.2SNAP</name>
        <synopsis>An Ethernet 802.2 with SNAP frame</synopsis>
      </frameDef>
      <frameDef>
        <name>IPv4</name>
        <synopsis>An IPv4 packet</synopsis>
      </frameDef>
      <frameDef>
        <name>IPv6</name>
        <synopsis>An IPv6 packet</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 15]


Internet-Draft             ForCES LFB Library                 March 2010


      </frameDef>
      <frameDef>
        <name>MetadataFrame</name>
        <synopsis>Frame only contains meta data</synopsis>
      </frameDef>
      <frameDef>
        <name>Arbitrary</name>
        <synopsis>Any kind of frame except Metadata Frame.</synopsis>
      </frameDef>
    </frameDefs>
    <dataTypeDefs>
      <dataTypeDef>
        <name>IEEEMAC</name>
        <synopsis>IEEE mac.</synopsis>
        <typeRef>byte[6]</typeRef>
      </dataTypeDef>
      <dataTypeDef>
        <name>LANSpeedType</name>
        <synopsis>LAN speed values</synopsis>
        <atomic>
          <baseType>uint32</baseType>
          <specialValues>
            <specialValue value="0x00000001">
              <name>LAN_SPEED_10M</name>
              <synopsis>10M Ethernet</synopsis>
            </specialValue>
            <specialValue value="0x00000002">
              <name>LAN_SPEED_100M</name>
              <synopsis>100M Ethernet</synopsis>
            </specialValue>
            <specialValue value="0x00000003">
              <name>LAN_SPEED_1G</name>
              <synopsis>1000M Ethernet</synopsis>
            </specialValue>
            <specialValue value="0x00000004">
              <name>LAN_SPEED_10G</name>
              <synopsis>10G Ethernet</synopsis>
            </specialValue>
            <specialValue value="0x00000005">
              <name>LAN_SPEED_AUTO</name>
              <synopsis>LAN speed auto</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
      <dataTypeDef>
        <name>NegotiationType</name>
        <synopsis>Negotiation types</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 16]


Internet-Draft             ForCES LFB Library                 March 2010


        <atomic>
          <baseType>uint32</baseType>
          <specialValues>
            <specialValue value="0x00000001">
              <name>Auto</name>
              <synopsis>Auto negotitation.</synopsis>
            </specialValue>
            <specialValue value="0x00000002">
              <name>Half-duplex</name>
              <synopsis>port negotitation half duplex</synopsis>
            </specialValue>
            <specialValue value="0x00000003">
              <name>Full-duplex</name>
              <synopsis>port negotitation full duplex</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
      <dataTypeDef>
        <name>PortStatsType</name>
        <synopsis>port statistics</synopsis>
        <struct>
          <component componentID="1">
            <name>InUcastPkts</name>
            <synopsis>Number of unicast packets received</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="2">
            <name>InMulticastPkts</name>
            <synopsis>Number of multicast packets received</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="3">
            <name>InBroadcastPkts</name>
            <synopsis>Number of broadcast packets received</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="4">
            <name>InOctets</name>
            <synopsis>number of octets received</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="5">
            <name>OutUcastPkts</name>
            <synopsis>Number of unicast packets transmitted</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="6">



Wang, et al.            Expires September 4, 2010              [Page 17]


Internet-Draft             ForCES LFB Library                 March 2010


            <name>OutMulticastPkts</name>
            <synopsis>Number of multicast packets transmitted
            </synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="7">
            <name>OutBroadcastPkts</name>
            <synopsis>Number of broadcast packets transmitted
            </synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="8">
            <name>OutOcetes</name>
            <synopsis>Number of octets transmitted</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="9">
            <name>InErrorPkts</name>
            <synopsis>Number of input error packets</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="10">
            <name>OutErrorPkts</name>
            <synopsis>Number of output error packets</synopsis>
            <typeRef>uint64</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>PortStatusValues</name>
        <synopsis>
               The possible values of status.  Used for both
               administrative and operation status
            </synopsis>
        <atomic>
          <baseType>uchar</baseType>
          <specialValues>
            <specialValue value="0">
              <name>Disabled </name>
              <synopsis>the port is operatively disabled.</synopsis>
            </specialValue>
            <specialValue value="1">
              <name>UP</name>
              <synopsis>the port is up.</synopsis>
            </specialValue>
            <specialValue value="2">
              <name>Down</name>
              <synopsis>The port is down.</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 18]


Internet-Draft             ForCES LFB Library                 March 2010


            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPAddr</name>
        <synopsis>IPv4 address</synopsis>
        <typeRef>uint32</typeRef>
      </dataTypeDef>
      <dataTypeDef>
        <name>MacFilterTableEntryType</name>
        <synopsis>MAC filter table entry</synopsis>
        <typeRef>IEEEMAC</typeRef>
      </dataTypeDef>
      <dataTypeDef>
        <name>LocalIpAddrType</name>
        <synopsis>The device local IP address infomation</synopsis>
        <struct>
          <component componentID="1">
            <name>FEID</name>
            <synopsis>The FE on which the port ip resides</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>IfIndex</name>
            <synopsis>port index on the specified FE</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="3">
            <name>IPaddr</name>
            <synopsis>IP address of the port</synopsis>
            <typeRef>IPAddr</typeRef>
          </component>
          <component componentID="4">
            <name>netmask</name>
            <synopsis>netmask of this ip address</synopsis>
            <typeRef>IPAddr</typeRef>
          </component>
          <component componentID="5">
            <name>BcastAddr</name>
            <synopsis>The associated Broadcast address of the ip
            address </synopsis>
            <typeRef>IPAddr</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>LocalIpv6AddrType</name>



Wang, et al.            Expires September 4, 2010              [Page 19]


Internet-Draft             ForCES LFB Library                 March 2010


        <synopsis>The device local IPv6 address infomation</synopsis>
        <struct>
          <component componentID="1">
            <name>FEID</name>
            <synopsis>The FE on which the port ip resides</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>IfIndex</name>
            <synopsis>port index on the specified FE</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="3">
            <name>IPv6addr</name>
            <synopsis>IP address of the port</synopsis>
            <typeRef>IPv6Addr</typeRef>
          </component>
          <component componentID="4">
            <name>prefixlen</name>
            <synopsis>prefix length of this ip address</synopsis>
            <typeRef>uint32</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPv4Addr</name>
        <synopsis>IPv4 address</synopsis>
        <typeRef> uint32</typeRef>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPv6Addr</name>
        <synopsis>IPv6 address</synopsis>
        <typeRef>byte[16]</typeRef>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPv4Prefix</name>
        <synopsis>
             prefix defined by an address and a prefix length
             </synopsis>
        <struct>
          <component componentID="1">
            <name>address</name>
            <synopsis>Address part</synopsis>
            <typeRef>IPv4addr</typeRef>
          </component>
          <component componentID="2">
            <name>prefixlen</name>
            <synopsis>Prefix length part</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 20]


Internet-Draft             ForCES LFB Library                 March 2010


            <atomic>
              <baseType>uchar</baseType>
              <rangeRestriction>
                <allowedRange min="0" max="32"/>
              </rangeRestriction>
            </atomic>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name> IPv4NextHopInfoType </name>
        <synopsis>IPv4 nexthop information,include nexthop ip address,
        output FE and interface etc.</synopsis>
        <struct>
          <component componentID="1">
            <name>NexthopID</name>
            <synopsis>nexthop id</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>FEID</name>
            <synopsis>output FE id</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="3">
            <name>OutputPortID</name>
            <synopsis>output port index</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="4">
            <name>MTU</name>
            <synopsis>The maximum transmition unit of the nexthop
            link.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="5">
            <name> Flags </name>
            <synopsis>Associated flags of the nexthop,such as local
            delivery,multicast etc.</synopsis>
            <typeRef>NextHopFlagsType</typeRef>
          </component>
          <component componentID="6">
            <name> NexthopIPaddr </name>
            <synopsis>IP address of the nexthop</synopsis>
            <typeRef>IPv4Addr</typeRef>
          </component>
          <component componentID="7">
            <name> L2Index </name>



Wang, et al.            Expires September 4, 2010              [Page 21]


Internet-Draft             ForCES LFB Library                 March 2010


            <synopsis>index into the L2 link layer table,such as IPv4
            ARP table or IPv6 NBR table.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="8">
            <name> EncapNeeded </name>
            <synopsis>The type of encapsulation needed on the packet.
            </synopsis>
            <typeRef>EncapType</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPv4FibEntryType</name>
        <synopsis>IPv4 forwarding table entry.</synopsis>
        <struct>
          <component componentID="1">
            <name>prefix</name>
            <synopsis>IPv4 prefix.</synopsis>
            <typeRef>IPv4Prefix</typeRef>
          </component>
          <component componentID="2">
            <name>FEID</name>
            <synopsis>output FE id</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="3">
            <name>OutputPortID</name>
            <synopsis>output port index</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="4">
            <name>MTU</name>
            <synopsis>The maximum transmition unit of the nexthop link.
            </synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="5">
            <name> Flags </name>
            <synopsis>Associated flags of the nexthop,such as local
             delivery,multicast etc.</synopsis>
            <typeRef>NextHopFlagsType</typeRef>
          </component>
          <component componentID="6">
            <name> NexthopIPaddr </name>
            <synopsis>IP address of the nexthop</synopsis>
            <typeRef>IPv4Addr</typeRef>
          </component>



Wang, et al.            Expires September 4, 2010              [Page 22]


Internet-Draft             ForCES LFB Library                 March 2010


          <component componentID="7">
            <name> L2Index </name>
            <synopsis>index into the L2 link layer table,such as IPv4
             ARP table or IPv6 NBR table.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="8">
            <name> EncapNeeded </name>
            <synopsis>The type of encapsulation needed on the packet.
            </synopsis>
            <typeRef>EncapType</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPv4PrefixTableEntry</name>
        <synopsis>IPv4 prefix table entry</synopsis>
        <struct>
          <component componentID="1">
            <name> Prefix </name>
            <synopsis>IPv4 address prefix</synopsis>
            <typeRef> IPv4Prefix </typeRef>
          </component>
          <component componentID="2">
            <name> NexthopID </name>
            <synopsis>Index into the nexthop table.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name> IPv4UcastLPMStatisticsType </name>
        <synopsis>statistics of IPv4UcastLPM LFB</synopsis>
        <struct>
          <component componentID="1">
            <name> InRcvdPkts </name>
            <synopsis>The total number of input packets received from
             interfaces, including those received in error</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="2">
            <name> FwdPkts </name>
            <synopsis>IPv4 packet forwarded by this LFB</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="3">
            <name> NoRoutePkts </name>
            <synopsis>The number of IP datagrams discarded because no



Wang, et al.            Expires September 4, 2010              [Page 23]


Internet-Draft             ForCES LFB Library                 March 2010


             route could be found to transmit them to their
             destination.</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="4">
            <name>InDeliverPkts</name>
            <synopsis>The total number of input datagrams successfully
             delivered to IP user-protocols (including ICMP).
             </synopsis>
            <typeRef>uint64</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name> IPv4ValidatorStatisticsType </name>
        <synopsis>IPv4 validator LFB statistics type</synopsis>
        <struct>
          <component componentID="1">
            <name> badHeaderPkts </name>
            <synopsis>The total number of input datagrams with bad ip
            header</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="2">
            <name> badTotalLengthPkts </name>
            <synopsis>The total number of input datagrams with bab
            length</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="3">
            <name> badTTLPkts </name>
            <synopsis>The total number of input datagrams with bad TTL
            </synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="4">
            <name> badChecksum</name>
            <synopsis>The total number of input datagrams with bad
             checksum</synopsis>
            <typeRef>uint64</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPv6Prefix</name>
        <synopsis>IPv6 prefix</synopsis>
        <struct>
          <component componentID="1">



Wang, et al.            Expires September 4, 2010              [Page 24]


Internet-Draft             ForCES LFB Library                 March 2010


            <name>IPv6addr</name>
            <synopsis>address part of the prefix</synopsis>
            <typeRef>IPv6Addr</typeRef>
          </component>
          <component componentID="2">
            <name>prefixlen</name>
            <synopsis>length of the prefix</synopsis>
            <typeRef>uint32</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name> IPv6NextHopInfoType </name>
        <synopsis>IPv4 nexthop information,include nexthop ip address,
        output FE and interface etc.</synopsis>
        <struct>
          <component componentID="1">
            <name>NexthopID</name>
            <synopsis>nexthop id</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>FEID</name>
            <synopsis>output FE id</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="3">
            <name>OutputPortID</name>
            <synopsis>output port index</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="4">
            <name>MTU</name>
            <synopsis>The maximum transmition unit of the nexthop link.
            </synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="5">
            <name> Flags </name>
            <synopsis>Associated flags of the nexthop,such as local
             delivery,multicast etc.</synopsis>
            <typeRef>NextHopFlagsType</typeRef>
          </component>
          <component componentID="6">
            <name> NexthopIPv6addr </name>
            <synopsis>IP address of the nexthop</synopsis>
            <typeRef>IPv6Addr</typeRef>
          </component>



Wang, et al.            Expires September 4, 2010              [Page 25]


Internet-Draft             ForCES LFB Library                 March 2010


          <component componentID="7">
            <name> L2Index </name>
            <synopsis>index into the L2 table</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="8">
            <name> EncapNeeded </name>
            <synopsis>The type of encapsulation needed on the packet.
            </synopsis>
            <typeRef>EncapType</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPv6PrefixTableEntry</name>
        <synopsis>IPv6 prefix table entry</synopsis>
        <struct>
          <component componentID="1">
            <name> Prefix </name>
            <synopsis>IPv6 address prefix</synopsis>
            <typeRef> IPv6Prefix </typeRef>
          </component>
          <component componentID="2">
            <name> NexthopID </name>
            <synopsis>index to the nexthop table.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name> IPv6LPMClassiferStatisticsType </name>
        <synopsis>statistics of IPv6LPMClassifier LFB</synopsis>
        <struct>
          <component componentID="1">
            <name> InRcvdPkts </name>
            <synopsis>The total number of input packets received
            from interfaces,including those received in error
            </synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="2">
            <name> FwdPkts </name>
            <synopsis>IPv4 packet forwarded by this LFB</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="3">
            <name> NoRoutePkts </name>
            <synopsis>The number of IP datagrams discarded because no



Wang, et al.            Expires September 4, 2010              [Page 26]


Internet-Draft             ForCES LFB Library                 March 2010


             route could be found to transmit them to their destination.
              </synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="4">
            <name>InDeliverPkts</name>
            <synopsis>The total number of input datagrams successfully
             delivered to IP user-protocols (including ICMP).
             </synopsis>
            <typeRef>uint64</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name> IPv6ValidatorStatisticsType </name>
        <synopsis>IPv6 validator LFB statistics type</synopsis>
        <struct>
          <component componentID="1">
            <name> badHeaderPkts </name>
            <synopsis>The total number of input datagrams with bad ip
             header</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="2">
            <name> badTotalLengthPkts </name>
            <synopsis>The total number of input datagrams with bab
             length</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="3">
            <name> badTTLPkts </name>
            <synopsis>The total number of input datagrams with bad
             TTL</synopsis>
            <typeRef>uint64</typeRef>
          </component>
          <component componentID="4">
            <name> badChecksum</name>
            <synopsis>The total number of input datagrams with bad
             checksum</synopsis>
            <typeRef>uint64</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name> NextHopFlagsType </name>
        <synopsis>Flags used to define different nexthop behaviors
        </synopsis>
        <atomic>



Wang, et al.            Expires September 4, 2010              [Page 27]


Internet-Draft             ForCES LFB Library                 March 2010


          <baseType>uint32</baseType>
          <specialValues>
            <specialValue value="0x00000001">
              <name>local</name>
              <synopsis>Packets match the nexthop entry with this flag
               are delivered
               to the higher level protocols.</synopsis>
            </specialValue>
            <specialValue value="0x00000002">
              <name>drop</name>
              <synopsis>Packets match the nexthop entry with this flag
               are to be
              dropped.</synopsis>
            </specialValue>
            <specialValue value="0x00000004">
              <name>broadcast</name>
              <synopsis>The route associated with this nexthop is a
               broadcast.</synopsis>
            </specialValue>
            <specialValue value="0x00000008">
              <name>multicast</name>
              <synopsis>The route associated with this nexthop is
               multicast.</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
      <dataTypeDef>
        <name>WeightTableEntryType</name>
        <synopsis>Weight table for queues.</synopsis>
        <struct>
          <component componentID="1">
            <name>QueueID</name>
            <synopsis>queue id</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>weight</name>
            <synopsis>weight of the queue.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>NbrState</name>
        <synopsis>IPv6 neighbour entry resolution state.</synopsis>
        <atomic>
          <baseType>uchar</baseType>



Wang, et al.            Expires September 4, 2010              [Page 28]


Internet-Draft             ForCES LFB Library                 March 2010


          <specialValues>
            <specialValue value="0x01">
              <name>INCOMPLETE </name>
              <synopsis>Address resolution is being performed on the
               entry.Specifically, a Neighbor Solicitation has been
               sent to the solicited-node multicast address of the
               target,but the corresponding Neighbor Advertisement
               has not yet been received.</synopsis>
            </specialValue>
            <specialValue value="0x02">
              <name>REACHABLE</name>
              <synopsis>Positive confirmation was received within the
              last ReachableTime milliseconds that the forward path
              to the neighbor was functioning properly. While
              REACHABLE,no special action takes place as packets are
              sent.</synopsis>
            </specialValue>
            <specialValue value="0x03">
              <name>STALE</name>
              <synopsis>More than ReachableTime milliseconds have
              elapsed since the last positive confirmation was
              received that the forward path was functioning properly.
              While stale, no action takes place until a packet is
              sent.The STALE state is entered upon receiving an
              unsolicited Neighbor Discovery message that updates the
              cached link-layer address.  Receipt of such a message
              does not confirm reachability, and entering the STALE
              state insures reachability is verified quickly if the
              entry is actually being used. However,reachability is
              not actually verified until the entry is actually used.
              </synopsis>
            </specialValue>
            <specialValue value="0x04">
              <name>DELAY</name>
              <synopsis>More than ReachableTime milliseconds have
               elapsed since the last positive confirmation was
               received that the forward path was functioning
               properly,and a packet was sent within the last
               DELAY_FIRST_PROBE_TIME seconds.  If no reachability
               confirmation is received within DELAY_FIRST_PROBE_TIME
                seconds of entering the DELAY state, send a Neighbor
                Solicitation and change the state to PROBE.</synopsis>
            </specialValue>
            <specialValue value="0x05">
              <name>PROBE</name>
              <synopsis>A reachability confirmation is actively sought
              by retransmitting Neighbor Solicitations every
              RetransTimer milliseconds until a reachability



Wang, et al.            Expires September 4, 2010              [Page 29]


Internet-Draft             ForCES LFB Library                 March 2010


              confirmation is received.</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
      <dataTypeDef>
        <name>ArpTableEntryType</name>
        <synopsis>Arp entry.</synopsis>
        <struct>
          <component componentID="1">
            <name>Index</name>
            <synopsis>Index of the arp table.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>NeighborIP</name>
            <synopsis>IP address of the neighbour.</synopsis>
            <typeRef>IPv4Addr</typeRef>
          </component>
          <component componentID="3">
            <name>SrcMac</name>
            <synopsis>Source MAC.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
          <component componentID="4">
            <name>NeighborMac</name>
            <synopsis>Mac of the Neighbor.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
          <component componentID="5">
            <name>State</name>
            <synopsis>The state of the address resolution progress.
            </synopsis>
            <typeRef>ArpStateType</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>NbrTableEntryType</name>
        <synopsis>IPv6 neighbour table entry.</synopsis>
        <struct>
          <component componentID="1">
            <name>Index</name>
            <synopsis>Index of the arp table.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>NeighborIPv6</name>



Wang, et al.            Expires September 4, 2010              [Page 30]


Internet-Draft             ForCES LFB Library                 March 2010


            <synopsis>IP address of the neighbour.</synopsis>
            <typeRef>IPv6Addr</typeRef>
          </component>
          <component componentID="3">
            <name>SrcMac</name>
            <synopsis>Source MAC.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
          <component componentID="4">
            <name>NeighborMac</name>
            <synopsis>Mac of the Neighbor.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
          <component componentID="5">
            <name>State</name>
            <synopsis>The state of the entry's resolution progress.
            </synopsis>
            <typeRef>NbrState</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>DCHostTableEntryTypev4</name>
        <synopsis>Direct connected arp table entry for IPv4.</synopsis>
        <struct>
          <component componentID="1">
            <name>NeighbourIP</name>
            <synopsis>IP address of the neighbour.</synopsis>
            <typeRef>IPv4Addr</typeRef>
          </component>
          <component componentID="2">
            <name>SrcMac</name>
            <synopsis>Source MAC.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
          <component componentID="3">
            <name>NeighborMac</name>
            <synopsis>Mac of the Neighbor.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>DCHostTableEntryTypev6</name>
        <synopsis>Direct connected arp table entry for IPv4.</synopsis>
        <struct>
          <component componentID="1">
            <name>NeighbourIPv6</name>



Wang, et al.            Expires September 4, 2010              [Page 31]


Internet-Draft             ForCES LFB Library                 March 2010


            <synopsis>IP address of the neighbour.</synopsis>
            <typeRef>IPv4Addr</typeRef>
          </component>
          <component componentID="2">
            <name>SrcMac</name>
            <synopsis>Source MAC.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
          <component componentID="3">
            <name>NeighborMac</name>
            <synopsis>Mac of the Neighbor.</synopsis>
            <typeRef>IEEEMAC</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>PacketType</name>
        <synopsis>The packet type code.</synopsis>
        <atomic>
          <baseType>uchar</baseType>
          <specialValues>
            <specialValue value="1">
              <name>IPv4Ucast</name>
              <synopsis>IPv4 unicast packet.</synopsis>
            </specialValue>
            <specialValue value="2">
              <name>IPv4Mcast</name>
              <synopsis>IPv4 multicast packet.</synopsis>
            </specialValue>
            <specialValue value="3">
              <name>IPv6Ucast</name>
              <synopsis>IPv6 unicast packet.</synopsis>
            </specialValue>
            <specialValue value="4">
              <name>IPv6Mcast</name>
              <synopsis>IPv6 multicast packet.</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
      <dataTypeDef>
        <name>DispatchTableType</name>
        <synopsis>The dispatch table type.</synopsis>
        <struct>
          <component componentID="1">
            <name>PacketType</name>
            <synopsis>The type of the packet.IPv4Uncast,IPv6Ucast,
            IPv4Mulcast,IPv6Mulcast etc.</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 32]


Internet-Draft             ForCES LFB Library                 March 2010


            <typeRef>PacketType</typeRef>
          </component>
          <component componentID="2">
            <name>index</name>
            <synopsis>The index of the output group to output the
            packets.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>MetaType</name>
        <synopsis>Metadata type definition.</synopsis>
        <struct>
          <component componentID="1">
            <name>MetadataID</name>
            <synopsis>The ID of the metadata,the value is
            standardalized in the corresponding
             LFB definition RFCs.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>MetadataName</name>
            <synopsis>The name of the metadata.</synopsis>
            <typeRef>String</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>MetadataClassyTableType</name>
        <synopsis>The meta data classifying table.</synopsis>
        <struct>
          <component componentID="1">
            <name>value</name>
            <synopsis>Value of the meta data.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
          <component componentID="2">
            <name>index</name>
            <synopsis>The index of the port in the output group to use
            for outputing the packets.</synopsis>
            <typeRef>uint32</typeRef>
          </component>
        </struct>
      </dataTypeDef>
      <dataTypeDef>
        <name>EncapType</name>
        <synopsis>Encapsulation type.</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 33]


Internet-Draft             ForCES LFB Library                 March 2010


        <atomic>
          <baseType>uchar</baseType>
          <specialValues>
            <specialValue value="1">
              <name>Link</name>
              <synopsis>Link layer encapsulation such as Ethernet and
              PPP.</synopsis>
            </specialValue>
            <specialValue value="2">
              <name>InterFE</name>
              <synopsis>Inter FE communication encapsulation.
              </synopsis>
            </specialValue>
            <specialValue value="3">
              <name>Tunnel</name>
              <synopsis>Tunnel encapsulation such as IP-in-IP.
              </synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
      <dataTypeDef>
        <name>IPAddress</name>
        <synopsis>IP layer address.</synopsis>
        <union>
          <component componentID="1">
            <name>Ipv4</name>
            <synopsis>IPv4 address.</synopsis>
            <typeRef>IPv4Addr</typeRef>
          </component>
          <component componentID="2">
            <name>Ipv6</name>
            <synopsis>IPv6 address.</synopsis>
            <typeRef>IPv6Addr</typeRef>
          </component>
        </union>
      </dataTypeDef>
      <dataTypeDef>
        <name>ArpStateType</name>
        <synopsis>The arp entry state.</synopsis>
        <atomic>
          <baseType>uchar</baseType>
          <specialValues>
            <specialValue value="1">
              <name>Mannul</name>
              <synopsis>The entry is mannully set.</synopsis>
            </specialValue>
            <specialValue value="2">



Wang, et al.            Expires September 4, 2010              [Page 34]


Internet-Draft             ForCES LFB Library                 March 2010


              <name>InSolicit</name>
              <synopsis>The peer's level 2 address is still in
              requesting.</synopsis>
            </specialValue>
            <specialValue value="4">
              <name>Vaild</name>
              <synopsis>The address resolution have been completed
              successfully,it now can be used in the data packets
              forwarding.</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </dataTypeDef>
    </dataTypeDefs>
    <metadataDefs>
      <metadataDef>
        <name>NextHopID</name>
        <synopsis>An index into a Next Hop entry in Nexthop table
        </synopsis>
        <metadataID>1</metadataID>
        <typeRef>int32</typeRef>
      </metadataDef>
      <metadataDef>
        <name>ExceptionID</name>
        <synopsis>Exception Types</synopsis>
        <metadataID>2</metadataID>
        <atomic>
          <baseType>uint32</baseType>
          <specialValues>
            <specialValue value="0x00000001">
              <name>Options</name>
              <synopsis>Packets with options,for IPv6 Packet with
              next-header set to hop-by-hop header(0).</synopsis>
            </specialValue>
            <specialValue value="0x00000002">
              <name>LengthMismatch</name>
              <synopsis>The packet length reported by link layer is
              less than the total length field.</synopsis>
            </specialValue>
            <specialValue value="0x00000003">
              <name> BadTTL </name>
              <synopsis>The packet can't be forwarded as the TTL has
              expired.</synopsis>
            </specialValue>
            <specialValue value="0x00000004">
              <name> Multicast </name>
              <synopsis>The packet received is a multicast packet.
              </synopsis>



Wang, et al.            Expires September 4, 2010              [Page 35]


Internet-Draft             ForCES LFB Library                 March 2010


            </specialValue>
            <specialValue value="0x00000005">
              <name>FragRequired</name>
              <synopsis>The MTU for outgoing interface is less than the
              packet size.</synopsis>
            </specialValue>
            <specialValue value="0x00000006">
              <name>Redirect</name>
              <synopsis>The outgoing port is same as the one on which
              the packet is received.</synopsis>
            </specialValue>
            <specialValue value="0x00000007">
              <name>LocalDelivery</name>
              <synopsis>The packet is for a local interface.</synopsis>
            </specialValue>
            <specialValue value="0x00000008">
              <name>LimitedBroadcast</name>
              <synopsis>The packet received as limited broadcast.
              </synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </metadataDef>
      <metadataDef>
        <name>InputPortID</name>
        <synopsis>At which interface the packet arrive.</synopsis>
        <metadataID>3</metadataID>
        <typeRef> uint32</typeRef>
      </metadataDef>
      <metadataDef>
        <name>OutputPortID</name>
        <synopsis>The interface out which the packet will emmit.
        </synopsis>
        <metadataID>4</metadataID>
        <typeRef> uint32</typeRef>
      </metadataDef>
      <metadataDef>
        <name> NextHopIP </name>
        <synopsis>Nexthop IPv4 address.</synopsis>
        <metadataID>5</metadataID>
        <typeRef> IP4Addr </typeRef>
      </metadataDef>
      <metadataDef>
        <name>NexthopIPv6</name>
        <synopsis>Nexthop IPv6 address</synopsis>
        <metadataID>6</metadataID>
        <typeRef>IPv6Addr</typeRef>
      </metadataDef>



Wang, et al.            Expires September 4, 2010              [Page 36]


Internet-Draft             ForCES LFB Library                 March 2010


      <metadataDef>
        <name>PacketLength</name>
        <synopsis>The length of the packet in octets.</synopsis>
        <metadataID>7</metadataID>
        <typeRef>uint32</typeRef>
      </metadataDef>
      <metadataDef>
        <name> PacketType </name>
        <synopsis>Type of the packet</synopsis>
        <metadataID>8</metadataID>
        <atomic>
          <baseType>uint32</baseType>
          <specialValues>
            <specialValue value="0x8000">
              <name> IPv4 </name>
              <synopsis>IPv4 packet</synopsis>
            </specialValue>
            <specialValue value="0x86DD">
              <name> IPv6 </name>
              <synopsis>IPv6 packet</synopsis>
            </specialValue>
            <specialValue value="3">
              <name> TaggedFrame </name>
              <synopsis>packet with metadata</synopsis>
            </specialValue>
            <specialValue value="4">
              <name> MetaDataFrame </name>
              <synopsis>meta data only</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </metadataDef>
      <metadataDef>
        <name> QueueID </name>
        <synopsis>The queue ID</synopsis>
        <metadataID>9</metadataID>
        <typeRef> uint32</typeRef>
      </metadataDef>
      <metadataDef>
        <name>QueueOperationCmd</name>
        <synopsis>The type of operation on the queue,there are two
        types defined here: enqueue and dequeue.</synopsis>
        <metadataID>10</metadataID>
        <atomic>
          <baseType>uchar</baseType>
          <specialValues>
            <specialValue value="1">
              <name>Enqueue</name>



Wang, et al.            Expires September 4, 2010              [Page 37]


Internet-Draft             ForCES LFB Library                 March 2010


              <synopsis>Enqueue command.</synopsis>
            </specialValue>
            <specialValue value="2">
              <name>Dequeue</name>
              <synopsis>Dequeue command.</synopsis>
            </specialValue>
          </specialValues>
        </atomic>
      </metadataDef>
      <metadataDef>
        <name>SrcFEID</name>
        <synopsis>Source blade ID.</synopsis>
        <metadataID>11</metadataID>
        <typeRef>uchar</typeRef>
      </metadataDef>
      <metadataDef>
        <name>DstFEID</name>
        <synopsis>Destination blade ID.</synopsis>
        <metadataID>12</metadataID>
        <typeRef>uchar</typeRef>
      </metadataDef>
      <metadataDef>
        <name>NexthopIndex</name>
        <synopsis>Nexthop index into the link layer address resolution
        table.</synopsis>
        <metadataID>13</metadataID>
        <typeRef>uint</typeRef>
      </metadataDef>
      <metadataDef>
        <name>EncapMethod</name>
        <synopsis>how should the following LFBs do to encapsulate the
        packets,such as link encapsulation which means the packets need
        to encapsulate link layer header before sending to media;inter
        FE communication encapsulation which means the packets need to
        first encapsulate inter FE communication header before
        transimiting to other FEs;tunnel encapsulation which means the
        packet need do extra tunnel encapsulation before sending out to
        media. </synopsis>
        <metadataID>14</metadataID>
        <typeRef>EncapType</typeRef>
      </metadataDef>
    </metadataDefs>
  </LFBLibrary>








Wang, et al.            Expires September 4, 2010              [Page 38]


Internet-Draft             ForCES LFB Library                 March 2010


6.  LFB Classes Description

   According to ForCES specifications, LFB (Logical Function Block) is a
   well defined, logically separable functional block that resides in an
   FE, and is a functionally accurate abstraction of the FE's processing
   capabilities.  An LFB Class (or type) is a template that represents a
   fine-grained, logically separable aspect of FE processing.  Most LFBs
   relate to packet processing in the data path.  LFB classes are the
   basic building blocks of the FE model.

   Only for better understanding purposes, LFB classes defined in this
   document are further categorized into groups of LFBs, including Core
   LFBs, Port LFBs, etc.

   The following sections describe the LFB classes according to the
   groups.

6.1.  Core LFBs

   The core LFBs provide basic ForCES functionality for FE in a ForCES
   system.  Two core LFBs are defined: the FE Protocol LFB and the FE
   Object LFB.

6.1.1.  FE Protocol LFB

   The FE Protocol LFB is defined as a logical entity in each FE that is
   used to control the ForCES protocol.  It repsesents FE Protocol
   attributes like supportable ForCES protocol versions, current running
   version, FE restart policy, CE failover policy, etc.  The ForCES
   protocol specification document FE-MODEL [I-D.ietf-forces-model]
   defines the LFB in details and specifes that every FE must have one
   FE Protocol LFB.

   The definition of the LFB is included in this base LFB library by
   using "load" element:


   <load library="FEPO", location="..."/>

6.1.2.  FE Object LFB

   The FE Object LFB is defined to make the FE information easily
   accessible.  Information like the FE Name, FE ID, FE State, LFB
   Topology in the FE are represented in the class of LFB.  The FE model
   documentFE-MODEL [I-D.ietf-forces-model] defines the LFB in details
   and specifies that every FE must have one FE Object LFB.

   The definition of the LFB is included in this base LFB library by



Wang, et al.            Expires September 4, 2010              [Page 39]


Internet-Draft             ForCES LFB Library                 March 2010


   using "load" element:


   <load library="FEObject", location="..."/>

6.2.  Port LFBs

   Classes of Port LFBs are LFBs that are related to the operation of FE
   media interfaces linked to outer networks or other FEs in the same
   ForCES system.  According to different media types, different media
   port LFBs may have to be defined.  For every type of media port, it
   usually needs to implement encapsulating and decapsulating the IP
   datagrams with the connected network framing.  For the sake of the
   flexibility, the function of encapsulating and decapsulating are
   usually categorized in LFB classes as separate LFBs.

   Even if ports with different media may have different logical
   abstracts for the attributes, a general description for different
   ports still exist.  A Generic Connectivity LFB is defined for this
   sake.  By use of an FE model XML schema <derivedFrom> element,
   specific media port LFBs are then defined in a easier way.

6.2.1.  Generic Connectivity LFB

   This LFB Class provides a generic basis for representing connectivity
   between the FE and the outside world.  The LFB has one or more ports
   for packets that the FE processing logic is forwrding for
   transmission by this Connectivity LFB.  It has one or more ports for
   packets that the Connectivity LFB has received and is handing to the
   FE processing logic.  Multiple ports for handline packets are
   supported so that protocol specific encapsulation and demultiplexing
   can be provided by this LFB.  This LFB also has ports for sending
   packets to lower layer Connectivity LFBs and receiving packets from
   such lower layer Connectivity LFBs.  This enables support for the
   processing components of interface stacks, such as PPP over Ethernet
   or Ethernet over MPLS.  For packets arriving from Media or lower
   layer connectivity, this LFB will perform appropriate media
   validation, then remove media specific headers, and place the
   relevant information in meta-data.  For ethernet, the Source MAC
   would be in meta-data.  For Frame Relay or ATM, a circuit identifier
   would be in meta-data.  For Ethernet with VLANs, this meta-data would
   indicate which VLAN the packet came from.  For packets to be
   transmitted, meta-data indicating the destination (destination MAC or
   outgoing circuit, etc.) is required.  This LFB will also include
   statistical components such as the number of octets and packets sent
   and received, the number of various input and output errors, etc.





Wang, et al.            Expires September 4, 2010              [Page 40]


Internet-Draft             ForCES LFB Library                 March 2010


6.2.2.  Ethernet Port LFBs

   (TBD)

   1.  EtherPort LFB

       LFB for Ethernet ports

   2.  EtherDecap LFB

       An LFB class for definition of Ethernet decapsulation and
       Ethernet filtering functions.

   3.  EtherEncap LFB

       An LFB classifier definition for completes ethernet encapsulation
       fuctions.

6.2.3.  POS Port LFBs

   (TBD)

6.2.4.  ATM Port LFBs

   (TBD)

6.3.  Address Resolution LFBs

   (TBD)

   This LFB class provides the function of address resolution for IPv4/
   IPv6 nodes.

   1.  ARP

       This LFB class provides the function of address resolution for
       IPv4 node.

   2.  IPv6 Address Resolution

       This LFB class provides the function of IPv6 address resolution
       part of neighbor discovery protocol.It provides an offload of ND
       protocol processing to FE.It process the following ND messages:
       neighbour solicitation and neighbour advertisement.







Wang, et al.            Expires September 4, 2010              [Page 41]


Internet-Draft             ForCES LFB Library                 March 2010


6.4.  ICMP LFBs

   (TBD)

   1.  ICMP Geneartor

       This LFB class provide some basic ICMP function.  It only
       generate the following ICMP messages: ICMP destination
       unreachable and time excceeded.

   2.  ICMPv6 Generator

       This LFB class provide some basic ICMPv6 function, it only
       generate the following ICMP messages for the packets that need
       some basic ICMP processing: destination not reachable and time
       excceeded.

6.5.  IP Packet Validation LFBs

   (TBD)

   1.  IPv4 Validator

       An LFB Class definition for validates the IPv4 packet.

       This LFB validates the IP version and header length fields,
       including verifying that the packet length is at least as long as
       the header indicates.

   2.  IPv6 Validator

       An LFB Class definition for validates the IPv6 packet.

       This LFB validates the IP version and header length fields,
       including verifying that the packet length is at least as long as
       the header indicates.

6.6.  Classifier LFBs

   (TBD)

   1.  Metadata Classifier LFB

       This LFB class provides the function of classify packets
       according to the meta data.  Now it only works on one meta data.

   2.  Arbitrary Classifier LFB




Wang, et al.            Expires September 4, 2010              [Page 42]


Internet-Draft             ForCES LFB Library                 March 2010


       This is a class definition for an Arbitrary Classifier LFB.  The
       input is a port group, and the match conditions can include the
       port in their test.  This allows the topology to carry some
       information if desired.  The match conditions can select an
       output from the SuccessOuput output port group.  If no condition
       matches, the packet will be sesnt to the FailOutput port.

6.7.  Forwarding LFBs

   (TBD)

   Forwarding LFBs are specifically for implementing IP packet
   forwarding tasks.

6.7.1.  Unicast Longest Prefix Match LFBs

   1.  IPv4UcastLPM

       IPv4 Longest Prefix Match Lookup LFB

   2.  IPv6UcastLPM

       An LFB class definition for IPv6 longest prefix lookup function.

6.7.2.  Nexthop Applicator LFBs

   1.  IPv4 NextHop Applicator

       An LFB definition for applicating next hop action to IPv4
       packets, the actions include:TTL operation,checksum
       recalculation.

   2.  IPv6UcastNexthopApplicator

       An LFB for applicating next hop action to IPv6 packets,actions
       mainly inlcude TTL incrementation and checksum recalculation.

6.8.  QoS Control LFBs

   (TBD)

   To build an actual forwarder, one must include some limited for of
   queueing and scheduling.  Queues are entities which store packets.
   Schedulers are entities which react to the state of queues and cause
   packets to be emitted from queues.

   The actual interaction between queues and schedulers (and their real
   world degree of separation) is quite complex.  A very complex LFB



Wang, et al.            Expires September 4, 2010              [Page 43]


Internet-Draft             ForCES LFB Library                 March 2010


   model would be required to represent all the complexity.
   Additionally, there is the issue of representing the relationship
   between the queue and the scheduler.  A simple approach has been
   taken in these class definitions.

   A queue element consists of an input port (called InData) on which it
   receives data packets, and output port (called OutData) on which it
   will send packets when permitted by its definition or the scheduler.
   Its relationship to scheduluers is represented by a set of output
   ports (the group OutCountrol) and an input port (called InControl).
   These ports are defined to carry packets consisting only of meta-
   data.  In fact, these ports are an abstraction, and what one might
   call a legal fiction.  An element of the OutControl group represents
   the fact that a scheduler is aware of the state of that queue
   element.  The InControl port represents the fact that one or more
   schedulers connected to that port are controlling that queue.  There
   is no meta-data defined for actual exchange on these ports, as their
   real world realization is highly implementation dependent.  To
   complete this picture, a schedule has a group of input ports
   (Watchers) representing the connectivity to queues it is aware of,
   and a group of output ports (Controllers) representing control over
   queues.  This allows for the simple case of a controller who monitors
   and controls a single set of queues, and more interesting cases where
   the control of certain queues may depend upon the state of queues
   whihc are not under the control of the scheduler.

   The Queues and schedulers LFBs that are defined in this library are:

   1.  Scheduler

   2.  Queue

   3.  WRRSched

6.8.1.  Scheduler LFBs

   1.  Generic Scheduler

       This defines a base LFB class for schedulers.  Schedulers have an
       Input Port group called Watchers for representing the queues they
       watch, and an Output Port group called Controllers fro
       representing the queues they control.

   2.  WRRSched

       Weighted round robin scheduler.





Wang, et al.            Expires September 4, 2010              [Page 44]


Internet-Draft             ForCES LFB Library                 March 2010


6.8.2.  Queue LFBs

   Queues have a packet input, a packet output, a control input, and a
   group of control outputs.  The control ports represent the control
   relationships with scheduluers.

6.9.  Miscellaneous Packet Manipulation LFBs

   (TBD)

   1.  Packet Trimmer LFB

       LFB removes data from the front of a packet.

   2.  Duplicator LFB

       An LFB Class definition for packet duplicator LFB.  Any packet
       received on an input port is logically copied and sent to all
       output ports.

   3.  IPv4 Option Proccessing LFB

       This LFB class process the IPv4 packet with options, it can
       process on the following options: Router-alert option.

   4.  IPv6 Extend Header Processing LFB

       This LFB class process the IPv6 packet with extended header, For
       the moment, the packets to this LFB are redirect to RedirectSink
       LFB by default.

6.10.  Redirect LFB

   (TBD)

   An LFB Class definition for exchanging data packets between the FE
   and the CE.

   This LFB represents a point of exchagne of data packets between the
   CE and the FE.  Packets with meta-data are exchanged.  It is expected
   that the output port of a RedirectLFB, if it is connected at all,
   will be connected to a meta-data redirector.









Wang, et al.            Expires September 4, 2010              [Page 45]


Internet-Draft             ForCES LFB Library                 March 2010


7.  XML Definition for Base LFB Library


 <?xml version="1.0" encoding="UTF-8"?>
 <LFBLibrary provides="BaseLFBLibrary"
  xmlns="urn:ietf:params:xml:ns:forces:lfbmodel:1.0"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ietf:params:xml:ns:forces:lfbmodel:1.0
  SchemaFile.xsd">
 <description>
 This library provides base LFB class definitions.
 </description>
    <load library="BaseTypeLibrary", location="..."/>
   <LFBClassDefs>
     <LFBClassDef LFBClassID="3">
       <name>EtherPort</name>
       <synopsis>LFB for Ethernet ports</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PacketsFromProcessingUnit</name>
           <synopsis>
                    Ports for receiving packets from processing unit
                     such as NP,that will be sent to media.
           </synopsis>
           <expectation>
             <frameExpected>
               <ref>EthernetII</ref>
             </frameExpected>
             <metadataExpected>
               <ref>OutputPort</ref>
             </metadataExpected>
           </expectation>
         </inputPort>
         <inputPort>
           <name>PacketsFromMedia</name>
           <synopsis>
                    Ports for receiving packets from ethernet media.
                </synopsis>
           <expectation>
             <frameExpected>
               <ref>EthernetII</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>



Wang, et al.            Expires September 4, 2010              [Page 46]


Internet-Draft             ForCES LFB Library                 March 2010


           <name>PacketsToProcessingUnit</name>
           <synopsis>Ports for sending packets to processing unit such
            as NP for further processing. </synopsis>
           <product>
             <frameProduced>
               <ref>EthernetII</ref>
             </frameProduced>
             <metadataProduced>
               <ref>InputPort</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>PacketsToMedia</name>
           <synopsis>
                    Ports for sending packets to media.
                </synopsis>
           <product>
             <frameProduced>
               <ref>EthernetII</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>IfIndex</name>
           <synopsis>A unique value for each interface. Its value ranges
            between 1 and the value of total number of interfaces in the
            system. The value for each interface must remain constant at
            least from one re-initialization of the entity's network
            management system to the next re-initialization. </synopsis>
           <typeRef>uint32</typeRef>
         </component>
         <component componentID="2">
           <name>IfName</name>
           <synopsis>Name of this port</synopsis>
           <typeRef>string[16]</typeRef>
         </component>
         <component componentID="3">
           <name>LinkSpeed</name>
           <synopsis>Speed of this port</synopsis>
           <typeRef>LANSpeedType</typeRef>
         </component>
         <component componentID="4">
           <name>MTU</name>
           <synopsis>Maximum transmition unit</synopsis>
           <typeRef>uint32</typeRef>



Wang, et al.            Expires September 4, 2010              [Page 47]


Internet-Draft             ForCES LFB Library                 March 2010


         </component>
         <component componentID="5" access="read-only">
           <name>OperaStatus</name>
           <synopsis>Operate state of this port.</synopsis>
           <typeRef>PortStatusValues</typeRef>
           <defaultValue>"down"</defaultValue>
         </component>
         <component componentID="6">
           <name>AdminStatus</name>
           <synopsis>Administrator's state of this port</synopsis>
           <typeRef>PortStatusValues</typeRef>
           <defaultValue>"down"</defaultValue>
         </component>
         <component componentID="7">
           <name>PromiscuousMode</name>
           <synopsis>Whether the interface is in promiscuous mode
           </synopsis>
           <typeRef>booleanType</typeRef>
           <defaultValue>"no"</defaultValue>
         </component>
         <component componentID="8" access="read-only">
           <name>CarrierStatus</name>
           <synopsis>whether the port is linked with an connector.
           </synopsis>
           <typeRef>booleanType</typeRef>
           <defaultValue>"no"</defaultValue>
         </component>
         <component componentID="9">
           <name>OperMode</name>
           <synopsis>The port operation mode,must be one of the
           following values:Auto,Half-duplex,Full-duplex</synopsis>
           <typeRef>NegotiationType</typeRef>
           <defaultValue>"auto"</defaultValue>
         </component>
         <component componentID="10">
           <name>SrcMACAddr</name>
           <synopsis>source MAC</synopsis>
           <typeRef>IEEEMAC</typeRef>
         </component>
         <component componentID="11">
           <name>MacAliasTable</name>
           <synopsis>A series of MACs that the port can receive frame
           on.</synopsis>
           <array>
             <typeRef>IEEEMAC</typeRef>
           </array>
         </component>
         <component componentID="12">



Wang, et al.            Expires September 4, 2010              [Page 48]


Internet-Draft             ForCES LFB Library                 March 2010


           <name>StatsEnable</name>
           <synopsis>whether enable the statistics in this LFB.
           </synopsis>
           <optional/>
           <typeRef>booleanType</typeRef>
           <defaultValue>"no"</defaultValue>
         </component>
         <component componentID="13" access="read-reset">
           <name>PortStats</name>
           <synopsis>port statistics.</synopsis>
           <optional/>
           <typeRef>PortStatsType</typeRef>
         </component>
         <component componentID="14">
           <name>Ipaddr</name>
           <synopsis>IP layer Address.</synopsis>
           <typeRef>IPAddress</typeRef>
         </component>
       </components>
       <events baseID="100">
         <event eventID="1">
           <name>PortStatusChanged</name>
           <synopsis>Port status has changed since last time reporting.
           </synopsis>
           <eventTarget>
             <eventField>OperaStatus</eventField>
           </eventTarget>
           <eventChanged/>
           <eventReports>
             <eventReport>
               <eventField>OperaStatus</eventField>
             </eventReport>
           </eventReports>
         </event>
       </events>
     </LFBClassDef>
     <LFBClassDef LFBClassID="4">
       <name>EtherDecap</name>
       <synopsis>An LFB class for definition of Ethernet decapsulation
       and Ethernet filtering functions</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PacketsIn</name>
           <synopsis>Packets from other LFB.</synopsis>
           <expectation>
             <frameExpected>
               <ref>EthernetII</ref>



Wang, et al.            Expires September 4, 2010              [Page 49]


Internet-Draft             ForCES LFB Library                 March 2010


             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort group="true">
           <name>DecapOut</name>
           <synopsis>Ethernet decapsulation output.</synopsis>
           <product>
             <frameProduced>
               <ref>Arbitrary</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>DispatchTable</name>
           <synopsis>This table is used for selecting output in the
           ouput group for the incoming packet stream.</synopsis>
           <typeRef>DispatchTableType</typeRef>
         </component>
       </components>
     </LFBClassDef>
     <LFBClassDef LFBClassID="5">
       <name>IPv4Validor</name>
       <synopsis>An LFB Class definition for validates the IPv4 packets.
       </synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>ValidatePktsIn</name>
           <synopsis>Port used to receive IPv4 packet for validation.
           </synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv4</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>SuccessOut</name>
           <synopsis>Out port for the packets passing the validation.
           </synopsis>
           <product>
             <frameProduced>



Wang, et al.            Expires September 4, 2010              [Page 50]


Internet-Draft             ForCES LFB Library                 March 2010


               <ref>IPv4</ref>
             </frameProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>ExceptionOut</name>
           <synopsis>Output port for the packets needed to be dealt by
           higher level protcol stacks.The following packets are
           identified as exception packets:1 Packet with header
           length>5;2 Packet with destination address equal to
           255.255.255.255;3 Packet with expired TTL (checked after a
           forwarding decision is made);4 Packet length error.
           </synopsis>
           <product>
             <frameProduced>
               <ref>ExceptionID</ref>
             </frameProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>FailOutput</name>
           <synopsis>Output for packets failed to pass the validation.
           </synopsis>
           <product>
             <frameProduced>
               <ref> IPv4 </ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>StatsEnable</name>
           <synopsis>whether to gather statistics in this LFB.
           </synopsis>
           <optional/>
           <typeRef>booleanType</typeRef>
           <defaultValue>"no"</defaultValue>
         </component>
         <component componentID="2" access="read-reset">
           <name>IPv4ValidatorStats</name>
           <synopsis>ipv4 validator LFB statistics</synopsis>
           <optional/>
           <typeRef>IPv4ValidatorStatisticsType</typeRef>
         </component>
       </components>
       <description>Detailed validation process please refer to RFC1812
       and RFC2644.</description>



Wang, et al.            Expires September 4, 2010              [Page 51]


Internet-Draft             ForCES LFB Library                 March 2010


     </LFBClassDef>
     <LFBClassDef LFBClassID="6">
       <name>IPv4UcastLPM</name>
       <synopsis>IPv4 Longest Prefix Match Lookup LFB</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>The port to receive IPv4 packets from other LFBs
           </synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv4</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>SuccessOut</name>
           <synopsis>Successful output when all is fine.</synopsis>
           <product>
             <frameProduced>
               <ref>IPv4</ref>
             </frameProduced>
             <metadataProduced>
               <ref availability="conditional">NextHopID</ref>
               <ref availability="conditional">FEID</ref>
               <ref availability="conditional">OutputPortID</ref>
               <ref availability="conditional">MTU</ref>
               <ref availability="conditional">Flags</ref>
               <ref availability="conditional">NexthopIPAddr</ref>
               <ref availability="conditional">EncapMethod</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>ExceptionOut</name>
           <synopsis>Exception output</synopsis>
           <product>
             <frameProduced>
               <ref>IPv4</ref>
             </frameProduced>
             <metadataProduced>
               <ref>InputPortID </ref>
               <ref>ExceptionID</ref>
             </metadataProduced>
           </product>



Wang, et al.            Expires September 4, 2010              [Page 52]


Internet-Draft             ForCES LFB Library                 March 2010


         </outputPort>
         <outputPort>
           <name>FailOutput</name>
           <synopsis>Dropper</synopsis>
           <product>
             <frameProduced>
               <ref> IPv4 </ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name> PrefixTable </name>
           <synopsis>IPv4 prefix table</synopsis>
           <array type="variable-size">
             <typeRef> IPv4PrefixTableEntry </typeRef>
             <contentKey contentKeyID="1">
               <contentKeyField>IPv4PrefixTableEntry.prefix
               </contentKeyField>
             </contentKey>
           </array>
         </component>
         <component componentID="2">
           <name>Fib</name>
           <synopsis>IPv4 unicast forwarding table.</synopsis>
           <optional/>
           <array type="variable-size">
             <typeRef>IPv4FibEntryType</typeRef>
             <contentKey contentKeyID="1">
               <contentKeyField>IPv4FibEntryType.prefix
               </contentKeyField>
             </contentKey>
           </array>
         </component>
         <component componentID="3">
           <name>LocalIpAddrTable</name>
           <synopsis>The table of interfaces's ip address infomation
            on the local device</synopsis>
           <typeRef>LocalIpAddrType</typeRef>
         </component>
         <component componentID="4">
           <name>IPv4Stats</name>
           <synopsis>The IPv4 associated statistics</synopsis>
           <optional/>
           <typeRef> IPv4UcastLPMStatisticsType </typeRef>
         </component>
       </components>



Wang, et al.            Expires September 4, 2010              [Page 53]


Internet-Draft             ForCES LFB Library                 March 2010


       <capabilities>
         <capability componentID="1">
           <name>PrefixTableLimit</name>
           <synopsis>maxium number of prefix supported by this LFB
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
         <capability componentID="2">
           <name>LocalIpAddrTableLimit</name>
           <synopsis>maxium number of IP address entrys supported by
            this LFB</synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
       <description>This LFB represents the IPv4 longest prefix match
        lookup operation.
          </description>
     </LFBClassDef>
     <LFBClassDef LFBClassID="7">
       <name> IPv4NextHopApplicator </name>
       <synopsis>An LFB definition for applicating next hop action to
        IPv4 packets,the actions include:TTL operation,checksum
         recalculation.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>Port used to receive IPv4 packets from other LFBs
           </synopsis>
           <expectation>
             <frameExpected>
               <ref> IPv4 </ref>
             </frameExpected>
             <metadataExpected>
               <ref dependency="optional" defaultValue="0xff">
               NextHopID</ref>
               <ref dependency="optional" defaultValue="0xff">
               FEID</ref>
               <ref dependency="optional" defaultValue="0xff">
               OutputPortID</ref>
               <ref dependency="optional" defaultValue="0xff">
               MTU</ref>
               <ref dependency="optional" defaultValue="0xff">
               Flags</ref>
               <ref dependency="optional" defaultValue="0xff">
               NexthopIPAddr</ref>
               <ref dependency="optional" defaultValue="0xff">
               EncapMethod</ref>



Wang, et al.            Expires September 4, 2010              [Page 54]


Internet-Draft             ForCES LFB Library                 March 2010


             </metadataExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>SuccessOut</name>
           <synopsis>Output port for packet successfully fulfill the
            nexthop application.</synopsis>
           <product>
             <frameProduced>
               <ref> IPv4 </ref>
             </frameProduced>
             <metadataProduced>
               <ref>DstFEID</ref>
               <ref>OutputPortID</ref>
               <ref availability="conditional">L2Index</ref>
               <ref>NextHopIP</ref>
               <ref availability="conditional">EncapMethod</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>ExceptionOut</name>
           <synopsis>Output for packets need deep dealt by higher level
            protocol stacks.</synopsis>
           <product>
             <frameProduced>
               <ref> IPv4 </ref>
             </frameProduced>
             <metadataProduced>
               <ref>InputPortID</ref>
               <ref>ExceptionID</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>FailOutput</name>
           <synopsis>Output for packets failed the nexthop application
            operation.</synopsis>
           <product>
             <frameProduced>
               <ref> IPv4 </ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>



Wang, et al.            Expires September 4, 2010              [Page 55]


Internet-Draft             ForCES LFB Library                 March 2010


         <component componentID="1">
           <name> NextHopTable </name>
           <synopsis>Nexthop table</synopsis>
           <optional/>
           <array type="variable-size">
             <typeRef> IPv4NextHopInfoType </typeRef>
           </array>
         </component>
       </components>
       <capabilities>
         <capability componentID="2">
           <name>NextHopTableLimit</name>
           <synopsis>Maxium number of nexthops this LFB supports
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>
     <LFBClassDef LFBClassID="8">
       <name>IPv6Validator</name>
       <synopsis>A LFB class definition for validating correctness
        of IPv6 packets</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>ValidateIn</name>
           <synopsis>Input port for packets to be validated.</synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv6</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>SuccessOut</name>
           <synopsis>Output port for packets passing the validation.
           </synopsis>
           <product>
             <frameProduced>
               <ref>IPv6</ref>
             </frameProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>ExceptionOut</name>
           <synopsis>Output port for exception packet.The following



Wang, et al.            Expires September 4, 2010              [Page 56]


Internet-Draft             ForCES LFB Library                 March 2010


            packets are identified as Exception packet:1 Packet with
            next header set to Hop-by-Hop.2 The packet length reported
            by link layer is less than the total length field.3 Packet
            with a link local destination address;4 The packet  received
            as limited broadcast.5 Packet with multicast destination
            address (the MSB of the destination address is 0xFF);
            </synopsis>
           <product>
             <frameProduced>
               <ref>IPv6</ref>
             </frameProduced>
             <metadataProduced>
               <ref>ExceptionID</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>FailOut</name>
           <synopsis>Output port for packet failing the validation.
           </synopsis>
           <product>
             <frameProduced>
               <ref>IPv6</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1" access="read-reset">
           <name>IPv6ValidatorStats</name>
           <synopsis>IPv6 validator LFB statistics</synopsis>
           <optional/>
           <typeRef>IPv6ValidatorStatisticsType</typeRef>
         </component>
       </components>
       <description>Detailed validation process could refer to RFC2460
        and RFC2373.</description>
     </LFBClassDef>
     <LFBClassDef LFBClassID="9">
       <name>IPv6UcastLPM</name>
       <synopsis>An LFB class definition for IPv6 longest prefix lookup
        function.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>The port to receive IPv6 packets needed to do IPv4
            LPM.</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 57]


Internet-Draft             ForCES LFB Library                 March 2010


           <expectation>
             <frameExpected>
               <ref>IPv6</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>SuccessOut</name>
           <synopsis>Output for packets that have find the correct
            route.</synopsis>
           <product>
             <frameProduced>
               <ref>IPv6</ref>
             </frameProduced>
             <metadataProduced>
               <ref>NextHopID</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>FailOutput</name>
           <synopsis>LPM failed.</synopsis>
           <product>
             <frameProduced>
               <ref> IPv6 </ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name> PrefixTable </name>
           <synopsis>IPv6 prefix table</synopsis>
           <array type="variable-size">
             <typeRef> IPv6PrefixTableEntry </typeRef>
             <contentKey contentKeyID="1">
               <contentKeyField>IPv6PrefixTableEntry.prefix
               </contentKeyField>
             </contentKey>
           </array>
         </component>
         <component componentID="2">
           <name>LocalIpv6AddrTable</name>
           <synopsis>The table of interfaces's ip address infomation on
            the local device</synopsis>
           <typeRef>LocalIpv6AddrType</typeRef>



Wang, et al.            Expires September 4, 2010              [Page 58]


Internet-Draft             ForCES LFB Library                 March 2010


         </component>
         <component componentID="3" access="read-reset">
           <name>IPv6Stats</name>
           <synopsis>The IPv6 associated statistics</synopsis>
           <optional/>
           <typeRef> IPv6LPMClassiferStatisticsType </typeRef>
         </component>
       </components>
       <capabilities>
         <capability componentID="1">
           <name>PrefixTableLimit</name>
           <synopsis>maxium number of prefix supported by this LFB
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
         <capability componentID="2">
           <name>LocalIpv6AddrTableLimit</name>
           <synopsis>maxium number of IPv6 address entrys supported
            by this LFB</synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>
     <LFBClassDef LFBClassID="10">
       <name>IPv6UcastNexthopApplicator</name>
       <synopsis>An LFB for applicating next hop action to IPv6 packets,
       actions mainly inlcude TTL incrementation and checksum
        recalculation.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>Input port for packets to be applicate nexthop.
           </synopsis>
           <expectation>
             <frameExpected>
               <ref> IPv6 </ref>
             </frameExpected>
             <metadataExpected>
               <ref>NextHopID</ref>
             </metadataExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>SuccessOut</name>
           <synopsis>Output port for packet successfully fulfill the



Wang, et al.            Expires September 4, 2010              [Page 59]


Internet-Draft             ForCES LFB Library                 March 2010


            nexthop application.</synopsis>
           <product>
             <frameProduced>
               <ref> IPv6 </ref>
             </frameProduced>
             <metadataProduced>
               <ref>FEID</ref>
               <ref>OutputPortID</ref>
               <ref availability="conditional">L2Index</ref>
               <ref>NextHopIPv6</ref>
               <ref availability="conditional">EncapMethod</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>ExceptionOut</name>
           <synopsis>Output port for exception packet.The following
            packets are identified as Exception packet:1 Packet with
             Hop Limit zero.2 The MTU for outgoing interface is less
              than the packet size.3 The outgoing port is same as the
              one on which the packet is received.4 The packet is for
               a local interface.</synopsis>
           <product>
             <frameProduced>
               <ref> IPv6 </ref>
             </frameProduced>
             <metadataProduced>
               <ref>InputPortID</ref>
               <ref>ExceptionID</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>FailOutput</name>
           <synopsis>Output for packets failed the nexthop application
            operation.</synopsis>
           <product>
             <frameProduced>
               <ref> IPv6 </ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name> NextHopTable </name>
           <synopsis>Nexthop table</synopsis>
           <array type="variable-size">



Wang, et al.            Expires September 4, 2010              [Page 60]


Internet-Draft             ForCES LFB Library                 March 2010


             <typeRef> IPv6NextHopInfoType </typeRef>
           </array>
         </component>
       </components>
       <capabilities>
         <capability componentID="1">
           <name>NextHopTableLimit</name>
           <synopsis>Maxium number of nexthops this LFB supports
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>
     <LFBClassDef LFBClassID="11">
       <name>EtherEncap</name>
       <synopsis>An LFB classifier definition for completes ethernet
        encapsulation fuctions</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>EncapIn</name>
           <synopsis>Port for receiving packets needed to build Ethernet
            encapsulation.</synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv4</ref>
               <ref>IPv6</ref>
             </frameExpected>
             <metadataExpected>
               <ref dependency="optional" defaultValue="0">L2Index</ref>
               <one-of>
                 <ref>NextHopIP</ref>
                 <ref>NextHopIPv6</ref>
               </one-of>
               <ref>PacketType</ref>
             </metadataExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>SuccessOut</name>
           <synopsis/>
           <product>
             <frameProduced>
               <ref>EthernetII</ref>
             </frameProduced>
           </product>



Wang, et al.            Expires September 4, 2010              [Page 61]


Internet-Draft             ForCES LFB Library                 March 2010


         </outputPort>
         <outputPort group="true">
           <name>ExceptionOut</name>
           <synopsis>packet can't find the associated L2 information
           </synopsis>
           <product>
             <frameProduced>
               <ref>IPv4</ref>
               <ref>IPv6</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>ArpTable</name>
           <synopsis>Ethernet arp table.</synopsis>
           <array>
             <typeRef>ArpTableEntryType</typeRef>
           </array>
         </component>
         <component componentID="2">
           <name>NbrTable</name>
           <synopsis>IPv6 neighbour table.</synopsis>
           <optional/>
           <array>
             <typeRef>NbrTableEntryType</typeRef>
           </array>
         </component>
         <component componentID="3">
           <name>DCHostTablev4</name>
           <synopsis>Direct connected host arp table for IPv4.
           </synopsis>
           <array>
             <typeRef>DCHostTableEntryTypev4</typeRef>
           </array>
         </component>
         <component componentID="4">
           <name>DCHostTablev6</name>
           <synopsis>Direct connected host arp table for IPv6.
           </synopsis>
           <optional/>
           <array>
             <typeRef>DCHostTableEntryTypev6</typeRef>
           </array>
         </component>
       </components>
       <capabilities>



Wang, et al.            Expires September 4, 2010              [Page 62]


Internet-Draft             ForCES LFB Library                 March 2010


         <capability componentID="1">
           <name>ArpTableLimit</name>
           <synopsis>Max number of arp entries in arp table.</synopsis>
           <typeRef>uint32</typeRef>
         </capability>
         <capability componentID="2">
           <name>NbrTableLimit</name>
           <synopsis>Max number of neighbours in neighbour table.
           </synopsis>
           <optional/>
           <typeRef>uint32</typeRef>
         </capability>
         <capability componentID="3">
           <name>DCHostTablev4Limit</name>
           <synopsis>The limit on Direct connected host table for IPv4.
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
         <capability componentID="4">
           <name>DCHostTablev6Limit</name>
           <synopsis>The limit on Direct connected host table for IPv6.
           </synopsis>
           <optional/>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>
     <LFBClassDef LFBClassID="12">
       <name>Scheduler</name>
       <synopsis>Base scheduler LFB.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort group="true">
           <name>Watcher</name>
           <synopsis>Input for watching the queues to be scheduled.
           Queues to be scheduled can transmit packet enqueue and
           dequeue infomation to scheduler through these port.
           </synopsis>
           <expectation>
             <frameExpected>
               <ref>MetadataFrame</ref>
             </frameExpected>
             <metadataExpected>
               <ref>QueueID</ref>
               <ref>PacketLength</ref>
               <ref>QueueOperationCmd</ref>
             </metadataExpected>
           </expectation>



Wang, et al.            Expires September 4, 2010              [Page 63]


Internet-Draft             ForCES LFB Library                 March 2010


         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort group="true">
           <name>OutControl</name>
           <synopsis>Control output,this output is used by scheduler
           to communicate commands to it's controlled queues such as
           dequeue a packet.</synopsis>
           <product>
             <frameProduced>
               <ref>MetadataFrame</ref>
             </frameProduced>
             <metadataProduced>
               <ref>QueueOperationCmd</ref>
             </metadataProduced>
           </product>
         </outputPort>
       </outputPorts>
       <capabilities>
         <capability componentID="1">
           <name>QueueScheduledLimit</name>
           <synopsis>Max number of queues that can be scheduled by this
           scheduler.</synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>
     <LFBClassDef LFBClassID="13">
       <name> Queue </name>
       <synopsis>Queue LFB.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>InControl</name>
           <synopsis>Input from scheduler</synopsis>
           <expectation>
             <metadataExpected>
               <ref>QueueOperationCmd</ref>
             </metadataExpected>
           </expectation>
         </inputPort>
         <inputPort>
           <name>InData</name>
           <synopsis>Input port for data packet.</synopsis>
           <expectation>
             <frameExpected>
               <ref>Arbitrary</ref>
             </frameExpected>



Wang, et al.            Expires September 4, 2010              [Page 64]


Internet-Draft             ForCES LFB Library                 March 2010


             <metadataExpected>
               <ref>PacketLength</ref>
             </metadataExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>OutToController</name>
           <synopsis>Output to queue controller</synopsis>
           <product>
             <frameProduced>
               <ref>MetadataFrame</ref>
             </frameProduced>
             <metadataProduced>
               <ref>QueueID</ref>
               <ref>PacketLength</ref>
               <ref>QueueOperationCmd</ref>
             </metadataProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>OutData</name>
           <synopsis>Data packet output</synopsis>
           <product>
             <frameProduced>
               <ref>Arbitrary</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>CurLen</name>
           <synopsis>Current length of the queue in number of packets.
           </synopsis>
           <typeRef>uint32</typeRef>
         </component>
       </components>
       <capabilities>
         <capability componentID="1">
           <name>QueueLenLimit</name>
           <synopsis>Maximum length of the queue in number of packets.
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>



Wang, et al.            Expires September 4, 2010              [Page 65]


Internet-Draft             ForCES LFB Library                 March 2010


     <LFBClassDef LFBClassID="14">
       <name>RedirectSink</name>
       <synopsis>This class definition provides for the function of
       sinking data packets that needed to be sent to CE. </synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort group="true">
           <name>InFromOtherLFBs</name>
           <synopsis>Packets input from other LFBs and needed to sent
           to CE.</synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv4</ref>
               <ref>IPv6</ref>
             </frameExpected>
             <metadataExpected>
               <ref>InputPortID</ref>
               <ref>PacketLength</ref>
               <ref>PacketType</ref>
             </metadataExpected>
           </expectation>
         </inputPort>
       </inputPorts>
     </LFBClassDef>
     <LFBClassDef LFBClassID="15">
       <name>RedirectTap</name>
       <synopsis>This class provides the function of sinking data
       packets that comes from CE and needed to be sent out by this
       FE.</synopsis>
       <version>1.0</version>
       <outputPorts>
         <outputPort group="true">
           <name>OutputToOtherLFBs</name>
           <synopsis>Packets input received from CE.</synopsis>
           <product>
             <frameProduced>
               <ref>IPv4</ref>
               <ref>IPv6</ref>
             </frameProduced>
             <metadataProduced>
               <ref>PacketType</ref>
               <ref>OutputPortID</ref>
               <ref>PacketLength</ref>
             </metadataProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>



Wang, et al.            Expires September 4, 2010              [Page 66]


Internet-Draft             ForCES LFB Library                 March 2010


         <component componentID="1">
           <name>DispatchTable</name>
           <synopsis>The table to dispatch the packets to different LFB.
           </synopsis>
           <typeRef>DispatchTableType</typeRef>
         </component>
         <component componentID="2">
           <name>outGroupNumOfPorts</name>
           <synopsis>The number of ports in output group.</synopsis>
           <typeRef>uint32</typeRef>
         </component>
       </components>
       <capabilities>
         <capability componentID="1">
           <name>MaxNumOfoutGroupPorts</name>
           <synopsis>The maxium number of ports in the output group.
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>
     <LFBClassDef LFBClassID="16">
       <name>WRRSched</name>
       <synopsis>Weighted round robin scheduler.</synopsis>
       <version>1.0</version>
       <derivedFrom>Scheduler</derivedFrom>
       <components>
         <component componentID="1">
           <name>WeightTable</name>
           <synopsis>Weight table for queues to be scheduled.</synopsis>
           <array type="variable-size">
             <typeRef>WeightTableEntryType</typeRef>
           </array>
         </component>
       </components>
     </LFBClassDef>
     <LFBClassDef LFBClassID="17">
       <name>IPv6AddrResolution</name>
       <synopsis>This LFB class provides the function of IPv6 address
       resolution part of neighbor discovery protocol.It provides an
       offload of ND protocol processing to FE.It process the following
       ND messages:neighbour solicitation and neighbour advertisement.
       </synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>AddrResDataPktIn</name>
           <synopsis>The IPv6 data packet that need to do the address



Wang, et al.            Expires September 4, 2010              [Page 67]


Internet-Draft             ForCES LFB Library                 March 2010


           resolution.</synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv6</ref>
             </frameExpected>
           </expectation>
         </inputPort>
         <inputPort>
           <name>AddrResProtoPktIn</name>
           <synopsis>The neighbour discovery packet related to
           addresolution.</synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv6</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>AddrResDataPktOut</name>
           <synopsis>The IPv6 packet that have encapsulated with the
           correct ethernet L2 info and need to be sent out to link.
           </synopsis>
           <product>
             <frameProduced>
               <ref>EthernetII</ref>
             </frameProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>AddrResProtoPktOut</name>
           <synopsis>The IPv6 neighbour discovey packet wich has been
           encapsulation with the correct ethernet L2 info.</synopsis>
           <product>
             <frameProduced>
               <ref>EthernetII</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>Nbrtable</name>
           <synopsis>This table is an alias to the IPv6 neighbour table
           in the EtherEncap LFB.</synopsis>
           <alias>NbrTable</alias>
         </component>



Wang, et al.            Expires September 4, 2010              [Page 68]


Internet-Draft             ForCES LFB Library                 March 2010


       </components>
     </LFBClassDef>
     <LFBClassDef LFBClassID="18">
       <name>ICMPv6Generator</name>
       <synopsis>This LFB class provide some basic ICMPv6 function,it
       only generate the following ICMP messages for the packets that
       need some basic icmp processing:destination not reachable and
       time excceeded.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>The IPv6 packet that need icmp processing.
           </synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv6</ref>
             </frameExpected>
             <metadataExpected>
               <ref>ExceptionID</ref>
             </metadataExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>ICMPv6PktOut</name>
           <synopsis>The output for the ICMPv6 packets generated
           according to the input IPv6 packet and the ExceptionID.
           </synopsis>
           <product>
             <frameProduced>
               <ref>IPv6</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
     </LFBClassDef>
     <LFBClassDef LFBClassID="19">
       <name>ExtendHeaderProc</name>
       <synopsis>This LFB class process the IPv6 packet with extended
       header,For the moment,the packets to this LFB are redirect to
       RedirectSink LFB by default.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>The IPv6 packet with extended header in.</synopsis>



Wang, et al.            Expires September 4, 2010              [Page 69]


Internet-Draft             ForCES LFB Library                 March 2010


           <expectation>
             <frameExpected>
               <ref>IPv6</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort group="true">
           <name>PktOut</name>
           <synopsis>According to the Extended header type the packet
           may have different next proccesing LFB.Now by default we
           send all the packet with extended header to CE.</synopsis>
           <product>
             <frameProduced>
               <ref>IPv6</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
     </LFBClassDef>
     <LFBClassDef LFBClassID="20">
       <name>arp</name>
       <synopsis>This LFB class provides the function of address
       resolution for IPv4 nodes.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>AddrResDataPktIn</name>
           <synopsis>The IPv4 data packet that need to do the address
           resolution.</synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv4</ref>
             </frameExpected>
           </expectation>
         </inputPort>
         <inputPort>
           <name>ArpPktIn</name>
           <synopsis>The neighbour discovery packet related to
           addresolution.</synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv4</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>



Wang, et al.            Expires September 4, 2010              [Page 70]


Internet-Draft             ForCES LFB Library                 March 2010


       <outputPorts>
         <outputPort>
           <name>AddrResDataPktOut</name>
           <synopsis>The IPv4 packet that have been encapsulated with
           the correct ethernet L2 info and need to be sent out to
           link.</synopsis>
           <product>
             <frameProduced>
               <ref>EthernetII</ref>
             </frameProduced>
           </product>
         </outputPort>
         <outputPort>
           <name>ArpOut</name>
           <synopsis>The arp packet out.</synopsis>
           <product>
             <frameProduced>
               <ref>EthernetII</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>Arptable</name>
           <synopsis>This table is an alias of the arp table in the
           EtherEncap LFB.</synopsis>
           <alias>ArpTable</alias>
         </component>
       </components>
     </LFBClassDef>
     <LFBClassDef LFBClassID="21">
       <name>ICMPGenerator</name>
       <synopsis>This LFB class provide some basic ICMP function,it
       only generate the following ICMP messages:ICMP destination
       unreachable and time excceeded.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>The IPv4 packet that need icmp processing.
           </synopsis>
           <expectation>
             <frameExpected>
               <ref>IPv4</ref>
             </frameExpected>
             <metadataExpected>
               <ref>ExceptionID</ref>



Wang, et al.            Expires September 4, 2010              [Page 71]


Internet-Draft             ForCES LFB Library                 March 2010


             </metadataExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort>
           <name>ICMPPktOut</name>
           <synopsis>The output for the ICMP packets generated according
           to the input packet and the ExceptionID.</synopsis>
           <product>
             <frameProduced>
               <ref>IPv4</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
     </LFBClassDef>
     <LFBClassDef LFBClassID="22">
       <name>MetadataClassifier</name>
       <synopsis>This LFB class provides the function of classify
       packets according to the meta data.Now it only works on one
       meta data.</synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>Packets need to do the classification.</synopsis>
           <expectation>
             <frameExpected>
               <ref>Arbitrary</ref>
             </frameExpected>
             <metadataExpected>
               <ref>Arbitrary</ref>
             </metadataExpected>
             <!-- jfg:how to express here that we only need one meta
             data of any kind?The model says that variable  tag
             metadata do this need but doesn't show how to use it.-->
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort group="true">
           <name>ClassifiedOut</name>
           <synopsis>The output group for the classified packets.
           </synopsis>
           <product>
             <frameProduced>
               <ref>Arbitrary</ref>



Wang, et al.            Expires September 4, 2010              [Page 72]


Internet-Draft             ForCES LFB Library                 March 2010


             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
       <components>
         <component componentID="1">
           <name>MetaDataID</name>
           <synopsis>The metadata id that this classifier works on.
           </synopsis>
           <typeRef>uint32</typeRef>
         </component>
         <component componentID="2">
           <name>MetaDataName</name>
           <synopsis>The name of the meta data that this classifier
           works on.</synopsis>
           <typeRef>string</typeRef>
         </component>
         <component componentID="3">
           <name>MetadataClassifyTable</name>
           <synopsis>The meta data classifying table.</synopsis>
           <typeRef>MetadataClassyTableType</typeRef>
         </component>
         <component componentID="4">
           <name>OutNumOfPorts</name>
           <synopsis>The number of ports in the output group.</synopsis>
           <typeRef>uint32</typeRef>
         </component>
       </components>
       <capabilities>
         <capability componentID="1">
           <name>MaxOutNumOfPorts</name>
           <synopsis>Maxium number of ports in the output group.
           </synopsis>
           <typeRef>uint32</typeRef>
         </capability>
       </capabilities>
     </LFBClassDef>
     <LFBClassDef LFBClassID="23">
       <name>OptionProc</name>
       <synopsis>This LFB class process the IPv4 packet with options,
       it can process on the following options:Router-alert option.
       </synopsis>
       <version>1.0</version>
       <inputPorts>
         <inputPort>
           <name>PktIn</name>
           <synopsis>The IPv4 packet with options in.</synopsis>
           <expectation>



Wang, et al.            Expires September 4, 2010              [Page 73]


Internet-Draft             ForCES LFB Library                 March 2010


             <frameExpected>
               <ref>IPv4</ref>
             </frameExpected>
           </expectation>
         </inputPort>
       </inputPorts>
       <outputPorts>
         <outputPort group="true">
           <name>PktOut</name>
           <synopsis>According to the Option type the packet may have
           different next proccesing LFB.Now by default we send all
           the packet with extended header to CE.</synopsis>
           <product>
             <frameProduced>
               <ref>IPv4</ref>
             </frameProduced>
           </product>
         </outputPort>
       </outputPorts>
     </LFBClassDef>
   </LFBClassDefs>
 </LFBLibrary>





























Wang, et al.            Expires September 4, 2010              [Page 74]


Internet-Draft             ForCES LFB Library                 March 2010


8.  Base LFB Library Use Case for Typical Router Functions

   This section demonstrates examples on how the LFB classes defined by
   the Base LFB library in Section 7 are applied to the achievements of
   typical router functions.

   As mentioned in the overview section, typical router functions can be
   categorized in short into the following functions:

   o  IP forwarding

   o  address resolution

   o  ICMP

   o  network management

   o  running routing protocol

   To achieve the functions, processing paths organized by the LFB
   classes with their interconnections should be established in FE.  In
   general, CE controls and manages the processing paths by use of the
   ForCES protocol.

   Note that LFB class use cases shown in this section are only as
   examples to demonstrate how typical router functions can be
   implemented with the defined base LFB library.  Users and
   implementors of the base LFB library should not be limited by the
   examples.

8.1.  IP Forwardings

   IP packets to be forwarded are from interfaces conneted via a kind of
   media to outer networks.  A Port LFB receives link layer packets.  CE
   may control the port LFB status by the LFB components defined in the
   library.  Link layer packets are delivered to a decapsulation LFB to
   decapsulate to IP packets.  The LFB also provides IP packet
   distinguishing by classifying IP packet according to its types like
   IPv4 or IPv6, unicast or multicast, and ARP packet.  The packet type
   information is included in a IPPacketType metadata and the metadata
   is associated with every decapsulated IP packet.

   Followed decapsulation LFBs are usually IP validation LFBs which
   further validate IP packets according to IP protocol.  The LFB also
   distinguishes if the IP packets are exceptional packets like ICMP
   packets other than IP packets to be further forwarded.  The
   exceptional packets are then associated with metadata indicating the
   packet types and delivered to metadata classifier for specific



Wang, et al.            Expires September 4, 2010              [Page 75]


Internet-Draft             ForCES LFB Library                 March 2010


   classification and further processing.

   Validated IP unicast packets for forwarding are delivered to unicast
   Longes Prifix Match(UcastLPM) LFB, which produce nexthop information
   for forwarding.  The nexthop information is represented by a
   nexthopID metadata.

   IP packets with associated nexthop metadata are delivered to the
   NextHopApplicator LFB.  The LFB decides output ports for the IP
   packets.  Note that when IP packets need to traverse FEs for
   forwarding, the LFB may also only decides the local FE output port to
   the other FE and makes the packet to carry the nexthop information to
   that FE.

   IP packets with nexthop applied are then encapsulated by a link layer
   encapsulation LFB according to the egress media and put on to the
   appropriate output ports.  In this process, address resolution LFBs
   may have to be applied to decide the link layer output addresses for
   the packets.  Moreover, the queue management LFBs and scheduler LFBs
   may be applied in the process to achieve individual QoS requirements.

   Figure 1 shows the typical LFB processing path for the IPv4 unicast
   forwarding case.

   Figure 1.  (TBD)

   Figure 2 shows the typical LFB processing path for the IPv6 unicast
   forwarding case.

   Figure 2.  (TBD)

8.2.  Address Resolution

   TBD

8.3.  ICMP

   TBD

8.4.  Running Routing Protocol

   TBD

8.5.  Network Management

   TBD





Wang, et al.            Expires September 4, 2010              [Page 76]


Internet-Draft             ForCES LFB Library                 March 2010


9.  Contributors

   The authors would like to thank Jamal Hadi Salim and Ligang Dong who
   made a major contribution to the development of this document.

      Jamal Hadi Salim
      Mojatatu Networks
      Ottawa, Ontario
      Canada
      Email: hadi@mojatatu.com

      Ligang Dong
      Zhejiang Gongshang University
      149 Jiaogong Road
      Hangzhou 310035
      P.R.China
      Phone: +86-571-28877751
      EMail: donglg@mail.zjgsu.edu.cn

































Wang, et al.            Expires September 4, 2010              [Page 77]


Internet-Draft             ForCES LFB Library                 March 2010


10.  Acknowledgements

   This document is based on earlier documents from Joel Halpern, Ligang
   Dong, Fenggen Jia and Weiming Wang.















































Wang, et al.            Expires September 4, 2010              [Page 78]


Internet-Draft             ForCES LFB Library                 March 2010


11.  IANA Considerations

   (TBD)
















































Wang, et al.            Expires September 4, 2010              [Page 79]


Internet-Draft             ForCES LFB Library                 March 2010


12.  Security Considerations

   These definitions if used by an FE to support ForCES create
   manipulable entities on the FE.  Manipulation of such objects can
   produce almost unlimited effects on the FE.  FEs should ensure that
   only properly authenticated ForCES protocol participants are
   performing such manipulations.  Thus the security issues with this
   protocol are defined in the FE-protocol [I-D.ietf-forces-protocol].











































Wang, et al.            Expires September 4, 2010              [Page 80]


Internet-Draft             ForCES LFB Library                 March 2010


13.  References

13.1.  Normative References

   [I-D.ietf-forces-model]
              Halpern, J. and J. Salim, "ForCES Forwarding Element
              Model", draft-ietf-forces-model-16 (work in progress),
              October 2008.

   [I-D.ietf-forces-protocol]
              Dong, L., Doria, A., Gopal, R., HAAS, R., Salim, J.,
              Khosravi, H., and W. Wang, "ForCES Protocol
              Specification", draft-ietf-forces-protocol-22 (work in
              progress), March 2009.

13.2.  Informative References

   [RFC1812]  Baker, F., "Requirements for IP Version 4 Routers",
              RFC 1812, June 1995.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2629]  Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
              June 1999.

   [RFC3552]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC
              Text on Security Considerations", BCP 72, RFC 3552,
              July 2003.

   [RFC3654]  Khosravi, H. and T. Anderson, "Requirements for Separation
              of IP Control and Forwarding", RFC 3654, November 2003.

   [RFC3746]  Yang, L., Dantu, R., Anderson, T., and R. Gopal,
              "Forwarding and Control Element Separation (ForCES)
              Framework", RFC 3746, April 2004.

   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.











Wang, et al.            Expires September 4, 2010              [Page 81]


Internet-Draft             ForCES LFB Library                 March 2010


Authors' Addresses

   Weiming Wang
   Zhejiang Gongshang University
   18, Xuezheng Str., Xiasha University Town
   Hangzhou,   310018
   P.R.China

   Phone: +86-571-28877721
   Email: wmwang@mail.zjgsu.edu.cn


   Evangelos Haleplidis
   University of Patras
   Patras,
   Greece

   Email: ehalep@ece.upatras.gr


   Kentaro Ogawa
   NTT Corporation
   Tokyo,
   Japan

   Email: ogawa.kentaro@lab.ntt.co.jp


   Fenggen Jia
   National Digital Switching Center(NDSC)
   Jianxue Road
   Zhengzhou,   452000
   P.R.China

   Phone: +86-571-28877751
   Email: jfg@mail.ndsc.com.cn,fgjia@mail.zjgsu.edu.cn


   Halpern Joel
   Ericsson
   P.O. Box 6049
   Leesburg,   20178
   VA

   Phone: +1 703 371 3043
   Email: jhalpern@redback.com





Wang, et al.            Expires September 4, 2010              [Page 82]