HTTPbis Working Group                                          M. Belshe
Internet-Draft                                                     Twist
Intended status: Standards Track                                 R. Peon
Expires: June 7, 2014                                        Google, Inc
                                                         M. Thomson, Ed.
                                                               Microsoft
                                                        A. Melnikov, Ed.
                                                               Isode Ltd
                                                        December 4, 2013


                Hypertext Transfer Protocol version 2.0
                      draft-ietf-httpbis-http2-09

Abstract

   This specification describes an optimized expression of the syntax of
   the Hypertext Transfer Protocol (HTTP).  HTTP/2.0 enables a more
   efficient use of network resources and a reduced perception of
   latency by introducing header field compression and allowing multiple
   concurrent messages on the same connection.  It also introduces
   unsolicited push of representations from servers to clients.

   This document is an alternative to, but does not obsolete, the
   HTTP/1.1 message syntax.  HTTP's existing semantics remain unchanged.

   This version of the draft has been marked for implementation.
   Interoperability testing will occur in the HTTP/2.0 interim in
   Zurich, CH, starting 2014-01-22.  This replaces -08, which was
   originally identified as an implementation draft.

Editorial Note (To be removed by RFC Editor)

   Discussion of this draft takes place on the HTTPBIS working group
   mailing list (ietf-http-wg@w3.org), which is archived at
   <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

   Working Group information and related documents can be found at
   <http://tools.ietf.org/wg/httpbis/> (Wiki) and
   <https://github.com/http2/http2-spec> (source code and issues
   tracker).

   The changes in this draft are summarized in Appendix A.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.



Belshe, et al.            Expires June 7, 2014                  [Page 1]


Internet-Draft                  HTTP/2.0                   December 2013


   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 7, 2014.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  5
     1.1.  Document Organization  . . . . . . . . . . . . . . . . . .  5
     1.2.  Conventions and Terminology  . . . . . . . . . . . . . . .  6
   2.  HTTP/2.0 Protocol Overview . . . . . . . . . . . . . . . . . .  6
     2.1.  HTTP Frames  . . . . . . . . . . . . . . . . . . . . . . .  7
     2.2.  HTTP Multiplexing  . . . . . . . . . . . . . . . . . . . .  7
     2.3.  HTTP Semantics . . . . . . . . . . . . . . . . . . . . . .  7
   3.  Starting HTTP/2.0  . . . . . . . . . . . . . . . . . . . . . .  7
     3.1.  HTTP/2.0 Version Identification  . . . . . . . . . . . . .  7
     3.2.  Starting HTTP/2.0 for "http" URIs  . . . . . . . . . . . .  8
       3.2.1.  HTTP2-Settings Header Field  . . . . . . . . . . . . . 10
     3.3.  Starting HTTP/2.0 for "https" URIs . . . . . . . . . . . . 10
     3.4.  Starting HTTP/2.0 with Prior Knowledge . . . . . . . . . . 10
     3.5.  HTTP/2.0 Connection Header . . . . . . . . . . . . . . . . 11
   4.  HTTP Frames  . . . . . . . . . . . . . . . . . . . . . . . . . 12
     4.1.  Frame Format . . . . . . . . . . . . . . . . . . . . . . . 12
     4.2.  Frame Size . . . . . . . . . . . . . . . . . . . . . . . . 13
     4.3.  Header Compression and Decompression . . . . . . . . . . . 13
   5.  Streams and Multiplexing . . . . . . . . . . . . . . . . . . . 14



Belshe, et al.            Expires June 7, 2014                  [Page 2]


Internet-Draft                  HTTP/2.0                   December 2013


     5.1.  Stream States  . . . . . . . . . . . . . . . . . . . . . . 15
       5.1.1.  Stream Identifiers . . . . . . . . . . . . . . . . . . 19
       5.1.2.  Stream Concurrency . . . . . . . . . . . . . . . . . . 19
     5.2.  Flow Control . . . . . . . . . . . . . . . . . . . . . . . 20
       5.2.1.  Flow Control Principles  . . . . . . . . . . . . . . . 20
       5.2.2.  Appropriate Use of Flow Control  . . . . . . . . . . . 21
     5.3.  Stream priority  . . . . . . . . . . . . . . . . . . . . . 22
     5.4.  Error Handling . . . . . . . . . . . . . . . . . . . . . . 22
       5.4.1.  Connection Error Handling  . . . . . . . . . . . . . . 23
       5.4.2.  Stream Error Handling  . . . . . . . . . . . . . . . . 23
       5.4.3.  Connection Termination . . . . . . . . . . . . . . . . 24
   6.  Frame Definitions  . . . . . . . . . . . . . . . . . . . . . . 24
     6.1.  DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
     6.2.  HEADERS  . . . . . . . . . . . . . . . . . . . . . . . . . 25
     6.3.  PRIORITY . . . . . . . . . . . . . . . . . . . . . . . . . 26
     6.4.  RST_STREAM . . . . . . . . . . . . . . . . . . . . . . . . 26
     6.5.  SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . 27
       6.5.1.  Setting Format . . . . . . . . . . . . . . . . . . . . 28
       6.5.2.  Defined Settings . . . . . . . . . . . . . . . . . . . 29
       6.5.3.  Settings Synchronization . . . . . . . . . . . . . . . 30
     6.6.  PUSH_PROMISE . . . . . . . . . . . . . . . . . . . . . . . 30
     6.7.  PING . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
     6.8.  GOAWAY . . . . . . . . . . . . . . . . . . . . . . . . . . 32
     6.9.  WINDOW_UPDATE  . . . . . . . . . . . . . . . . . . . . . . 34
       6.9.1.  The Flow Control Window  . . . . . . . . . . . . . . . 36
       6.9.2.  Initial Flow Control Window Size . . . . . . . . . . . 36
       6.9.3.  Reducing the Stream Window Size  . . . . . . . . . . . 37
       6.9.4.  Ending Flow Control  . . . . . . . . . . . . . . . . . 38
     6.10. CONTINUATION . . . . . . . . . . . . . . . . . . . . . . . 38
   7.  Error Codes  . . . . . . . . . . . . . . . . . . . . . . . . . 39
   8.  HTTP Message Exchanges . . . . . . . . . . . . . . . . . . . . 40
     8.1.  HTTP Request/Response Exchange . . . . . . . . . . . . . . 40
       8.1.1.  Informational Responses  . . . . . . . . . . . . . . . 41
       8.1.2.  Examples . . . . . . . . . . . . . . . . . . . . . . . 42
       8.1.3.  HTTP Header Fields . . . . . . . . . . . . . . . . . . 44
       8.1.4.  Request Reliability Mechanisms in HTTP/2.0 . . . . . . 47
     8.2.  Server Push  . . . . . . . . . . . . . . . . . . . . . . . 48
       8.2.1.  Push Requests  . . . . . . . . . . . . . . . . . . . . 48
       8.2.2.  Push Responses . . . . . . . . . . . . . . . . . . . . 49
     8.3.  The CONNECT Method . . . . . . . . . . . . . . . . . . . . 50
   9.  Additional HTTP Requirements/Considerations  . . . . . . . . . 51
     9.1.  Connection Management  . . . . . . . . . . . . . . . . . . 51
     9.2.  Use of TLS Features  . . . . . . . . . . . . . . . . . . . 52
     9.3.  GZip Content-Encoding  . . . . . . . . . . . . . . . . . . 52
   10. Security Considerations  . . . . . . . . . . . . . . . . . . . 52
     10.1. Server Authority and Same-Origin . . . . . . . . . . . . . 53
     10.2. Cross-Protocol Attacks . . . . . . . . . . . . . . . . . . 53
     10.3. Intermediary Encapsulation Attacks . . . . . . . . . . . . 53



Belshe, et al.            Expires June 7, 2014                  [Page 3]


Internet-Draft                  HTTP/2.0                   December 2013


     10.4. Cacheability of Pushed Resources . . . . . . . . . . . . . 54
     10.5. Denial of Service Considerations . . . . . . . . . . . . . 54
   11. Privacy Considerations . . . . . . . . . . . . . . . . . . . . 55
   12. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 55
     12.1. Registration of HTTP/2.0 Identification String . . . . . . 55
     12.2. Frame Type Registry  . . . . . . . . . . . . . . . . . . . 56
     12.3. Error Code Registry  . . . . . . . . . . . . . . . . . . . 56
     12.4. Settings Registry  . . . . . . . . . . . . . . . . . . . . 57
     12.5. HTTP2-Settings Header Field Registration . . . . . . . . . 58
   13. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 58
   14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 58
     14.1. Normative References . . . . . . . . . . . . . . . . . . . 58
     14.2. Informative References . . . . . . . . . . . . . . . . . . 60
   Appendix A.  Change Log (to be removed by RFC Editor before
                publication)  . . . . . . . . . . . . . . . . . . . . 61
     A.1.  Since draft-ietf-httpbis-http2-08  . . . . . . . . . . . . 61
     A.2.  Since draft-ietf-httpbis-http2-07  . . . . . . . . . . . . 61
     A.3.  Since draft-ietf-httpbis-http2-06  . . . . . . . . . . . . 61
     A.4.  Since draft-ietf-httpbis-http2-05  . . . . . . . . . . . . 61
     A.5.  Since draft-ietf-httpbis-http2-04  . . . . . . . . . . . . 61
     A.6.  Since draft-ietf-httpbis-http2-03  . . . . . . . . . . . . 62
     A.7.  Since draft-ietf-httpbis-http2-02  . . . . . . . . . . . . 62
     A.8.  Since draft-ietf-httpbis-http2-01  . . . . . . . . . . . . 62
     A.9.  Since draft-ietf-httpbis-http2-00  . . . . . . . . . . . . 63
     A.10. Since draft-mbelshe-httpbis-spdy-00  . . . . . . . . . . . 63


























Belshe, et al.            Expires June 7, 2014                  [Page 4]


Internet-Draft                  HTTP/2.0                   December 2013


1.  Introduction

   The Hypertext Transfer Protocol (HTTP) is a wildly successful
   protocol.  However, the HTTP/1.1 message format ([HTTP-p1], Section
   3) is optimized for implementation simplicity and accessibility, not
   application performance.  As such it has several characteristics that
   have a negative overall effect on application performance.

   In particular, HTTP/1.0 only allows one request to be outstanding at
   a time on a given connection.  HTTP/1.1 pipelining only partially
   addressed request concurrency and suffers from head-of-line blocking.
   Therefore, clients that need to make many requests typically use
   multiple connections to a server in order to reduce latency.

   Furthermore, HTTP/1.1 header fields are often repetitive and verbose,
   which, in addition to generating more or larger network packets, can
   cause the small initial TCP congestion window to quickly fill.  This
   can result in excessive latency when multiple requests are made on a
   single new TCP connection.

   This document addresses these issues by defining an optimized mapping
   of HTTP's semantics to an underlying connection.  Specifically, it
   allows interleaving of request and response messages on the same
   connection and uses an efficient coding for HTTP header fields.  It
   also allows prioritization of requests, letting more important
   requests complete more quickly, further improving performance.

   The resulting protocol is designed to be more friendly to the
   network, because fewer TCP connections can be used, in comparison to
   HTTP/1.x.  This means less competition with other flows, and longer-
   lived connections, which in turn leads to better utilization of
   available network capacity.

   Finally, this encapsulation also enables more scalable processing of
   messages through use of binary message framing.

1.1.  Document Organization

   The HTTP/2.0 Specification is split into three parts: starting
   HTTP/2.0 (Section 3), which covers how a HTTP/2.0 connection is
   initiated; a framing layer (Section 4), which multiplexes a single
   TCP connection into independent frames of various types; and an HTTP
   layer (Section 8), which specifies the mechanism for expressing HTTP
   interactions using the framing layer.  While some of the framing
   layer concepts are isolated from HTTP, building a generic framing
   layer has not been a goal.  The framing layer is tailored to the
   needs of the HTTP protocol and server push.




Belshe, et al.            Expires June 7, 2014                  [Page 5]


Internet-Draft                  HTTP/2.0                   December 2013


1.2.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   All numeric values are in network byte order.  Values are unsigned
   unless otherwise indicated.  Literal values are provided in decimal
   or hexadecimal as appropriate.  Hexadecimal literals are prefixed
   with "0x" to distinguish them from decimal literals.

   The following terms are used:

   client:  The endpoint initiating the HTTP connection.

   connection:  A transport-level connection between two endpoints.

   connection error:  An error on the HTTP/2.0 connection.

   endpoint:  Either the client or server of the connection.

   frame:  The smallest unit of communication within an HTTP/2.0
      connection, consisting of a header and a variable-length sequence
      of bytes structured according to the frame type.

   peer:  An endpoint.  When discussing a particular endpoint, "peer"
      refers to the endpoint that is remote to the primary subject of
      discussion.

   receiver:  An endpoint that is receiving frames.

   sender:  An endpoint that is transmitting frames.

   server:  The endpoint which did not initiate the HTTP connection.

   stream:  A bi-directional flow of frames across a virtual channel
      within the HTTP/2.0 connection.

   stream error:  An error on the individual HTTP/2.0 stream.

2.  HTTP/2.0 Protocol Overview

   HTTP/2.0 provides an optimized transport for HTTP semantics.

   An HTTP/2.0 connection is an application level protocol running on
   top of a TCP connection ([TCP]).  The client is the TCP connection
   initiator.




Belshe, et al.            Expires June 7, 2014                  [Page 6]


Internet-Draft                  HTTP/2.0                   December 2013


   This document describes the HTTP/2.0 protocol using a logical
   structure that is formed of three parts: framing, streams, and
   application mapping.  This structure is provided primarily as an aid
   to specification, implementations are free to diverge from this
   structure as necessary.

2.1.  HTTP Frames

   HTTP/2.0 provides an efficient serialization of HTTP semantics.  HTTP
   requests and responses are encoded into length-prefixed frames (see
   Section 4.1).

   HTTP header fields are compressed into a series of frames that
   contain header block fragments (see Section 4.3).

2.2.  HTTP Multiplexing

   HTTP/2.0 provides the ability to multiplex HTTP requests and
   responses over a single connection.  Multiple requests or responses
   can be sent concurrently on a connection using streams (Section 5).
   In order to maintain independent streams, flow control and
   prioritization are necessary.

2.3.  HTTP Semantics

   HTTP/2.0 defines how HTTP requests and responses are mapped to
   streams (see Section 8.1) and introduces a new interaction model,
   server push (Section 8.2).

3.  Starting HTTP/2.0

   HTTP/2.0 uses the same "http" and "https" URI schemes used by
   HTTP/1.1.  HTTP/2.0 shares the same default port numbers: 80 for
   "http" URIs and 443 for "https" URIs.  As a result, implementations
   processing requests for target resource URIs like
   "http://example.org/foo" or "https://example.com/bar" are required to
   first discover whether the upstream server (the immediate peer to
   which the client wishes to establish a connection) supports HTTP/2.0.

   The means by which support for HTTP/2.0 is determined is different
   for "http" and "https" URIs.  Discovery for "http" URIs is described
   in Section 3.2.  Discovery for "https" URIs is described in
   Section 3.3.

3.1.  HTTP/2.0 Version Identification

   The protocol defined in this document is identified using the string
   "HTTP/2.0".  This identification is used in the HTTP/1.1 Upgrade



Belshe, et al.            Expires June 7, 2014                  [Page 7]


Internet-Draft                  HTTP/2.0                   December 2013


   header field, in the TLS application layer protocol negotiation
   extension [TLSALPN] field, and other places where protocol
   identification is required.

   Negotiating "HTTP/2.0" implies the use of the transport, security,
   framing and message semantics described in this document.

   [[anchor6: Editor's Note: please remove the remainder of this section
   prior to the publication of a final version of this document.]]

   Only implementations of the final, published RFC can identify
   themselves as "HTTP/2.0".  Until such an RFC exists, implementations
   MUST NOT identify themselves using "HTTP/2.0".

   Examples and text throughout the rest of this document use "HTTP/2.0"
   as a matter of editorial convenience only.  Implementations of draft
   versions MUST NOT identify using this string.  The exception to this
   rule is the string included in the connection header sent by clients
   immediately after establishing an HTTP/2.0 connection (see
   Section 3.5); this fixed length sequence of octets does not change.

   Implementations of draft versions of the protocol MUST add the string
   "-draft-" and the corresponding draft number to the identifier before
   the separator ('/').  For example, draft-ietf-httpbis-http2-03 is
   identified using the string "HTTP-draft-03/2.0".

   Non-compatible experiments that are based on these draft versions
   MUST instead replace the string "draft" with a different identifier.
   For example, an experimental implementation of packet mood-based
   encoding based on draft-ietf-httpbis-http2-07 might identify itself
   as "HTTP-emo-07/2.0".  Note that any label MUST conform to the
   "token" syntax defined in Section 3.2.6 of [HTTP-p1].  Experimenters
   are encouraged to coordinate their experiments on the
   ietf-http-wg@w3.org mailing list.

3.2.  Starting HTTP/2.0 for "http" URIs

   A client that makes a request to an "http" URI without prior
   knowledge about support for HTTP/2.0 uses the HTTP Upgrade mechanism
   (Section 6.7 of [HTTP-p1]).  The client makes an HTTP/1.1 request
   that includes an Upgrade header field identifying HTTP/2.0.  The
   HTTP/1.1 request MUST include exactly one HTTP2-Settings
   (Section 3.2.1) header field.








Belshe, et al.            Expires June 7, 2014                  [Page 8]


Internet-Draft                  HTTP/2.0                   December 2013


   For example:

     GET /default.htm HTTP/1.1
     Host: server.example.com
     Connection: Upgrade, HTTP2-Settings
     Upgrade: HTTP/2.0
     HTTP2-Settings: <base64url encoding of HTTP/2.0 SETTINGS payload>

   Requests that contain an entity body MUST be sent in their entirety
   before the client can send HTTP/2.0 frames.  This means that a large
   request entity can block the use of the connection until it is
   completely sent.

   If concurrency of an initial request with subsequent requests is
   important, a small request can be used to perform the upgrade to
   HTTP/2.0, at the cost of an additional round-trip.

   A server that does not support HTTP/2.0 can respond to the request as
   though the Upgrade header field were absent:

     HTTP/1.1 200 OK
     Content-Length: 243
     Content-Type: text/html

     ...

   A server that supports HTTP/2.0 can accept the upgrade with a 101
   (Switching Protocols) response.  After the empty line that terminates
   the 101 response, the server can begin sending HTTP/2.0 frames.
   These frames MUST include a response to the request that initiated
   the Upgrade.

     HTTP/1.1 101 Switching Protocols
     Connection: Upgrade
     Upgrade: HTTP/2.0

     [ HTTP/2.0 connection ...

   The first HTTP/2.0 frame sent by the server is a SETTINGS frame
   (Section 6.5).  Upon receiving the 101 response, the client sends a
   connection header (Section 3.5), which includes a SETTINGS frame.

   The HTTP/1.1 request that is sent prior to upgrade is assigned stream
   identifier 1 and is assigned the highest possible priority.  Stream 1
   is implicitly half closed from the client toward the server, since
   the request is completed as an HTTP/1.1 request.  After commencing
   the HTTP/2.0 connection, stream 1 is used for the response.




Belshe, et al.            Expires June 7, 2014                  [Page 9]


Internet-Draft                  HTTP/2.0                   December 2013


3.2.1.  HTTP2-Settings Header Field

   A request that upgrades from HTTP/1.1 to HTTP/2.0 MUST include
   exactly one "HTTP2-Settings" header field.  The "HTTP2-Settings"
   header field is a hop-by-hop header field that includes settings that
   govern the HTTP/2.0 connection, provided in anticipation of the
   server accepting the request to upgrade.  A server MUST reject an
   attempt to upgrade if this header field is not present.

     HTTP2-Settings    = token68

   The content of the "HTTP2-Settings" header field is the payload of a
   SETTINGS frame (Section 6.5), encoded as a base64url string (that is,
   the URL- and filename-safe Base64 encoding described in Section 5 of
   [RFC4648], with any trailing '=' characters omitted).  The ABNF
   [RFC5234] production for "token68" is defined in Section 2.1 of
   [HTTP-p7].

   The client MUST include values for the following settings
   (Section 6.5.1):

   o  SETTINGS_MAX_CONCURRENT_STREAMS

   o  SETTINGS_INITIAL_WINDOW_SIZE

   As a hop-by-hop header field, the "Connection" header field MUST
   include a value of "HTTP2-Settings" in addition to "Upgrade" when
   upgrading to HTTP/2.0.

   A server decodes and interprets these values as it would any other
   SETTINGS frame.  Providing these values in the Upgrade request
   ensures that the protocol does not require default values for the
   above settings, and gives a client an opportunity to provide other
   settings prior to receiving any frames from the server.

3.3.  Starting HTTP/2.0 for "https" URIs

   A client that makes a request to an "https" URI without prior
   knowledge about support for HTTP/2.0 uses TLS [TLS12] with the
   application layer protocol negotiation extension [TLSALPN].

   Once TLS negotiation is complete, both the client and the server send
   a connection header (Section 3.5).

3.4.  Starting HTTP/2.0 with Prior Knowledge

   A client can learn that a particular server supports HTTP/2.0 by
   other means.  A client MAY immediately send HTTP/2.0 frames to a



Belshe, et al.            Expires June 7, 2014                 [Page 10]


Internet-Draft                  HTTP/2.0                   December 2013


   server that is known to support HTTP/2.0, after the connection header
   (Section 3.5).  This only affects the resolution of "http" URIs;
   servers supporting HTTP/2.0 are required to support protocol
   negotiation in TLS [TLSALPN] for "https" URIs.

   Prior support for HTTP/2.0 is not a strong signal that a given server
   will support HTTP/2.0 for future connections.  It is possible for
   server configurations to change or for configurations to differ
   between instances in clustered server.  Interception proxies (a.k.a.
   "transparent" proxies) are another source of variability.

3.5.  HTTP/2.0 Connection Header

   Upon establishment of a TCP connection and determination that
   HTTP/2.0 will be used by both peers, each endpoint MUST send a
   connection header as a final confirmation and to establish the
   initial settings for the HTTP/2.0 connection.

   The client connection header starts with a sequence of 24 octets,
   which in hex notation are:

     505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

   (the string "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n").  This sequence is
   followed by a SETTINGS frame (Section 6.5).  The client sends the
   client connection header immediately upon receipt of a 101 Switching
   Protocols response (indicating a successful upgrade), or as the first
   application data octets of a TLS connection.  If starting an HTTP/2.0
   connection with prior knowledge of server support for the protocol,
   the client connection header is sent upon connection establishment.

      The client connection header is selected so that a large
      proportion of HTTP/1.1 or HTTP/1.0 servers and intermediaries do
      not attempt to process further frames.  Note that this does not
      address the concerns raised in [TALKING].

   The server connection header consists of just a SETTINGS frame
   (Section 6.5) that MUST be the first frame the server sends in the
   HTTP/2.0 connection.

   To avoid unnecessary latency, clients are permitted to send
   additional frames to the server immediately after sending the client
   connection header, without waiting to receive the server connection
   header.  It is important to note, however, that the server connection
   header SETTINGS frame might include parameters that necessarily alter
   how a client is expected to communicate with the server.  Upon
   receiving the SETTINGS frame, the client is expected to honor any
   parameters established.



Belshe, et al.            Expires June 7, 2014                 [Page 11]


Internet-Draft                  HTTP/2.0                   December 2013


   Clients and servers MUST terminate the TCP connection if either peer
   does not begin with a valid connection header.  A GOAWAY frame
   (Section 6.8) MAY be omitted if it is clear that the peer is not
   using HTTP/2.0.

4.  HTTP Frames

   Once the HTTP/2.0 connection is established, endpoints can begin
   exchanging frames.

4.1.  Frame Format

   All frames begin with an 8-octet header followed by a payload of
   between 0 and 16,383 octets.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | R |     Length (14)           |   Type (8)    |   Flags (8)   |
    +-+-+-----------+---------------+-------------------------------+
    |R|                 Stream Identifier (31)                      |
    +-+-------------------------------------------------------------+
    |                   Frame Payload (0...)                      ...
    +---------------------------------------------------------------+

                               Frame Header

   The fields of the frame header are defined as:

   R: A reserved 2-bit field.  The semantics of these bits are undefined
      and the bit MUST remain unset (0) when sending and MUST be ignored
      when receiving.

   Length:  The length of the frame payload expressed as an unsigned 14-
      bit integer.  The 8 octets of the frame header are not included in
      this value.

   Type:  The 8-bit type of the frame.  The frame type determines how
      the remainder of the frame header and payload are interpreted.
      Implementations MUST ignore frames of unsupported or unrecognized
      types.

   Flags:  An 8-bit field reserved for frame-type specific boolean
      flags.

      Flags are assigned semantics specific to the indicated frame type.
      Flags that have no defined semantics for a particular frame type
      MUST be ignored, and MUST be left unset (0) when sending.



Belshe, et al.            Expires June 7, 2014                 [Page 12]


Internet-Draft                  HTTP/2.0                   December 2013


   R: A reserved 1-bit field.  The semantics of this bit are undefined
      and the bit MUST remain unset (0) when sending and MUST be ignored
      when receiving.

   Stream Identifier:  A 31-bit stream identifier (see Section 5.1.1).
      The value 0 is reserved for frames that are associated with the
      connection as a whole as opposed to an individual stream.

   The structure and content of the frame payload is dependent entirely
   on the frame type.

4.2.  Frame Size

   The maximum size of a frame payload varies by frame type.  The
   absolute maximum size of a frame is 2^14-1 (16,383) octets.  All
   implementations SHOULD be capable of receiving and minimally
   processing frames up to this maximum size.

   Certain frame types, such as PING (see Section 6.7), impose
   additional limits on the amount of payload data allowed.  Likewise,
   additional size limits can be set by specific application uses (see
   Section 9).

   If a frame size exceeds any defined limit, or is too small to contain
   mandatory frame data, the endpoint MUST send a FRAME_SIZE_ERROR
   error.  Frame size errors in frames that affect connection-level
   state MUST be treated as a connection error (Section 5.4.1).

4.3.  Header Compression and Decompression

   A header field in HTTP/2.0 is a name-value pair with one or more
   associated values.  They are used within HTTP request and response
   messages as well as server push operations (see Section 8.2).

   Header sets are collections of zero or more header fields arranged at
   the application layer.  When transmitted over a connection, a header
   set is serialized into a header block using HTTP Header Compression
   [COMPRESSION].  The serialized header block is then divided into one
   or more octet sequences, called header block fragments, and
   transmitted within the payload of HEADERS (Section 6.2), PUSH_PROMISE
   (Section 6.6) or CONTINUATION (Section 6.10) frames.

   HTTP Header Compression does not preserve the relative ordering of
   header fields.  Header fields with multiple values are encoded into a
   single header field using a special delimiter, see Section 8.1.3.3.

   The Cookie header field [COOKIE] is treated specially by the HTTP
   mapping, see Section 8.1.3.4.



Belshe, et al.            Expires June 7, 2014                 [Page 13]


Internet-Draft                  HTTP/2.0                   December 2013


   A receiving endpoint reassembles the header block by concatenating
   the individual fragments, then decompresses the block to reconstruct
   the header set.

   A complete header block consists of either:

   o  a single HEADERS or PUSH_PROMISE frame each respectively with the
      END_HEADERS or END_PUSH_PROMISE flag set, or

   o  a HEADERS or PUSH_PROMISE frame with the END_HEADERS or
      END_PUSH_PROMISE flag cleared and one or more CONTINUATION frames,
      where the last CONTINUATION frame has the END_HEADER flag set.

   Header blocks MUST be transmitted as a contiguous sequence of frames,
   with no interleaved frames of any other type, or from any other
   stream.  The last frame in a sequence of HEADERS or CONTINUATION
   frames MUST have the END_HEADERS flag set.  The last frame in a
   sequence of PUSH_PROMISE or CONTINUATION frames MUST have the
   END_PUSH_PROMISE or END_HEADERS flag set (respectively).

   Header block fragments can only be sent as the payload of HEADERS,
   PUSH_PROMISE or CONTINUATION frames.  HEADERS, PUSH_PROMISE and
   CONTINUATION frames carry data that can modify the compression
   context maintained by a receiver.  An endpoint receiving HEADERS,
   PUSH_PROMISE or CONTINUATION frames MUST reassemble header blocks and
   perform decompression even if the frames are to be discarded.  A
   receiver MUST terminate the connection with a connection error
   (Section 5.4.1) of type COMPRESSION_ERROR, if it does not decompress
   a header block.

5.  Streams and Multiplexing

   A "stream" is an independent, bi-directional sequence of HEADERS and
   DATA frames exchanged between the client and server within an
   HTTP/2.0 connection.  Streams have several important characteristics:

   o  A single HTTP/2.0 connection can contain multiple concurrently
      open streams, with either endpoint interleaving frames from
      multiple streams.

   o  Streams can be established and used unilaterally or shared by
      either the client or server.

   o  Streams can be closed by either endpoint.

   o  The order in which frames are sent within a stream is significant.
      Recipients process frames in the order they are received.




Belshe, et al.            Expires June 7, 2014                 [Page 14]


Internet-Draft                  HTTP/2.0                   December 2013


   o  Streams are identified by an integer.  Stream identifiers are
      assigned to streams by the initiating endpoint.

5.1.  Stream States

   The lifecycle of a stream is shown in Figure 1.


                          +--------+
                    PP    |        |    PP
                 ,--------|  idle  |--------.
                /         |        |         \
               v          +--------+          v
        +----------+          |           +----------+
        |          |          | H         |          |
    ,---| reserved |          |           | reserved |---.
    |   | (local)  |          v           | (remote) |   |
    |   +----------+      +--------+      +----------+   |
    |      |          ES  |        |  ES          |      |
    |      | H    ,-------|  open  |-------.      | H    |
    |      |     /        |        |        \     |      |
    |      v    v         +--------+         v    v      |
    |   +----------+          |           +----------+   |
    |   |   half   |          |           |   half   |   |
    |   |  closed  |          | R         |  closed  |   |
    |   | (remote) |          |           | (local)  |   |
    |   +----------+          |           +----------+   |
    |        |                v                 |        |
    |        |  ES / R    +--------+  ES / R    |        |
    |        `----------->|        |<-----------'        |
    |  R                  | closed |                  R  |
    `-------------------->|        |<--------------------'
                          +--------+


                          Figure 1: Stream States

   Both endpoints have a subjective view of the state of a stream that
   could be different when frames are in transit.  Endpoints do not
   coordinate the creation of streams, they are created unilaterally by
   either endpoint.  The negative consequences of a mismatch in states
   are limited to the "closed" state after sending RST_STREAM, where
   frames might be received for some time after closing.

   Streams have the following states:






Belshe, et al.            Expires June 7, 2014                 [Page 15]


Internet-Draft                  HTTP/2.0                   December 2013


   idle:
      All streams start in the "idle" state.  In this state, no frames
      have been exchanged.

      The following transitions are valid from this state:

      *  Sending or receiving a HEADERS frame causes the stream to
         become "open".  The stream identifier is selected as described
         in Section 5.1.1.  The same HEADERS frame can also cause a
         stream to immediately become "half closed".

      *  Sending a PUSH_PROMISE frame marks the associated stream for
         later use.  The stream state for the reserved stream
         transitions to "reserved (local)".

      *  Receiving a PUSH_PROMISE frame marks the associated stream as
         reserved by the remote peer.  The state of the stream becomes
         "reserved (remote)".

   reserved (local):
      A stream in the "reserved (local)" state is one that has been
      promised by sending a PUSH_PROMISE frame.  A PUSH_PROMISE frame
      reserves an idle stream by associating the stream with an open
      stream that was initiated by the remote peer (see Section 8.2).

      In this state, only the following transitions are possible:

      *  The endpoint can send a HEADERS frame.  This causes the stream
         to open in a "half closed (remote)" state.

      *  Either endpoint can send a RST_STREAM frame to cause the stream
         to become "closed".  This releases the stream reservation.


      An endpoint MUST NOT send frames other than than HEADERS or
      RST_STREAM in this state.

      A PRIORITY frame MAY be received in this state.  Receiving any
      frame other than RST_STREAM, or PRIORITY MUST be treated as a
      connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   reserved (remote):
      A stream in the "reserved (remote)" state has been reserved by a
      remote peer.

      In this state, only the following transitions are possible:





Belshe, et al.            Expires June 7, 2014                 [Page 16]


Internet-Draft                  HTTP/2.0                   December 2013


      *  Receiving a HEADERS frame causes the stream to transition to
         "half closed (local)".

      *  Either endpoint can send a RST_STREAM frame to cause the stream
         to become "closed".  This releases the stream reservation.


      An endpoint MAY send a PRIORITY frame in this state to
      reprioritize the reserved stream.  An endpoint MUST NOT send any
      other type of frame other than RST_STREAM or PRIORITY.

      Receiving any other type of frame other than HEADERS or RST_STREAM
      MUST be treated as a connection error (Section 5.4.1) of type
      PROTOCOL_ERROR.

   open:
      A stream in the "open" state may be used by both peers to send
      frames of any type.  In this state, sending peers observe
      advertised stream level flow control limits (Section 5.2).

      From this state either endpoint can send a frame with an
      END_STREAM flag set, which causes the stream to transition into
      one of the "half closed" states: an endpoint sending an END_STREAM
      flag causes the stream state to become "half closed (local)"; an
      endpoint receiving an END_STREAM flag causes the stream state to
      become "half closed (remote)".  A HEADERS frame bearing an
      END_STREAM flag can be followed by CONTINUATION frames.

      Either endpoint can send a RST_STREAM frame from this state,
      causing it to transition immediately to "closed".

   half closed (local):
      A stream that is in the "half closed (local)" state cannot be used
      for sending frames.

      A stream transitions from this state to "closed" when a frame that
      contains an END_STREAM flag is received, or when either peer sends
      a RST_STREAM frame.  A HEADERS frame bearing an END_STREAM flag
      can be followed by CONTINUATION frames.

      A receiver can ignore WINDOW_UPDATE or PRIORITY frames in this
      state.  These frame types might arrive for a short period after a
      frame bearing the END_STREAM flag is sent.

   half closed (remote):
      A stream that is "half closed (remote)" is no longer being used by
      the peer to send frames.  In this state, an endpoint is no longer
      obligated to maintain a receiver flow control window if it



Belshe, et al.            Expires June 7, 2014                 [Page 17]


Internet-Draft                  HTTP/2.0                   December 2013


      performs flow control.

      If an endpoint receives additional frames for a stream that is in
      this state, other than CONTINUATION frames, it MUST respond with a
      stream error (Section 5.4.2) of type STREAM_CLOSED.

      A stream can transition from this state to "closed" by sending a
      frame that contains a END_STREAM flag, or when either peer sends a
      RST_STREAM frame.

   closed:
      The "closed" state is the terminal state.

      An endpoint MUST NOT send frames on a closed stream.  An endpoint
      that receives any frame after receiving a RST_STREAM MUST treat
      that as a stream error (Section 5.4.2) of type STREAM_CLOSED.
      Similarly, an endpoint that receives any frame after receiving a
      DATA frame with the END_STREAM flag set, or any frame except a
      CONTINUATION frame after receiving a HEADERS frame with a
      END_STREAM flag set MUST treat that as a stream error
      (Section 5.4.2) of type STREAM_CLOSED.

      WINDOW_UPDATE, PRIORITY, or RST_STREAM frames can be received in
      this state for a short period after a DATA or HEADERS frame
      containing an END_STREAM flag is sent.  Until the remote peer
      receives and processes the frame bearing the END_STREAM flag, it
      might send frame of any of these types.  Endpoints MUST ignore
      WINDOW_UPDATE, PRIORITY, or RST_STREAM frames received in this
      state, though endpoints MAY choose to treat frames that arrive a
      significant time after sending END_STREAM as a connection error
      (Section 5.4.1) of type PROTOCOL_ERROR.

      If this state is reached as a result of sending a RST_STREAM
      frame, the peer that receives the RST_STREAM might have already
      sent - or enqueued for sending - frames on the stream that cannot
      be withdrawn.  An endpoint MUST ignore frames that it receives on
      closed streams after it has sent a RST_STREAM frame.  An endpoint
      MAY choose to limit the period over which it ignores frames and
      treat frames that arrive after this time as being in error.

      Flow controlled frames (i.e., DATA) received after sending
      RST_STREAM are counted toward the connection flow control window.
      Even though these frames might be ignored, because they are sent
      before the sender receives the RST_STREAM, the sender will
      consider the frames to count against the flow control window.

      An endpoint might receive a PUSH_PROMISE frame after it sends
      RST_STREAM.  PUSH_PROMISE causes a stream to become "reserved".



Belshe, et al.            Expires June 7, 2014                 [Page 18]


Internet-Draft                  HTTP/2.0                   December 2013


      The RST_STREAM does not cancel any promised stream.  Therefore, if
      promised streams are not desired, a RST_STREAM can be used to
      close any of those streams.

   In the absence of more specific guidance elsewhere in this document,
   implementations SHOULD treat the receipt of a message that is not
   expressly permitted in the description of a state as a connection
   error (Section 5.4.1) of type PROTOCOL_ERROR.

5.1.1.  Stream Identifiers

   Streams are identified with an unsigned 31-bit integer.  Streams
   initiated by a client MUST use odd-numbered stream identifiers; those
   initiated by the server MUST use even-numbered stream identifiers.  A
   stream identifier of zero (0x0) is used for connection control
   message; the stream identifier zero MUST NOT be used to establish a
   new stream.

   A stream identifier of one (0x1) is used to respond to the HTTP/1.1
   request which was specified during Upgrade (see Section 3.2).  After
   the upgrade completes, stream 0x1 is "half closed (local)" to the
   client.  Therefore, stream 0x1 cannot be selected as a new stream
   identifier by a client that upgrades from HTTP/1.1.

   The identifier of a newly established stream MUST be numerically
   greater than all streams that the initiating endpoint has opened or
   reserved.  This governs streams that are opened using a HEADERS frame
   and streams that are reserved using PUSH_PROMISE.  An endpoint that
   receives an unexpected stream identifier MUST respond with a
   connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   The first use of a new stream identifier implicitly closes all
   streams in the "idle" state that might have been initiated by that
   peer with a lower-valued stream identifier.  For example, if a client
   sends a HEADERS frame on stream 7 without ever sending a frame on
   stream 5, then stream 5 transitions to the "closed" state when the
   first frame for stream 7 is sent or received.

   Stream identifiers cannot be reused.  Long-lived connections can
   result in endpoint exhausting the available range of stream
   identifiers.  A client that is unable to establish a new stream
   identifier can establish a new connection for new streams.

5.1.2.  Stream Concurrency

   A peer can limit the number of concurrently active streams using the
   SETTINGS_MAX_CONCURRENT_STREAMS parameters within a SETTINGS frame.
   The maximum concurrent streams setting is specific to each endpoint



Belshe, et al.            Expires June 7, 2014                 [Page 19]


Internet-Draft                  HTTP/2.0                   December 2013


   and applies only to the peer that receives the setting.  That is,
   clients specify the maximum number of concurrent streams the server
   can initiate, and servers specify the maximum number of concurrent
   streams the client can initiate.  Endpoints MUST NOT exceed the limit
   set by their peer.

   Streams that are in the "open" state, or either of the "half closed"
   states count toward the maximum number of streams that an endpoint is
   permitted to open.  Streams in any of these three states count toward
   the limit advertised in the SETTINGS_MAX_CONCURRENT_STREAMS setting
   (see Section 6.5.2).

   Streams in either of the "reserved" states do not count as open, even
   if a small amount of application state is retained to ensure that the
   promised stream can be successfully used.

5.2.  Flow Control

   Using streams for multiplexing introduces contention over use of the
   TCP connection, resulting in blocked streams.  A flow control scheme
   ensures that streams on the same connection do not destructively
   interfere with each other.  Flow control is used for both individual
   streams and for the connection as a whole.

   HTTP/2.0 provides for flow control through use of the WINDOW_UPDATE
   frame type.

5.2.1.  Flow Control Principles

   HTTP/2.0 stream flow control aims to allow for future improvements to
   flow control algorithms without requiring protocol changes.  Flow
   control in HTTP/2.0 has the following characteristics:

   1.  Flow control is hop-by-hop, not end-to-end.

   2.  Flow control is based on window update frames.  Receivers
       advertise how many bytes they are prepared to receive on a stream
       and for the entire connection.  This is a credit-based scheme.

   3.  Flow control is directional with overall control provided by the
       receiver.  A receiver MAY choose to set any window size that it
       desires for each stream and for the entire connection.  A sender
       MUST respect flow control limits imposed by a receiver.  Clients,
       servers and intermediaries all independently advertise their flow
       control preferences as a receiver and abide by the flow control
       limits set by their peer when sending.





Belshe, et al.            Expires June 7, 2014                 [Page 20]


Internet-Draft                  HTTP/2.0                   December 2013


   4.  The initial value for the flow control window is 65,535 bytes for
       both new streams and the overall connection.

   5.  The frame type determines whether flow control applies to a
       frame.  Of the frames specified in this document, only DATA
       frames are subject to flow control; all other frame types do not
       consume space in the advertised flow control window.  This
       ensures that important control frames are not blocked by flow
       control.

   6.  Flow control can be disabled by a receiver.  A receiver can
       choose to disable both forms of flow control by sending the
       SETTINGS_FLOW_CONTROL_OPTIONS setting.  See Ending Flow Control
       (Section 6.9.4) for more details.

   7.  HTTP/2.0 standardizes only the format of the WINDOW_UPDATE frame
       (Section 6.9).  This does not stipulate how a receiver decides
       when to send this frame or the value that it sends.  Nor does it
       specify how a sender chooses to send packets.  Implementations
       are able to select any algorithm that suits their needs.

   Implementations are also responsible for managing how requests and
   responses are sent based on priority; choosing how to avoid head of
   line blocking for requests; and managing the creation of new streams.
   Algorithm choices for these could interact with any flow control
   algorithm.

5.2.2.  Appropriate Use of Flow Control

   Flow control is defined to protect endpoints that are operating under
   resource constraints.  For example, a proxy needs to share memory
   between many connections, and also might have a slow upstream
   connection and a fast downstream one.  Flow control addresses cases
   where the receiver is unable process data on one stream, yet wants to
   continue to process other streams in the same connection.

   Deployments that do not require this capability SHOULD disable flow
   control for data that is being received.  Note that flow control
   cannot be disabled for sending.  Sending data is always subject to
   the flow control window advertised by the receiver.

   Deployments with constrained resources (for example, memory) MAY
   employ flow control to limit the amount of memory a peer can consume.
   Note, however, that this can lead to suboptimal use of available
   network resources if flow control is enabled without knowledge of the
   bandwidth-delay product (see [RFC1323]).

   Even with full awareness of the current bandwidth-delay product,



Belshe, et al.            Expires June 7, 2014                 [Page 21]


Internet-Draft                  HTTP/2.0                   December 2013


   implementation of flow control can be difficult.  When using flow
   control, the receive MUST read from the TCP receive buffer in a
   timely fashion.  Failure to do so could lead to a deadlock when
   critical frames, such as WINDOW_UPDATE, are not available to
   HTTP/2.0.  However, flow control can ensure that constrained
   resources are protected without any reduction in connection
   utilization.

5.3.  Stream priority

   The endpoint establishing a new stream can assign a priority for the
   stream.  Priority is represented as an unsigned 31-bit integer. 0
   represents the highest priority and 2^31-1 represents the lowest
   priority.

   The purpose of this value is to allow an endpoint to express the
   relative priority of a stream.  An endpoint can use this information
   to preferentially allocate resources to a stream.  Within HTTP/2.0,
   priority can be used to select streams for transmitting frames when
   there is limited capacity for sending.  For instance, an endpoint
   might enqueue frames for all concurrently active streams.  As
   transmission capacity becomes available, frames from higher priority
   streams might be sent before lower priority streams.

   Explicitly setting the priority for a stream does not guarantee any
   particular processing or transmission order for the stream relative
   to any other stream.  Nor is there any mechanism provided by which
   the initiator of a stream can force or require a receiving endpoint
   to process concurrent streams in a particular order.

   Unless explicitly specified in the HEADERS frame (Section 6.2) during
   stream creation, the default stream priority is 2^30.

   Pushed streams (Section 8.2) have a lower priority than their
   associated stream.  The promised stream inherits the priority value
   of the associated stream plus one, up to a maximum of 2^31-1.

5.4.  Error Handling

   HTTP/2.0 framing permits two classes of error:

   o  An error condition that renders the entire connection unusable is
      a connection error.

   o  An error in an individual stream is a stream error.

   A list of error codes is included in Section 7.




Belshe, et al.            Expires June 7, 2014                 [Page 22]


Internet-Draft                  HTTP/2.0                   December 2013


5.4.1.  Connection Error Handling

   A connection error is any error which prevents further processing of
   the framing layer or which corrupts any connection state.

   An endpoint that encounters a connection error SHOULD first send a
   GOAWAY frame (Section 6.8) with the stream identifier of the last
   stream that it successfully received from its peer.  The GOAWAY frame
   includes an error code that indicates why the connection is
   terminating.  After sending the GOAWAY frame, the endpoint MUST close
   the TCP connection.

   It is possible that the GOAWAY will not be reliably received by the
   receiving endpoint.  In the event of a connection error, GOAWAY only
   provides a best-effort attempt to communicate with the peer about why
   the connection is being terminated.

   An endpoint can end a connection at any time.  In particular, an
   endpoint MAY choose to treat a stream error as a connection error.
   Endpoints SHOULD send a GOAWAY frame when ending a connection, as
   long as circumstances permit it.

5.4.2.  Stream Error Handling

   A stream error is an error related to a specific stream identifier
   that does not affect processing of other streams.

   An endpoint that detects a stream error sends a RST_STREAM frame
   (Section 6.4) that contains the stream identifier of the stream where
   the error occurred.  The RST_STREAM frame includes an error code that
   indicates the type of error.

   A RST_STREAM is the last frame that an endpoint can send on a stream.
   The peer that sends the RST_STREAM frame MUST be prepared to receive
   any frames that were sent or enqueued for sending by the remote peer.
   These frames can be ignored, except where they modify connection
   state (such as the state maintained for header compression
   (Section 4.3)).

   Normally, an endpoint SHOULD NOT send more than one RST_STREAM frame
   for any stream.  However, an endpoint MAY send additional RST_STREAM
   frames if it receives frames on a closed stream after more than a
   round-trip time.  This behavior is permitted to deal with misbehaving
   implementations.

   An endpoint MUST NOT send a RST_STREAM in response to an RST_STREAM
   frame, to avoid looping.




Belshe, et al.            Expires June 7, 2014                 [Page 23]


Internet-Draft                  HTTP/2.0                   December 2013


5.4.3.  Connection Termination

   If the TCP connection is torn down while streams remain in open or
   half closed states, then the endpoint MUST assume that the stream was
   abnormally interrupted and could be incomplete.

6.  Frame Definitions

   This specification defines a number of frame types, each identified
   by a unique 8-bit type code.  Each frame type serves a distinct
   purpose either in the establishment and management of the connection
   as a whole, or of individual streams.

   The transmission of specific frame types can alter the state of a
   connection.  If endpoints fail to maintain a synchronized view of the
   connection state, successful communication within the connection will
   no longer be possible.  Therefore, it is important that endpoints
   have a shared comprehension of how the state is affected by the use
   any given frame.  Accordingly, while it is expected that new frame
   types will be introduced by extensions to this protocol, only frames
   defined by this document are permitted to alter the connection state.

6.1.  DATA

   DATA frames (type=0x0) convey arbitrary, variable-length sequences of
   octets associated with a stream.  One or more DATA frames are used,
   for instance, to carry HTTP request or response payloads.

   The DATA frame defines the following flags:

   END_STREAM (0x1):  Bit 1 being set indicates that this frame is the
      last that the endpoint will send for the identified stream.
      Setting this flag causes the stream to enter one of "half closed"
      states or "closed" state (Section 5.1).

   RESERVED (0x2):  Bit 2 is reserved for future use.

   DATA frames MUST be associated with a stream.  If a DATA frame is
   received whose stream identifier field is 0x0, the recipient MUST
   respond with a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   DATA frames are subject to flow control and can only be sent when a
   stream is in the "open" or "half closed (remote)" states.  If a DATA
   frame is received whose stream is not in "open" or "half closed
   (local)" state, the recipient MUST respond with a stream error
   (Section 5.4.2) of type STREAM_CLOSED.




Belshe, et al.            Expires June 7, 2014                 [Page 24]


Internet-Draft                  HTTP/2.0                   December 2013


6.2.  HEADERS

   The HEADERS frame (type=0x1) carries name-value pairs.  It is used to
   open a stream (Section 5.1).  HEADERS frames can be sent on a stream
   in the "open" or "half closed (remote)" states.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|                        Priority (31)                        |
    +-+-------------------------------------------------------------+
    |                   Header Block Fragment (*)                 ...
    +---------------------------------------------------------------+

                           HEADERS Frame Payload

   The HEADERS frame defines the following flags:

   END_STREAM (0x1):  Bit 1 being set indicates that the header block
      (Section 4.3) is the last that the endpoint will send for the
      identified stream.  Setting this flag causes the stream to enter
      one of "half closed" states (Section 5.1).

      A HEADERS frame that is followed by CONTINUATION frames carries
      the END_STREAM flag that signals the end of a stream.  A
      CONTINUATION frame cannot be used to terminate a stream.

   RESERVED (0x2):  Bit 2 is reserved for future use.

   END_HEADERS (0x4):  Bit 3 being set indicates that this frame
      contains an entire header block (Section 4.3) and is not followed
      by any CONTINUATION frames.

      A HEADERS frame without the END_HEADERS flag set MUST be followed
      by a CONTINUATION frame for the same stream.  A receiver MUST
      treat the receipt of any other type of frame or a frame on a
      different stream as a connection error (Section 5.4.1) of type
      PROTOCOL_ERROR.

   PRIORITY (0x8):  Bit 4 being set indicates that the first four octets
      of this frame contain a single reserved bit and a 31-bit priority;
      see Section 5.3.  If this bit is not set, the four bytes do not
      appear and the frame only contains a header block fragment.

   The payload of a HEADERS frame contains a header block fragment
   (Section 4.3).  A header block that does not fit within a HEADERS
   frame is continued in a CONTINUATION frame (Section 6.10).




Belshe, et al.            Expires June 7, 2014                 [Page 25]


Internet-Draft                  HTTP/2.0                   December 2013


   HEADERS frames MUST be associated with a stream.  If a HEADERS frame
   is received whose stream identifier field is 0x0, the recipient MUST
   respond with a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   The HEADERS frame changes the connection state as described in
   Section 4.3.

6.3.  PRIORITY

   The PRIORITY frame (type=0x2) specifies the sender-advised priority
   of a stream.  It can be sent at any time for an existing stream.
   This enables reprioritisation of existing streams.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|                        Priority (31)                        |
    +-+-------------------------------------------------------------+

                          PRIORITY Frame Payload

   The payload of a PRIORITY frame contains a single reserved bit and a
   31-bit priority.

   The PRIORITY frame does not define any flags.

   The PRIORITY frame is associated with an existing stream.  If a
   PRIORITY frame is received with a stream identifier of 0x0, the
   recipient MUST respond with a connection error (Section 5.4.1) of
   type PROTOCOL_ERROR.

   The PRIORITY frame can be sent on a stream in any of the "reserved
   (remote)", "open", "half-closed (local)", or "half closed (remote)"
   states, though it cannot be sent between consecutive frames that
   comprise a single header block (Section 4.3).  Note that this frame
   could arrive after processing or frame sending has completed, which
   would cause it to have no effect.  For a stream that is in the "half
   closed (remote)" state, this frame can only affect processing of the
   stream and not frame transmission.

6.4.  RST_STREAM

   The RST_STREAM frame (type=0x3) allows for abnormal termination of a
   stream.  When sent by the initiator of a stream, it indicates that
   they wish to cancel the stream or that an error condition has
   occurred.  When sent by the receiver of a stream, it indicates that
   either the receiver is rejecting the stream, requesting that the



Belshe, et al.            Expires June 7, 2014                 [Page 26]


Internet-Draft                  HTTP/2.0                   December 2013


   stream be cancelled or that an error condition has occurred.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Error Code (32)                        |
    +---------------------------------------------------------------+

                         RST_STREAM Frame Payload

   The RST_STREAM frame contains a single unsigned, 32-bit integer
   identifying the error code (Section 7).  The error code indicates why
   the stream is being terminated.

   The RST_STREAM frame does not define any flags.

   The RST_STREAM frame fully terminates the referenced stream and
   causes it to enter the closed state.  After receiving a RST_STREAM on
   a stream, the receiver MUST NOT send additional frames for that
   stream.  However, after sending the RST_STREAM, the sending endpoint
   MUST be prepared to receive and process additional frames sent on the
   stream that might have been sent by the peer prior to the arrival of
   the RST_STREAM.

   RST_STREAM frames MUST be associated with a stream.  If a RST_STREAM
   frame is received with a stream identifier of 0x0, the recipient MUST
   treat this as a connection error (Section 5.4.1) of type
   PROTOCOL_ERROR.

   RST_STREAM frames MUST NOT be sent for a stream in the "idle" state.
   If a RST_STREAM frame identifying an idle stream is received, the
   recipient MUST treat this as a connection error (Section 5.4.1) of
   type PROTOCOL_ERROR.

6.5.  SETTINGS

   The SETTINGS frame (type=0x4) conveys configuration parameters that
   affect how endpoints communicate.  The parameters are either
   constraints on peer behavior or preferences.

   Settings are not negotiated.  Settings describe characteristics of
   the sending peer, which are used by the receiving peer.  Different
   values for the same setting can be advertised by each peer.  For
   example, a client might set a high initial flow control window,
   whereas a server might set a lower value to conserve resources.

   SETTINGS frames MUST be sent at the start of a connection, and MAY be
   sent at any other time by either endpoint over the lifetime of the



Belshe, et al.            Expires June 7, 2014                 [Page 27]


Internet-Draft                  HTTP/2.0                   December 2013


   connection.

   Implementations MUST support all of the settings defined by this
   specification and MAY support additional settings defined by
   extensions.  Unsupported or unrecognized settings MUST be ignored.
   New settings MUST NOT be defined or implemented in a way that
   requires endpoints to understand them in order to communicate
   successfully.

   Each setting in a SETTINGS frame replaces the existing value for that
   setting.  Settings are processed in the order in which they appear,
   and a receiver of a SETTINGS frame does not need to maintain any
   state other than the current value of settings.  Therefore, the value
   of a setting is the last value that is seen by a receiver.  This
   permits the inclusion of the same settings multiple times in the same
   SETTINGS frame, though doing so does nothing other than waste
   connection capacity.

   The SETTINGS frame defines the following flag:

   ACK (0x1):  Bit 1 being set indicates that this frame acknowledges
      receipt and application of the peer's SETTINGS frame.  When this
      bit is set, the payload of the SETTINGS frame MUST be empty.
      Receipt of a SETTINGS frame with the ACK flag set and a length
      field value other than 0 MUST be treated as a connection error
      (Section 5.4.1) of type FRAME_SIZE_ERROR.  For more info, see
      Settings Synchronization (Section 6.5.3).

   SETTINGS frames always apply to a connection, never a single stream.
   The stream identifier for a settings frame MUST be zero.  If an
   endpoint receives a SETTINGS frame whose stream identifier field is
   anything other than 0x0, the endpoint MUST respond with a connection
   error (Section 5.4.1) of type PROTOCOL_ERROR.

   The SETTINGS frame affects connection state.  A badly formed or
   incomplete SETTINGS frame MUST be treated as a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.

6.5.1.  Setting Format

   The payload of a SETTINGS frame consists of zero or more settings.
   Each setting consists of an 8-bit reserved field, an unsigned 24-bit
   setting identifier, and an unsigned 32-bit value.








Belshe, et al.            Expires June 7, 2014                 [Page 28]


Internet-Draft                  HTTP/2.0                   December 2013


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |  Reserved (8) |            Setting Identifier (24)            |
    +---------------+-----------------------------------------------+
    |                        Value (32)                             |
    +---------------------------------------------------------------+

                              Setting Format

6.5.2.  Defined Settings

   The following settings are defined:

   SETTINGS_HEADER_TABLE_SIZE (1):  Allows the sender to inform the
      remote endpoint of the size of the header compression table used
      to decode header blocks.  The space available for encoding cannot
      be changed; it is determined by the setting sent by the peer that
      receives the header blocks.  The initial value is 4,096 bytes.

   SETTINGS_ENABLE_PUSH (2):  This setting can be use to disable server
      push (Section 8.2).  An endpoint MUST NOT send a PUSH_PROMISE
      frame if it receives this setting set to a value of 0.  The
      initial value is 1, which indicates that push is permitted.

   SETTINGS_MAX_CONCURRENT_STREAMS (4):  Indicates the maximum number of
      concurrent streams that the sender will allow.  This limit is
      directional: it applies to the number of streams that the sender
      permits the receiver to create.  Initially there is no limit to
      this value.  It is recommended that this value be no smaller than
      100, so as to not unnecessarily limit parallelism.

   SETTINGS_INITIAL_WINDOW_SIZE (7):  Indicates the sender's initial
      window size (in bytes) for stream level flow control.

      This settings affects the window size of all streams, including
      existing streams, see Section 6.9.2.

   SETTINGS_FLOW_CONTROL_OPTIONS (10):  Indicates flow control options.
      The least significant bit (0x1) of the value is set to indicate
      that the sender has disabled all flow control.  This bit cannot be
      cleared once set, see Section 6.9.4.

      All bits other than the least significant are reserved.







Belshe, et al.            Expires June 7, 2014                 [Page 29]


Internet-Draft                  HTTP/2.0                   December 2013


6.5.3.  Settings Synchronization

   Most values in SETTINGS benefit from or require an understanding of
   when the peer has received and applied the changed setting values.
   In order to provide such synchronization timepoints, the recipient of
   a SETTINGS frame in which the ACK flag is not set MUST apply the
   updated settings as soon as possible upon receipt.

   The values in the SETTINGS frame MUST be applied in the order they
   appear, with no other frame processing between values.  Once all
   values have been applied, the recipient MUST immediately emit a
   SETTINGS frame with the ACK flag set.  The sender of altered settings
   applies changes upon receiving a SETTINGS frame with the ACK flag
   set.

   If the sender of a SETTINGS frame does not receive an acknowledgement
   within a reasonable amount of time, it MAY issue a connection error
   (Section 5.4.1) of type SETTINGS_TIMEOUT.

6.6.  PUSH_PROMISE

   The PUSH_PROMISE frame (type=0x5) is used to notify the peer endpoint
   in advance of streams the sender intends to initiate.  The
   PUSH_PROMISE frame includes the unsigned 31-bit identifier of the
   stream the endpoint plans to create along with a set of headers that
   provide additional context for the stream.  Section 8.2 contains a
   thorough description of the use of PUSH_PROMISE frames.

   PUSH_PROMISE MUST NOT be sent if the SETTINGS_ENABLE_PUSH setting of
   the peer endpoint is set to 0.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|                Promised-Stream-ID (31)                      |
    +-+-------------------------------------------------------------+
    |                 Header Block Fragment (*)                   ...
    +---------------------------------------------------------------+

                        PUSH_PROMISE Payload Format

   The payload of a PUSH_PROMISE includes a "Promised-Stream-ID".  This
   unsigned 31-bit integer identifies the stream the endpoint intends to
   start sending frames for.  The promised stream identifier MUST be a
   valid choice for the next stream sent by the sender (see new stream
   identifier (Section 5.1.1)).

   Following the "Promised-Stream-ID" is a header block fragment



Belshe, et al.            Expires June 7, 2014                 [Page 30]


Internet-Draft                  HTTP/2.0                   December 2013


   (Section 4.3).

   PUSH_PROMISE frames MUST be associated with an existing, peer-
   initiated stream.  If the stream identifier field specifies the value
   0x0, a recipient MUST respond with a connection error (Section 5.4.1)
   of type PROTOCOL_ERROR.

   The PUSH_PROMISE frame defines the following flags:

   END_PUSH_PROMISE (0x4):  Bit 3 being set indicates that this frame
      contains an entire header block (Section 4.3) and is not followed
      by any CONTINUATION frames.

      A PUSH_PROMISE frame without the END_PUSH_PROMISE flag set MUST be
      followed by a CONTINUATION frame for the same stream.  A receiver
      MUST treat the receipt of any other type of frame or a frame on a
      different stream as a connection error (Section 5.4.1) of type
      PROTOCOL_ERROR.

   Promised streams are not required to be used in order promised.  The
   PUSH_PROMISE only reserves stream identifiers for later use.

   Recipients of PUSH_PROMISE frames can choose to reject promised
   streams by returning a RST_STREAM referencing the promised stream
   identifier back to the sender of the PUSH_PROMISE.

   The PUSH_PROMISE frame modifies the connection state as defined in
   Section 4.3.

   A PUSH_PROMISE frame modifies the connection state in two ways.  The
   inclusion of a header block (Section 4.3) potentially modifies the
   compression state.  PUSH_PROMISE also reserves a stream for later
   use, causing the promised stream to enter the "reserved" state.  A
   sender MUST NOT send a PUSH_PROMISE on a stream unless that stream is
   either "open" or "half closed (remote)"; the sender MUST ensure that
   the promised stream is a valid choice for a new stream identifier
   (Section 5.1.1) (that is, the promised stream MUST be in the "idle"
   state).

   Since PUSH_PROMISE reserves a stream, ignoring a PUSH_PROMISE frame
   causes the stream state to become indeterminate.  A receiver MUST
   treat the receipt of a PUSH_PROMISE on a stream that is neither
   "open" nor "half-closed (local)" as a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.  Similarly, a receiver MUST
   treat the receipt of a PUSH_PROMISE that promises an illegal stream
   identifier (Section 5.1.1) (that is, an identifier for a stream that
   is not currently in the "idle" state) as a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR, unless the receiver recently



Belshe, et al.            Expires June 7, 2014                 [Page 31]


Internet-Draft                  HTTP/2.0                   December 2013


   sent a RST_STREAM frame to cancel the associated stream (see
   Section 5.1).

6.7.  PING

   The PING frame (type=0x6) is a mechanism for measuring a minimal
   round-trip time from the sender, as well as determining whether an
   idle connection is still functional.  PING frames can be sent from
   any endpoint.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                      Opaque Data (64)                         |
    |                                                               |
    +---------------------------------------------------------------+

                            PING Payload Format

   In addition to the frame header, PING frames MUST contain 8 octets of
   data in the payload.  A sender can include any value it chooses and
   use those bytes in any fashion.

   Receivers of a PING frame that does not include a ACK flag MUST send
   a PING frame with the ACK flag set in response, with an identical
   payload.  PING responses SHOULD given higher priority than any other
   frame.

   The PING frame defines the following flags:

   ACK (0x1):  Bit 1 being set indicates that this PING frame is a PING
      response.  An endpoint MUST set this flag in PING responses.  An
      endpoint MUST NOT respond to PING frames containing this flag.

   PING frames are not associated with any individual stream.  If a PING
   frame is received with a stream identifier field value other than
   0x0, the recipient MUST respond with a connection error
   (Section 5.4.1) of type PROTOCOL_ERROR.

   Receipt of a PING frame with a length field value other than 8 MUST
   be treated as a connection error (Section 5.4.1) of type
   FRAME_SIZE_ERROR.

6.8.  GOAWAY

   The GOAWAY frame (type=0x7) informs the remote peer to stop creating
   streams on this connection.  It can be sent from the client or the



Belshe, et al.            Expires June 7, 2014                 [Page 32]


Internet-Draft                  HTTP/2.0                   December 2013


   server.  Once sent, the sender will ignore frames sent on new streams
   for the remainder of the connection.  Receivers of a GOAWAY frame
   MUST NOT open additional streams on the connection, although a new
   connection can be established for new streams.  The purpose of this
   frame is to allow an endpoint to gracefully stop accepting new
   streams (perhaps for a reboot or maintenance), while still finishing
   processing of previously established streams.

   There is an inherent race condition between an endpoint starting new
   streams and the remote sending a GOAWAY frame.  To deal with this
   case, the GOAWAY contains the stream identifier of the last stream
   which was processed on the sending endpoint in this connection.  If
   the receiver of the GOAWAY used streams that are newer than the
   indicated stream identifier, they were not processed by the sender
   and the receiver may treat the streams as though they had never been
   created at all (hence the receiver may want to re-create the streams
   later on a new connection).

   Endpoints SHOULD always send a GOAWAY frame before closing a
   connection so that the remote can know whether a stream has been
   partially processed or not.  For example, if an HTTP client sends a
   POST at the same time that a server closes a connection, the client
   cannot know if the server started to process that POST request if the
   server does not send a GOAWAY frame to indicate where it stopped
   working.  An endpoint might choose to close a connection without
   sending GOAWAY for misbehaving peers.

   After sending a GOAWAY frame, the sender can discard frames for new
   streams.  However, any frames that alter connection state cannot be
   completely ignored.  For instance, HEADERS, PUSH_PROMISE and
   CONTINUATION frames MUST be minimally processed to ensure a
   consistent compression state (see Section 4.3); similarly DATA frames
   MUST be counted toward the connection flow control window.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|                  Last-Stream-ID (31)                        |
    +-+-------------------------------------------------------------+
    |                      Error Code (32)                          |
    +---------------------------------------------------------------+
    |                  Additional Debug Data (*)                    |
    +---------------------------------------------------------------+

                           GOAWAY Payload Format

   The GOAWAY frame does not define any flags.




Belshe, et al.            Expires June 7, 2014                 [Page 33]


Internet-Draft                  HTTP/2.0                   December 2013


   The GOAWAY frame applies to the connection, not a specific stream.
   The stream identifier MUST be zero.

   The last stream identifier in the GOAWAY frame contains the highest
   numbered stream identifier for which the sender of the GOAWAY frame
   has received frames on and might have taken some action on.  All
   streams up to and including the identified stream might have been
   processed in some way.  The last stream identifier is set to 0 if no
   streams were processed.

      Note: In this case, "processed" means that some data from the
      stream was passed to some higher layer of software that might have
      taken some action as a result.

   If a connection terminates without a GOAWAY frame, this value is
   effectively the highest stream identifier.

   On streams with lower or equal numbered identifiers that were not
   closed completely prior to the connection being closed, re-attempting
   requests, transactions, or any protocol activity is not possible
   (with the exception of idempotent actions like HTTP GET, PUT, or
   DELETE).  Any protocol activity that uses higher numbered streams can
   be safely retried using a new connection.

   Activity on streams numbered lower or equal to the last stream
   identifier might still complete successfully.  The sender of a GOAWAY
   frame might gracefully shut down a connection by sending a GOAWAY
   frame, maintaining the connection in an open state until all in-
   progress streams complete.

   The last stream ID MUST be 0 if no streams were acted upon.

   The GOAWAY frame also contains a 32-bit error code (Section 7) that
   contains the reason for closing the connection.

   Endpoints MAY append opaque data to the payload of any GOAWAY frame.
   Additional debug data is intended for diagnostic purposes only and
   carries no semantic value.  Debug data MUST NOT be persistently
   stored, since it could contain sensitive information.

6.9.  WINDOW_UPDATE

   The WINDOW_UPDATE frame (type=0x9) is used to implement flow control.

   Flow control operates at two levels: on each individual stream and on
   the entire connection.

   Both types of flow control are hop by hop; that is, only between the



Belshe, et al.            Expires June 7, 2014                 [Page 34]


Internet-Draft                  HTTP/2.0                   December 2013


   two endpoints.  Intermediaries do not forward WINDOW_UPDATE frames
   between dependent connections.  However, throttling of data transfer
   by any receiver can indirectly cause the propagation of flow control
   information toward the original sender.

   Flow control only applies to frames that are identified as being
   subject to flow control.  Of the frame types defined in this
   document, this includes only DATA frame.  Frames that are exempt from
   flow control MUST be accepted and processed, unless the receiver is
   unable to assign resources to handling the frame.  A receiver MAY
   respond with a stream error (Section 5.4.2) or connection error
   (Section 5.4.1) of type FLOW_CONTROL_ERROR if it is unable accept a
   frame.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |X|              Window Size Increment (31)                     |
    +-+-------------------------------------------------------------+

                       WINDOW_UPDATE Payload Format

   The payload of a WINDOW_UPDATE frame is one reserved bit, plus an
   unsigned 31-bit integer indicating the number of bytes that the
   sender can transmit in addition to the existing flow control window.
   The legal range for the increment to the flow control window is 1 to
   2^31 - 1 (0x7fffffff) bytes.

   The WINDOW_UPDATE frame does not define any flags.

   The WINDOW_UPDATE frame can be specific to a stream or to the entire
   connection.  In the former case, the frame's stream identifier
   indicates the affected stream; in the latter, the value "0" indicates
   that the entire connection is the subject of the frame.

   WINDOW_UPDATE can be sent by a peer that has sent a frame bearing the
   END_STREAM flag.  This means that a receiver could receive a
   WINDOW_UPDATE frame on a "half closed (remote)" or "closed" stream.
   A receiver MUST NOT treat this as an error, see Section 5.1.

   A receiver that receives a flow controlled frame MUST always account
   for its contribution against the connection flow control window,
   unless the receiver treats this as a connection error
   (Section 5.4.1).  This is necessary even if the frame is in error.
   Since the sender counts the frame toward the flow control window, if
   the receiver does not, the flow control window at sender and receiver
   can become different.




Belshe, et al.            Expires June 7, 2014                 [Page 35]


Internet-Draft                  HTTP/2.0                   December 2013


6.9.1.  The Flow Control Window

   Flow control in HTTP/2.0 is implemented using a window kept by each
   sender on every stream.  The flow control window is a simple integer
   value that indicates how many bytes of data the sender is permitted
   to transmit; as such, its size is a measure of the buffering
   capability of the receiver.

   Two flow control windows are applicable: the stream flow control
   window and the connection flow control window.  The sender MUST NOT
   send a flow controlled frame with a length that exceeds the space
   available in either of the flow control windows advertised by the
   receiver.  Frames with zero length with the END_STREAM flag set (for
   example, an empty data frame) MAY be sent if there is no available
   space in either flow control window.

   For flow control calculations, the 8 byte frame header is not
   counted.

   After sending a flow controlled frame, the sender reduces the space
   available in both windows by the length of the transmitted frame.

   The receiver of a frame sends a WINDOW_UPDATE frame as it consumes
   data and frees up space in flow control windows.  Separate
   WINDOW_UPDATE frames are sent for the stream and connection level
   flow control windows.

   A sender that receives a WINDOW_UPDATE frame updates the
   corresponding window by the amount specified in the frame.

   A sender MUST NOT allow a flow control window to exceed 2^31 - 1
   bytes.  If a sender receives a WINDOW_UPDATE that causes a flow
   control window to exceed this maximum it MUST terminate either the
   stream or the connection, as appropriate.  For streams, the sender
   sends a RST_STREAM with the error code of FLOW_CONTROL_ERROR code;
   for the connection, a GOAWAY frame with a FLOW_CONTROL_ERROR code.

   Flow controlled frames from the sender and WINDOW_UPDATE frames from
   the receiver are completely asynchronous with respect to each other.
   This property allows a receiver to aggressively update the window
   size kept by the sender to prevent streams from stalling.

6.9.2.  Initial Flow Control Window Size

   When a HTTP/2.0 connection is first established, new streams are
   created with an initial flow control window size of 65,535 bytes.
   The connection flow control window is 65,535 bytes.  Both endpoints
   can adjust the initial window size for new streams by including a



Belshe, et al.            Expires June 7, 2014                 [Page 36]


Internet-Draft                  HTTP/2.0                   December 2013


   value for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame that
   forms part of the connection header.

   Prior to receiving a SETTINGS frame that sets a value for
   SETTINGS_INITIAL_WINDOW_SIZE, an endpoint can only use the default
   initial window size when sending flow controlled frames.  Similarly,
   the connection flow control window is set to the default initial
   window size until a WINDOW_UPDATE frame is received.

   A SETTINGS frame can alter the initial flow control window size for
   all current streams.  When the value of SETTINGS_INITIAL_WINDOW_SIZE
   changes, a receiver MUST adjust the size of all stream flow control
   windows that it maintains by the difference between the new value and
   the old value.  A SETTINGS frame cannot alter the connection flow
   control window.

   A change to SETTINGS_INITIAL_WINDOW_SIZE could cause the available
   space in a flow control window to become negative.  A sender MUST
   track the negative flow control window, and MUST NOT send new flow
   controlled frames until it receives WINDOW_UPDATE frames that cause
   the flow control window to become positive.

   For example, if the client sends 60KB immediately on connection
   establishment, and the server sets the initial window size to be
   16KB, the client will recalculate the available flow control window
   to be -44KB on receipt of the SETTINGS frame.  The client retains a
   negative flow control window until WINDOW_UPDATE frames restore the
   window to being positive, after which the client can resume sending.

6.9.3.  Reducing the Stream Window Size

   A receiver that wishes to use a smaller flow control window than the
   current size can send a new SETTINGS frame.  However, the receiver
   MUST be prepared to receive data that exceeds this window size, since
   the sender might send data that exceeds the lower limit prior to
   processing the SETTINGS frame.

   A receiver has two options for handling streams that exceed flow
   control limits:

   1.  The receiver can immediately send RST_STREAM with
       FLOW_CONTROL_ERROR error code for the affected streams.

   2.  The receiver can accept the streams and tolerate the resulting
       head of line blocking, sending WINDOW_UPDATE frames as it
       consumes data.

   If a receiver decides to accept streams, both sides MUST recompute



Belshe, et al.            Expires June 7, 2014                 [Page 37]


Internet-Draft                  HTTP/2.0                   December 2013


   the available flow control window based on the initial window size
   sent in the SETTINGS.

6.9.4.  Ending Flow Control

   After a receiver reads in a frame that marks the end of a stream (for
   example, a data stream with a END_STREAM flag set), it MUST cease
   transmission of WINDOW_UPDATE frames for that stream.  A sender is
   not obligated to maintain the available flow control window for
   streams that it is no longer sending on.

   Flow control can be disabled for the entire connection using the
   SETTINGS_FLOW_CONTROL_OPTIONS setting.  This setting ends all forms
   of flow control.  An implementation that does not wish to perform
   flow control can use this in the initial SETTINGS exchange.

   Flow control cannot be enabled again once disabled.  Any attempt to
   re-enable flow control - by sending a WINDOW_UPDATE or by clearing
   the bits on the SETTINGS_FLOW_CONTROL_OPTIONS setting - MUST be
   rejected with a FLOW_CONTROL_ERROR error code.

6.10.  CONTINUATION

   The CONTINUATION frame (type=0xA) is used to continue a sequence of
   header block fragments (Section 4.3).  Any number of CONTINUATION
   frames can be sent on an existing stream, as long as the preceding
   frame on the same stream is one of HEADERS, PUSH_PROMISE or
   CONTINUATION without the END_HEADERS or END_PUSH_PROMISE flag set.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Header Block Fragment (*)                 ...
    +---------------------------------------------------------------+

                        CONTINUATION Frame Payload

   The CONTINUATION frame defines the following flags:

   END_HEADERS (0x4):  Bit 3 being set indicates that this frame ends a
      header block (Section 4.3).

      If the END_HEADERS bit is not set, this frame MUST be followed by
      another CONTINUATION frame.  A receiver MUST treat the receipt of
      any other type of frame or a frame on a different stream as a
      connection error (Section 5.4.1) of type PROTOCOL_ERROR.

   The payload of a CONTINUATION frame contains a header block fragment



Belshe, et al.            Expires June 7, 2014                 [Page 38]


Internet-Draft                  HTTP/2.0                   December 2013


   (Section 4.3).

   The CONTINUATION frame changes the connection state as defined in
   Section 4.3.

   CONTINUATION frames MUST be associated with a stream.  If a
   CONTINUATION frame is received whose stream identifier field is 0x0,
   the recipient MUST respond with a connection error (Section 5.4.1) of
   type PROTOCOL_ERROR.

   A CONTINUATION frame MUST be preceded by a HEADERS, PUSH_PROMISE or
   CONTINUATION frame without the END_HEADERS flag set.  A recipient
   that observes violation of this rule MUST respond with a connection
   error (Section 5.4.1) of type PROTOCOL_ERROR.

7.  Error Codes

   Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
   frames to convey the reasons for the stream or connection error.

   Error codes share a common code space.  Some error codes only apply
   to specific conditions and have no defined semantics in certain frame
   types.

   The following error codes are defined:

   NO_ERROR (0):  The associated condition is not as a result of an
      error.  For example, a GOAWAY might include this code to indicate
      graceful shutdown of a connection.

   PROTOCOL_ERROR (1):  The endpoint detected an unspecific protocol
      error.  This error is for use when a more specific error code is
      not available.

   INTERNAL_ERROR (2):  The endpoint encountered an unexpected internal
      error.

   FLOW_CONTROL_ERROR (3):  The endpoint detected that its peer violated
      the flow control protocol.

   SETTINGS_TIMEOUT (4):  The endpoint sent a SETTINGS frame, but did
      not receive a response in a timely manner.  See Settings
      Synchronization (Section 6.5.3).

   STREAM_CLOSED (5):  The endpoint received a frame after a stream was
      half closed.





Belshe, et al.            Expires June 7, 2014                 [Page 39]


Internet-Draft                  HTTP/2.0                   December 2013


   FRAME_SIZE_ERROR (6):  The endpoint received a frame that was larger
      than the maximum size that it supports.

   REFUSED_STREAM (7):  The endpoint refuses the stream prior to
      performing any application processing, see Section 8.1.4 for
      details.

   CANCEL (8):  Used by the endpoint to indicate that the stream is no
      longer needed.

   COMPRESSION_ERROR (9):  The endpoint is unable to maintain the
      compression context for the connection.

   CONNECT_ERROR (10):  The connection established in response to a
      CONNECT request (Section 8.3) was reset or abnormally closed.

   ENHANCE_YOUR_CALM (420):  The endpoint detected that its peer is
      exhibiting a behavior over a given amount of time that has caused
      it to refuse to process further frames.

8.  HTTP Message Exchanges

   HTTP/2.0 is intended to be as compatible as possible with current
   web-based applications.  This means that, from the perspective of the
   server business logic or application API, the features of HTTP are
   unchanged.  To achieve this, all of the application request and
   response header semantics are preserved, although the syntax of
   conveying those semantics has changed.  Thus, the rules from HTTP/1.1
   ([HTTP-p1], [HTTP-p2], [HTTP-p4], [HTTP-p5], [HTTP-p6], and
   [HTTP-p7]) apply with the changes in the sections below.

8.1.  HTTP Request/Response Exchange

   A client sends an HTTP request on a new stream, using a previously
   unused stream identifier (Section 5.1.1).  A server sends an HTTP
   response on the same stream as the request.

   An HTTP request or response each consist of:

   1.  a HEADERS frame;

   2.  one contiguous sequence of zero or more CONTINUATION frames;

   3.  zero or more DATA frames; and

   4.  optionally, a contiguous sequence that starts with a HEADERS
       frame, followed by zero or more CONTINUATION frames.




Belshe, et al.            Expires June 7, 2014                 [Page 40]


Internet-Draft                  HTTP/2.0                   December 2013


   The last frame in the sequence bears an END_STREAM flag, though a
   HEADERS frame bearing the END_STREAM flag can be followed by
   CONTINUATION frames that carry any remaining portions of the header
   block.

   Other frames MAY be interspersed with these frames, but those frames
   do not carry HTTP semantics.  In particular, HEADERS frames (and any
   CONTINUATION frames that follow) other than the first and optional
   last frames in this sequence do not carry HTTP semantics.

   Trailing header fields are carried in a header block that also
   terminates the stream.  That is, a sequence starting with a HEADERS
   frame, followed by zero or more CONTINUATION frames, where the
   HEADERS frame bears an END_STREAM flag.  Header blocks after the
   first that do not terminate the stream are not part of an HTTP
   request or response.

   An HTTP request/response exchange fully consumes a single stream.  A
   request starts with the HEADERS frame that puts the stream into an
   "open" state and ends with a frame bearing END_STREAM, which causes
   the stream to become "half closed" for the client.  A response starts
   with a HEADERS frame and ends with a frame bearing END_STREAM, which
   places the stream in the "closed" state.

8.1.1.  Informational Responses

   The 1xx series of HTTP response status codes ([HTTP-p2], Section 6.2)
   are not supported in HTTP/2.0.

   The most common use case for 1xx is using a Expect header field with
   a "100-continue" token (colloquially, "Expect/continue") to indicate
   that the client expects a 100 (Continue) non-final response status
   code, receipt of which indicates that the client should continue
   sending the request body if it has not already done so.

   Typically, Expect/continue is used by clients wishing to avoid
   sending a large amount of data in a request body, only to have the
   request rejected by the origin server.

   HTTP/2.0 does not enable the Expect/continue mechanism; if the server
   sends a final status code to reject the request, it can do so without
   making the underlying connection unusable.

   Note that this means HTTP/2.0 clients sending requests with bodies
   may waste at least one round trip of sent data when the request is
   rejected.  This can be mitigated by restricting the amount of data
   sent for the first round trip by bandwidth-constrained clients, in
   anticipation of a final status code.



Belshe, et al.            Expires June 7, 2014                 [Page 41]


Internet-Draft                  HTTP/2.0                   December 2013


   Other defined 1xx status codes are not applicable to HTTP/2.0; the
   semantics of 101 (Switching Protocols) is better expressed using a
   distinct frame type, since they apply to the entire connection, not
   just one stream.  Likewise, 102 (Processing) is no longer necessary,
   because HTTP/2.0 has a separate means of keeping the connection
   alive.

   This difference between protocol versions necessitates special
   handling by intermediaries that translate between them:

   o  An intermediary that gateways HTTP/1.1 to HTTP/2.0 MUST generate a
      100 (Continue) response if a received request includes and Expect
      header field with a "100-continue" token ([HTTP-p2], Section
      5.1.1), unless it can immediately generate a final status code.
      It MUST NOT forward the "100-continue" expectation in the request
      header fields.

   o  An intermediary that gateways HTTP/2.0 to HTTP/1.1 MAY add an
      Expect header field with a "100-continue" expectation when
      forwarding a request that has a body; see [HTTP-p2], Section 5.1.1
      for specific requirements.

   o  An intermediary that gateways HTTP/2.0 to HTTP/1.1 MUST discard
      all other 1xx informational responses.

8.1.2.  Examples

   This section shows HTTP/1.1 requests and responses, with
   illustrations of equivalent HTTP/2.0 requests and responses.

   An HTTP GET request includes request header fields and no body and is
   therefore transmitted as a single contiguous sequence of HEADERS
   frames containing the serialized block of request header fields.  The
   last HEADERS frame in the sequence has both the END_HEADERS and
   END_STREAM flag set:

     GET /resource HTTP/1.1         HEADERS
     Host: example.org        ==>     + END_STREAM
     Accept: image/jpeg               + END_HEADERS
                                        :method = GET
                                        :scheme = https
                                        :authority = example.org
                                        :path = /resource
                                        accept = image/jpeg

   Similarly, a response that includes only response header fields is
   transmitted as a sequence of HEADERS frames containing the serialized
   block of response header fields.  The last HEADERS frame in the



Belshe, et al.            Expires June 7, 2014                 [Page 42]


Internet-Draft                  HTTP/2.0                   December 2013


   sequence has both the END_HEADERS and END_STREAM flag set:

     HTTP/1.1 204 No Content       HEADERS
     Content-Length: 0        ===>   + END_STREAM
                                     + END_HEADERS
                                       :status = 204
                                       content-length: 0

   An HTTP POST request that includes request header fields and payload
   data is transmitted as one HEADERS frame, followed by zero or more
   CONTINUATION frames, containing the request header fields followed by
   one or more DATA frames, with the last CONTINUATION (or HEADERS)
   frame having the END_HEADERS flag set and the final DATA frame having
   the END_STREAM flag set:

     POST /resource HTTP/1.1        HEADERS
     Host: example.org         ==>    - END_STREAM
     Content-Type: image/jpeg         + END_HEADERS
     Content-Length: 123                :method = POST
                                        :scheme = https
     {binary data}                      :authority = example.org
                                        :path = /resource
                                        content-type = image/jpeg
                                        content-length = 123

                                    DATA
                                      + END_STREAM
                                        {binary data}

   A response that includes header fields and payload data is
   transmitted as a HEADERS frame, followed by zero or more CONTINUATION
   frames, followed by one or more DATA frames, with the last DATA frame
   in the sequence having the END_STREAM flag set:

     HTTP/1.1 200 OK                HEADERS
     Content-Type: image/jpeg  ==>    - END_STREAM
     Content-Length: 123              + END_HEADERS
                                        :status = 200
     {binary data}                      content-type = image/jpeg
                                        content-length = 123

                                    DATA
                                      + END_STREAM
                                        {binary data}

   Trailing header fields are sent as a header block after both the
   request or response header block and all the DATA frames have been
   sent.  The sequence of HEADERS/CONTINUATION frames that bears the



Belshe, et al.            Expires June 7, 2014                 [Page 43]


Internet-Draft                  HTTP/2.0                   December 2013


   trailers includes a terminal frame that has both END_HEADERS and
   END_STREAM flags set.

     HTTP/1.1 200 OK               HEADERS
     Content-Type: image/jpeg ===>   - END_STREAM
     Content-Length: 123             + END_HEADERS
     Transfer-Encoding: chunked        :status        = 200
     TE: trailers                      content-length = 123
     123                               content-type   = image/jpeg
     {binary data}
     0                             DATA
     Foo: bar                        - END_STREAM
                                       {binary data}

                                   HEADERS
                                     + END_STREAM
                                     + END_HEADERS
                                       foo: bar

8.1.3.  HTTP Header Fields

   HTTP/2.0 request and response header fields carry information as a
   series of key-value pairs.  This includes the target URI for the
   request, the status code for the response, as well as HTTP header
   fields.

   HTTP header field names are strings of ASCII characters that are
   compared in a case-insensitive fashion.  Header field names MUST be
   converted to lowercase prior to their encoding in HTTP/2.0.  A
   request or response containing uppercase header field names MUST be
   treated as malformed (Section 8.1.3.5).

   The semantics of HTTP header fields are not altered by this
   specification, though header fields relating to connection management
   or request framing are no longer necessary.  An HTTP/2.0 request or
   response MUST NOT include any of the following header fields:
   Connection, Keep-Alive, Proxy-Connection, TE, Transfer-Encoding, and
   Upgrade.  A request or response containing these header fields MUST
   be treated as malformed (Section 8.1.3.5).

   Note:  HTTP/2.0 purposefully does not support upgrade from HTTP/2.0
      to another protocol.  The handshake methods described in Section 3
      are sufficient to negotiate the use of alternative protocols.








Belshe, et al.            Expires June 7, 2014                 [Page 44]


Internet-Draft                  HTTP/2.0                   December 2013


8.1.3.1.  Request Header Fields

   HTTP/2.0 defines a number of header fields starting with a colon ':'
   character that carry information about the request target:

   o  The ":method" header field includes the HTTP method ([HTTP-p2],
      Section 4).

   o  The ":scheme" header field includes the scheme portion of the
      target URI ([RFC3986], Section 3.1).

   o  The ":authority" header field includes the authority portion of
      the target URI ([RFC3986], Section 3.2).

      To ensure that the HTTP/1.1 request line can be reproduced
      accurately, this header field MUST be omitted when translating
      from an HTTP/1.1 request that has a request target in origin or
      asterisk form (see [HTTP-p1], Section 5.3).  Clients that generate
      HTTP/2.0 requests directly SHOULD instead omit the "Host" header
      field.  An intermediary that converts a request to HTTP/1.1 MUST
      create a "Host" header field if one is not present in a request by
      copying the value of the ":authority" header field.

   o  The ":path" header field includes the path and query parts of the
      target URI (the "path-absolute" production from [RFC3986] and
      optionally a '?' character followed by the "query" production, see
      [RFC3986], Section 3.3 and [RFC3986], Section 3.4).  This field
      MUST NOT be empty; URIs that do not contain a path component MUST
      include a value of '/', unless the request is an OPTIONS in
      asterisk form, in which case the ":path" header field MUST include
      '*'.

   All HTTP/2.0 requests MUST include exactly one valid value for all of
   these header fields, unless this is a CONNECT request (Section 8.3).
   An HTTP request that omits mandatory header fields is malformed
   (Section 8.1.3.5).

   Header field names that contain a colon are only valid in the
   HTTP/2.0 context.  These are not HTTP header fields.  Implementations
   MUST NOT generate header fields that start with a colon, but they
   MUST ignore any header field that starts with a colon.  In
   particular, header fields with names starting with a colon MUST NOT
   be exposed as HTTP header fields.

   HTTP/2.0 does not define a way to carry the version identifier that
   is included in the HTTP/1.1 request line.





Belshe, et al.            Expires June 7, 2014                 [Page 45]


Internet-Draft                  HTTP/2.0                   December 2013


8.1.3.2.  Response Header Fields

   A single ":status" header field is defined that carries the HTTP
   status code field (see [HTTP-p2], Section 6).  This header field MUST
   be included in all responses, otherwise the response is malformed
   (Section 8.1.3.5).

   HTTP/2.0 does not define a way to carry the version or reason phrase
   that is included in an HTTP/1.1 status line.

8.1.3.3.  Header Field Ordering

   HTTP Header Compression [COMPRESSION] does not preserve the order of
   header fields.  The relative order of header fields with different
   names is not important.  However, the same header field can be
   repeated to form a comma-separated list (see [HTTP-p1], Section
   3.2.2), where the relative order of header field values is
   significant.  This repetition can occur either as a single header
   field with a comma-separated list of values, or as several header
   fields with a single value, or any combination thereof.

   To preserve the order of a comma-separated list, the ordered values
   for a single header field name appearing in different header fields
   are concatenated into a single value.  A zero-valued octet (0x0) is
   used to delimit multiple values.

   After decompression, header fields that have values containing zero
   octets (0x0) MUST be split into multiple header fields before being
   processed.

   Header fields containing multiple values MUST be concatenated into a
   single value unless the ordering of that header field is known to be
   not significant.

   The special case of "set-cookie" - which does not form a comma-
   separated list, but can have multiple values - does not depend on
   ordering.  The "set-cookie" header field MAY be encoded as multiple
   header field values, or as a single concatenated value.

8.1.3.4.  Compressing the Cookie Header Field

   The Cookie header field [COOKIE] can carry a significant amount of
   redundant data.

   The Cookie header field uses a semi-colon (";") to delimit cookie-
   pairs (or "crumbs").  This header field doesn't follow the list
   construction rules in HTTP (see [HTTP-p1], Section 3.2.2), which
   prevents cookie-pairs from being separated into different name-value



Belshe, et al.            Expires June 7, 2014                 [Page 46]


Internet-Draft                  HTTP/2.0                   December 2013


   pairs.  This can significantly reduce compression efficiency as
   individual cookie-pairs are updated.

   To allow for better compression efficiency, the Cookie header field
   MAY be split into separate header fields, each with one or more
   cookie-pairs.  If there are multiple Cookie header fields after
   decompression, these MUST be concatenated into a single octet string
   using the two octet delimiter of 0x3B, 0x20 (the ASCII string "; ").

8.1.3.5.  Malformed Requests and Responses

   A malformed request or response is one that uses a valid sequence of
   HTTP/2.0 frames, but is otherwise invalid due to the presence of
   prohibited header fields, the absence of mandatory header fields, or
   the inclusion of uppercase header field names.

   A request or response that includes an entity body can include a
   "content-length" header field.  A request or response is also
   malformed if the value of a "content-length" header field does not
   equal the sum of the DATA frame payload lengths that form the body.

   Intermediaries that process HTTP requests or responses (i.e., all
   intermediaries other than those acting as tunnels) MUST NOT forward a
   malformed request or response.

   Implementations that detect malformed requests or responses need to
   ensure that the stream ends.  For malformed requests, a server MAY
   send an HTTP response to prior to closing or resetting the stream.
   Clients MUST NOT accept a malformed response.

8.1.4.  Request Reliability Mechanisms in HTTP/2.0

   In HTTP/1.1, an HTTP client is unable to retry a non-idempotent
   request when an error occurs, because there is no means to determine
   the nature of the error.  It is possible that some server processing
   occurred prior to the error, which could result in undesirable
   effects if the request were reattempted.

   HTTP/2.0 provides two mechanisms for providing a guarantee to a
   client that a request has not been processed:

   o  The GOAWAY frame indicates the highest stream number that might
      have been processed.  Requests on streams with higher numbers are
      therefore guaranteed to be safe to retry.

   o  The REFUSED_STREAM error code can be included in a RST_STREAM
      frame to indicate that the stream is being closed prior to any
      processing having occurred.  Any request that was sent on the



Belshe, et al.            Expires June 7, 2014                 [Page 47]


Internet-Draft                  HTTP/2.0                   December 2013


      reset stream can be safely retried.

   Clients MUST NOT treat requests that have not been processed as
   having failed.  Clients MAY automatically retry these requests,
   including those with non-idempotent methods.

   A server MUST NOT indicate that a stream has not been processed
   unless it can guarantee that fact.  If frames that are on a stream
   are passed to the application layer for any stream, then
   REFUSED_STREAM MUST NOT be used for that stream, and a GOAWAY frame
   MUST include a stream identifier that is greater than or equal to the
   given stream identifier.

   In addition to these mechanisms, the PING frame provides a way for a
   client to easily test a connection.  Connections that remain idle can
   become broken as some middleboxes (for instance, network address
   translators, or load balancers) silently discard connection bindings.
   The PING frame allows a client to safely test whether a connection is
   still active without sending a request.

8.2.  Server Push

   HTTP/2.0 enables a server to pre-emptively send (or "push") multiple
   associated resources to a client in response to a single request.
   This feature becomes particularly helpful when the server knows the
   client will need to have those resources available in order to fully
   process the originally requested resource.

   Pushing additional resources is optional, and is negotiated only
   between individual endpoints.  The SETTINGS_ENABLE_PUSH setting can
   be set to 0 to indicate that server push is disabled.  Even if
   enabled, an intermediary could receive pushed resources from the
   server but could choose not to forward those on to the client.  How
   to make use of the pushed resources is up to that intermediary.
   Equally, the intermediary might choose to push additional resources
   to the client, without any action taken by the server.

   A server can only push requests that are safe (see [HTTP-p2], Section
   4.2.1), cacheable (see [HTTP-p6], Section 3) and do not include a
   request body.

8.2.1.  Push Requests

   Server push is semantically equivalent to a server responding to a
   request.  The PUSH_PROMISE frame, or frames, sent by the server
   includes a header block that contains a complete set of request
   header fields that the server attributes to the request.  It is not
   possible to push a response to a request that includes a request



Belshe, et al.            Expires June 7, 2014                 [Page 48]


Internet-Draft                  HTTP/2.0                   December 2013


   body.

   Pushed resources are always associated with an explicit request from
   a client.  The PUSH_PROMISE frames sent by the server are sent on the
   stream created for the original request.  The PUSH_PROMISE frame
   includes a promised stream identifier, chosen from the stream
   identifiers available to the server (see Section 5.1.1).

   The header fields in PUSH_PROMISE and any subsequent CONTINUATION
   frames MUST be a valid and complete set of request header fields
   (Section 8.1.3.1).  The server MUST include a method in the ":method"
   header field that is safe and cacheable.  If a client receives a
   PUSH_PROMISE that does not include a complete and valid set of header
   fields, or the ":method" header field identifies a method that is not
   safe, it MUST respond with a stream error (Section 5.4.2) of type
   PROTOCOL_ERROR.

   The server SHOULD send PUSH_PROMISE (Section 6.6) frames prior to
   sending any frames that reference the promised resources.  This
   avoids a race where clients issue requests for resources prior to
   receiving any PUSH_PROMISE frames.

   For example, if the server receives a request for a document
   containing embedded links to multiple image files, and the server
   chooses to push those additional images to the client, sending push
   promises before the DATA frames that contain the image links ensure
   that the client is able to see the promises before discovering the
   resources.  Similarly, if the server pushes resources referenced by
   the header block (for instance, in Link header fields), sending the
   push promises before sending the header block ensures that clients do
   not request those resources.

   PUSH_PROMISE frames MUST NOT be sent by the client.  PUSH_PROMISE
   frames can be sent by the server on any stream that was opened by the
   client.  They MUST be sent on a stream that is in either the "open"
   or "half closed (remote)" state to the server.  PUSH_PROMISE frames
   are interspersed with the frames that comprise a response, though
   they cannot be interspersed with HEADERS and CONTINUATION frames that
   comprise a single header block.

8.2.2.  Push Responses

   After sending the PUSH_PROMISE frame, the server can begin delivering
   the pushed resource as a response (Section 8.1.3.2) on a server-
   initiated stream that uses the promised stream identifier.  The
   server uses this stream to transmit an HTTP response, using the same
   sequence of frames as defined in Section 8.1.  This stream becomes
   "half closed" to the client (Section 5.1) after the initial HEADERS



Belshe, et al.            Expires June 7, 2014                 [Page 49]


Internet-Draft                  HTTP/2.0                   December 2013


   frame is sent.

   Once a client receives a PUSH_PROMISE frame and chooses to accept the
   pushed resource, the client SHOULD NOT issue any requests for the
   promised resource until after the promised stream has closed.

   If the client determines, for any reason, that it does not wish to
   receive the pushed resource from the server, or if the server takes
   too long to begin sending the promised resource, the client can send
   an RST_STREAM frame, using either the CANCEL or REFUSED_STREAM codes,
   and referencing the pushed stream's identifier.

   A client can use the SETTINGS_MAX_CONCURRENT_STREAMS setting to limit
   the number of resources that can be concurrently pushed by a server.
   Advertising a SETTINGS_MAX_CONCURRENT_STREAMS value of zero disables
   server push by preventing the server from creating the necessary
   streams.  This does not prohibit a server from sending PUSH_PROMISE
   frames; clients need to reset any promised streams that are not
   wanted.

   Clients receiving a pushed response MUST validate that the server is
   authorized to push the resource using the same-origin policy
   ([RFC6454], Section 3).  For example, a HTTP/2.0 connection to
   "example.com" is generally [[anchor15: Ed: weaselly use of
   "generally", needs better definition]] not permitted to push a
   response for "www.example.org".

8.3.  The CONNECT Method

   The HTTP pseudo-method CONNECT ([HTTP-p2], Section 4.3.6) is used to
   convert an HTTP/1.1 connection into a tunnel to a remote host.
   CONNECT is primarily used with HTTP proxies to established a TLS
   session with a server for the purposes of interacting with "https"
   resources.

   In HTTP/2.0, the CONNECT method is used to establish a tunnel over a
   single HTTP/2.0 stream to a remote host.  The HTTP header field
   mapping works as mostly as defined in Request Header Fields
   (Section 8.1.3.1), with a few differences.  Specifically:

   o  The ":method" header field is set to "CONNECT".

   o  The ":scheme" and ":path" header fields MUST be omitted.

   o  The ":authority" header field contains the host and port to
      connect to (equivalent to the authority-form of the request-target
      of CONNECT requests, see [HTTP-p1], Section 5.3).




Belshe, et al.            Expires June 7, 2014                 [Page 50]


Internet-Draft                  HTTP/2.0                   December 2013


   A proxy that supports CONNECT, establishes a TCP connection [TCP] to
   the server identified in the ":authority" header field.  Once this
   connection is successfully established, the proxy sends a HEADERS
   frame containing a 2xx series status code, as defined in [HTTP-p2],
   Section 4.3.6.

   After the initial HEADERS frame sent by each peer, all subsequent
   DATA frames correspond to data sent on the TCP connection.  The
   payload of any DATA frames sent by the client are transmitted by the
   proxy to the TCP server; data received from the TCP server is
   assembled into DATA frames by the proxy.  Frame types other than DATA
   or stream management frames (RST_STREAM, WINDOW_UPDATE, and PRIORITY)
   MUST NOT be sent on a connected stream, and MUST be treated as a
   stream error (Section 5.4.2) if received.

   The TCP connection can be closed by either peer.  The END_STREAM flag
   on a DATA frame is treated as being equivalent to the TCP FIN bit.  A
   client is expected to send a DATA frame with the END_STREAM flag set
   after receiving a frame bearing the END_STREAM flag.  A proxy that
   receives a DATA frame with the END_STREAM flag set sends the attached
   data with the FIN bit set on the last TCP segment.  A proxy that
   receives a TCP segment with the FIN bit set sends a DATA frame with
   the END_STREAM flag set.  Note that the final TCP segment or DATA
   frame could be empty.

   A TCP connection error is signaled with RST_STREAM.  A proxy treats
   any error in the TCP connection, which includes receiving a TCP
   segment with the RST bit set, as a stream error (Section 5.4.2) of
   type CONNECT_ERROR.  Correspondingly, a proxy MUST send a TCP segment
   with the RST bit set if it detects an error with the stream or the
   HTTP/2.0 connection.

9.  Additional HTTP Requirements/Considerations

   This section outlines attributes of the HTTP protocol that improve
   interoperability, reduce exposure to known security vulnerabilities,
   or reduce the potential for implementation variation.

9.1.  Connection Management

   HTTP/2.0 connections are persistent.  For best performance, it is
   expected clients will not close connections until it is determined
   that no further communication with a server is necessary (for
   example, when a user navigates away from a particular web page), or
   until the server closes the connection.

   Clients SHOULD NOT open more than one HTTP/2.0 connection to a given
   origin ([RFC6454]) concurrently.  A client can create additional



Belshe, et al.            Expires June 7, 2014                 [Page 51]


Internet-Draft                  HTTP/2.0                   December 2013


   connections as replacements, either to replace connections that are
   near to exhausting the available stream identifiers (Section 5.1.1),
   or to replace connections that have encountered errors
   (Section 5.4.1).

   Servers are encouraged to maintain open connections for as long as
   possible, but are permitted to terminate idle connections if
   necessary.  When either endpoint chooses to close the transport-level
   TCP connection, the terminating endpoint SHOULD first send a GOAWAY
   (Section 6.8) frame so that both endpoints can reliably determine
   whether previously sent frames have been processed and gracefully
   complete or terminate any necessary remaining tasks.

9.2.  Use of TLS Features

   Implementations of HTTP/2.0 MUST support TLS 1.1 [TLS11]. [[anchor18:
   The working group intends to require at least the use of TLS 1.2
   [TLS12] prior to publication of this document; negotiating TLS 1.1 is
   permitted to enable the creation of interoperable implementations of
   early drafts.]]

   The TLS implementation MUST support the Server Name Indication (SNI)
   [TLS-EXT] extension to TLS.  HTTP/2.0 clients MUST indicate the
   target domain name when negotiating TLS.

   A server that receives a TLS handshake that does not include either
   TLS 1.1 or SNI, MUST NOT negotiate HTTP/2.0.  Removing HTTP/2.0
   protocols from consideration could result in the removal of all
   protocols from the set of protocols offered by the client.  This
   causes protocol negotiation failure, as described in Section 3.2 of
   [TLSALPN].

   Implementations are encouraged not to negotiate TLS cipher suites
   with known vulnerabilities, such as [RC4].

9.3.  GZip Content-Encoding

   Clients MUST support gzip compression for HTTP response bodies.
   Regardless of the value of the accept-encoding header field, a server
   MAY send responses with gzip or deflate encoding.  A compressed
   response MUST still bear an appropriate content-encoding header
   field.

10.  Security Considerations







Belshe, et al.            Expires June 7, 2014                 [Page 52]


Internet-Draft                  HTTP/2.0                   December 2013


10.1.  Server Authority and Same-Origin

   This specification uses the same-origin policy ([RFC6454], Section 3)
   to determine whether an origin server is permitted to provide
   content.

   A server that is contacted using TLS is authenticated based on the
   certificate that it offers in the TLS handshake (see [RFC2818],
   Section 3).  A server is considered authoritative for an "https"
   resource if it has been successfully authenticated for the domain
   part of the origin of the resource that it is providing.

   A server is considered authoritative for an "http" resource if the
   connection is established to a resolved IP address for the domain in
   the origin of the resource.

   A client MUST NOT use, in any way, resources provided by a server
   that is not authoritative for those resources.

10.2.  Cross-Protocol Attacks

   When using TLS, we believe that HTTP/2.0 introduces no new cross-
   protocol attacks.  TLS encrypts the contents of all transmission
   (except the handshake itself), making it difficult for attackers to
   control the data which could be used in a cross-protocol attack.
   [[anchor21: Issue: This is no longer true]]

10.3.  Intermediary Encapsulation Attacks

   HTTP/2.0 header field names and values are encoded as sequences of
   octets with a length prefix.  This enables HTTP/2.0 to carry any
   string of octets as the name or value of a header field.  An
   intermediary that translates HTTP/2.0 requests or responses into
   HTTP/1.1 directly could permit the creation of corrupted HTTP/1.1
   messages.  An attacker might exploit this behavior to cause the
   intermediary to create HTTP/1.1 messages with illegal header fields,
   extra header fields, or even new messages that are entirely
   falsified.

   An intermediary that performs translation into HTTP/1.1 cannot alter
   the semantics of requests or responses.  In particular, header field
   names or values that contain characters not permitted by HTTP/1.1,
   including carriage return (U+000D) or line feed (U+000A) MUST NOT be
   translated verbatim, as stipulated in [HTTP-p1], Section 3.2.4.

   Translation from HTTP/1.x to HTTP/2.0 does not produce the same
   opportunity to an attacker.  Intermediaries that perform translation
   to HTTP/2.0 MUST remove any instances of the "obs-fold" production



Belshe, et al.            Expires June 7, 2014                 [Page 53]


Internet-Draft                  HTTP/2.0                   December 2013


   from header field values.

10.4.  Cacheability of Pushed Resources

   Pushed resources are responses without an explicit request; the
   request for a pushed resource is synthesized from the request that
   triggered the push, plus resource identification information provided
   by the server.  Request header fields are necessary for HTTP cache
   control validations (such as the Vary header field) to work.  For
   this reason, caches MUST associate the request header fields from the
   PUSH_PROMISE frame with the response headers and content delivered on
   the pushed stream.  This includes the Cookie header field.

   Caching resources that are pushed is possible, based on the guidance
   provided by the origin server in the Cache-Control header field.
   However, this can cause issues if a single server hosts more than one
   tenant.  For example, a server might offer multiple users each a
   small portion of its URI space.

   Where multiple tenants share space on the same server, that server
   MUST ensure that tenants are not able to push representations of
   resources that they do not have authority over.  Failure to enforce
   this would allow a tenant to provide a representation that would be
   served out of cache, overriding the actual representation that the
   authoritative tenant provides.

   Pushed resources for which an origin server is not authoritative are
   never cached or used.

10.5.  Denial of Service Considerations

   An HTTP/2.0 connection can demand a greater commitment of resources
   to operate than a HTTP/1.1 connection.  The use of header compression
   and flow control require that an implementation commit resources for
   storing a greater amount of state.  Settings for these features
   ensure that memory commitments for these features are strictly
   bounded.  Processing capacity cannot be guarded in the same fashion.

   The SETTINGS frame can be abused to cause a peer to expend additional
   processing time.  This might be done by pointlessly changing
   settings, setting multiple undefined settings, or changing the same
   setting multiple times in the same frame.  Similarly, WINDOW_UPDATE
   or PRIORITY frames can be abused to cause an unnecessary waste of
   resources.

   Large numbers of small or empty frames can be abused to cause a peer
   to expend time processing frame headers.  Note however that some uses
   are entirely legitimate, such as the sending of an empty DATA frame



Belshe, et al.            Expires June 7, 2014                 [Page 54]


Internet-Draft                  HTTP/2.0                   December 2013


   to end a stream.

   Header compression also offers some opportunities to waste processing
   resources, see [COMPRESSION] for more details on potential abuses.

   In all these cases, there are legitimate reasons to use these
   protocol mechanisms.  These features become a burden only when they
   are used unnecessarily or to excess.

   An endpoint that doesn't monitor this behavior exposes itself to a
   risk of denial of service attack.  Implementations SHOULD track the
   use of these types of frames and set limits on their use.  An
   endpoint MAY treat activity that is suspicious as a connection error
   (Section 5.4.1) of type ENHANCE_YOUR_CALM.

11.  Privacy Considerations

   HTTP/2.0 aims to keep connections open longer between clients and
   servers in order to reduce the latency when a user makes a request.
   The maintenance of these connections over time could be used to
   expose private information.  For example, a user using a browser
   hours after the previous user stopped using that browser may be able
   to learn about what the previous user was doing.  This is a problem
   with HTTP in its current form as well, however the short lived
   connections make it less of a risk.

12.  IANA Considerations

   A string for identifying HTTP/2.0 is entered into the "Application
   Layer Protocol Negotiation (ALPN) Protocol IDs" registry established
   in [TLSALPN].

   This document establishes registries for frame types, error codes and
   settings.  These new registries are entered in a new "Hypertext
   Transfer Protocol (HTTP) 2.0 Parameters" section.

   This document registers the "HTTP2-Settings" header field for use in
   HTTP.

12.1.  Registration of HTTP/2.0 Identification String

   This document creates a registration for the identification of
   HTTP/2.0 in the "Application Layer Protocol Negotiation (ALPN)
   Protocol IDs" registry established in [TLSALPN].







Belshe, et al.            Expires June 7, 2014                 [Page 55]


Internet-Draft                  HTTP/2.0                   December 2013


   Protocol:  HTTP/2.0

   Identification Sequence:  0x48 0x54 0x54 0x50 0x2f 0x32 0x2e 0x30
      ("HTTP/2.0")

   Specification:  This document (RFCXXXX)

12.2.  Frame Type Registry

   This document establishes a registry for HTTP/2.0 frame types.  The
   "HTTP/2.0 Frame Type" registry operates under the "IETF Review"
   policy [RFC5226].

   Frame types are an 8-bit value.  When reviewing new frame type
   registrations, special attention is advised for any frame type-
   specific flags that are defined.  Frame flags can interact with
   existing flags and could prevent the creation of globally applicable
   flags.

   Initial values for the "HTTP/2.0 Frame Type" registry are shown in
   Table 1.

   +--------+---------------+---------------------------+--------------+
   | Frame  | Name          | Flags                     | Section      |
   | Type   |               |                           |              |
   +--------+---------------+---------------------------+--------------+
   | 0      | DATA          | END_STREAM(1)             | Section 6.1  |
   | 1      | HEADERS       | END_STREAM(1),            | Section 6.2  |
   |        |               | END_HEADERS(4),           |              |
   |        |               | PRIORITY(8)               |              |
   | 2      | PRIORITY      | -                         | Section 6.3  |
   | 3      | RST_STREAM    | -                         | Section 6.4  |
   | 4      | SETTINGS      | ACK(1)                    | Section 6.5  |
   | 5      | PUSH_PROMISE  | END_PUSH_PROMISE(4)       | Section 6.6  |
   | 6      | PING          | ACK(1)                    | Section 6.7  |
   | 7      | GOAWAY        | -                         | Section 6.8  |
   | 9      | WINDOW_UPDATE | -                         | Section 6.9  |
   | 10     | CONTINUATION  | END_HEADERS(4)            | Section 6.10 |
   +--------+---------------+---------------------------+--------------+

                                  Table 1

12.3.  Error Code Registry

   This document establishes a registry for HTTP/2.0 error codes.  The
   "HTTP/2.0 Error Code" registry manages a 32-bit space.  The "HTTP/2.0
   Error Code" registry operates under the "Expert Review" policy
   [RFC5226].



Belshe, et al.            Expires June 7, 2014                 [Page 56]


Internet-Draft                  HTTP/2.0                   December 2013


   Registrations for error codes are required to include a description
   of the error code.  An expert reviewer is advised to examine new
   registrations for possible duplication with existing error codes.
   Use of existing registrations is to be encouraged, but not mandated.

   New registrations are advised to provide the following information:

   Error Code:  The 32-bit error code value.

   Name:  A name for the error code.  Specifying an error code name is
      optional.

   Description:  A description of the conditions where the error code is
      applicable.

   Specification:  An optional reference for a specification that
      defines the error code.

   An initial set of error code registrations can be found in Section 7.

12.4.  Settings Registry

   This document establishes a registry for HTTP/2.0 settings.  The
   "HTTP/2.0 Settings" registry manages a 24-bit space.  The "HTTP/2.0
   Settings" registry operates under the "Expert Review" policy
   [RFC5226].

   Registrations for settings are required to include a description of
   the setting.  An expert reviewer is advised to examine new
   registrations for possible duplication with existing settings.  Use
   of existing registrations is to be encouraged, but not mandated.

   New registrations are advised to provide the following information:

   Setting:  The 24-bit setting value.

   Name:  A name for the setting.  Specifying a name is optional.

   Flags:  Any setting-specific flags that apply, including their value
      and semantics.

   Description:  A description of the setting.  This might include the
      range of values, any applicable units and how to act upon a value
      when it is provided.







Belshe, et al.            Expires June 7, 2014                 [Page 57]


Internet-Draft                  HTTP/2.0                   December 2013


   Specification:  An optional reference for a specification that
      defines the setting.

   An initial set of settings registrations can be found in
   Section 6.5.2.

12.5.  HTTP2-Settings Header Field Registration

   This section registers the "HTTP2-Settings" header field in the
   Permanent Message Header Field Registry [BCP90].

   Header field name:  HTTP2-Settings

   Applicable protocol:  http

   Status:  standard

   Author/Change controller:  IETF

   Specification document(s):  Section 3.2.1 of this document

   Related information:  This header field is only used by an HTTP/2.0
      client for Upgrade-based negotiation.

13.  Acknowledgements

   This document includes substantial input from the following
   individuals:

   o  Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham, Alyssa
      Wilk, Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan, Adam
      Barth, Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay,
      Paul Amer, Fan Yang, Jonathan Leighton (SPDY contributors).

   o  Gabriel Montenegro and Willy Tarreau (Upgrade mechanism)

   o  William Chan, Salvatore Loreto, Osama Mazahir, Gabriel Montenegro,
      Jitu Padhye, Roberto Peon, Rob Trace (Flow control)

   o  Mark Nottingham, Julian Reschke, James Snell, Jeff Pinner, Mike
      Bishop, Herve Ruellan (Substantial editorial contributions)

14.  References

14.1.  Normative References

   [COMPRESSION]  Ruellan, H. and R. Peon, "HPACK - Header Compression
                  for HTTP/2.0",



Belshe, et al.            Expires June 7, 2014                 [Page 58]


Internet-Draft                  HTTP/2.0                   December 2013


                  draft-ietf-httpbis-header-compression-05 (work in
                  progress), December 2013.

   [COOKIE]       Barth, A., "HTTP State Management Mechanism",
                  RFC 6265, April 2011.

   [HTTP-p1]      Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                  Transfer Protocol (HTTP/1.1): Message Syntax and
                  Routing", draft-ietf-httpbis-p1-messaging-25 (work in
                  progress), November 2013.

   [HTTP-p2]      Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                  Transfer Protocol (HTTP/1.1): Semantics and Content",
                  draft-ietf-httpbis-p2-semantics-25 (work in progress),
                  November 2013.

   [HTTP-p4]      Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                  Transfer Protocol (HTTP/1.1): Conditional Requests",
                  draft-ietf-httpbis-p4-conditional-25 (work in
                  progress), November 2013.

   [HTTP-p5]      Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke,
                  Ed., "Hypertext Transfer Protocol (HTTP/1.1): Range
                  Requests", draft-ietf-httpbis-p5-range-25 (work in
                  progress), November 2013.

   [HTTP-p6]      Fielding, R., Ed., Nottingham, M., Ed., and J.
                  Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
                  Caching", draft-ietf-httpbis-p6-cache-25 (work in
                  progress), November 2013.

   [HTTP-p7]      Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
                  Transfer Protocol (HTTP/1.1): Authentication",
                  draft-ietf-httpbis-p7-auth-25 (work in progress),
                  November 2013.

   [RFC2119]      Bradner, S., "Key words for use in RFCs to Indicate
                  Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2818]      Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

   [RFC3986]      Berners-Lee, T., Fielding, R., and L. Masinter,
                  "Uniform Resource Identifier (URI): Generic Syntax",
                  STD 66, RFC 3986, January 2005.

   [RFC4648]      Josefsson, S., "The Base16, Base32, and Base64 Data
                  Encodings", RFC 4648, October 2006.




Belshe, et al.            Expires June 7, 2014                 [Page 59]


Internet-Draft                  HTTP/2.0                   December 2013


   [RFC5226]      Narten, T. and H. Alvestrand, "Guidelines for Writing
                  an IANA Considerations Section in RFCs", BCP 26,
                  RFC 5226, May 2008.

   [RFC5234]      Crocker, D. and P. Overell, "Augmented BNF for Syntax
                  Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC6454]      Barth, A., "The Web Origin Concept", RFC 6454,
                  December 2011.

   [TCP]          Postel, J., "Transmission Control Protocol", STD 7,
                  RFC 793, September 1981.

   [TLS-EXT]      Eastlake, D., "Transport Layer Security (TLS)
                  Extensions: Extension Definitions", RFC 6066,
                  January 2011.

   [TLS11]        Dierks, T. and E. Rescorla, "The Transport Layer
                  Security (TLS) Protocol Version 1.1", RFC 4346,
                  April 2006.

   [TLS12]        Dierks, T. and E. Rescorla, "The Transport Layer
                  Security (TLS) Protocol Version 1.2", RFC 5246,
                  August 2008.

   [TLSALPN]      Friedl, S., Popov, A., Langley, A., and E. Stephan,
                  "Transport Layer Security (TLS) Application Layer
                  Protocol Negotiation Extension",
                  draft-ietf-tls-applayerprotoneg-02 (work in progress),
                  September 2013.

14.2.  Informative References

   [BCP90]        Klyne, G., Nottingham, M., and J. Mogul, "Registration
                  Procedures for Message Header Fields", BCP 90,
                  RFC 3864, September 2004.

   [RC4]          Rivest, R., "The RC4 encryption algorithm", RSA Data
                  Security, Inc. , March 1992.

   [RFC1323]      Jacobson, V., Braden, B., and D. Borman, "TCP
                  Extensions for High Performance", RFC 1323, May 1992.

   [TALKING]      Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.
                  Jackson, "Talking to Yourself for Fun and Profit",
                  2011, <http://w2spconf.com/2011/papers/websocket.pdf>.





Belshe, et al.            Expires June 7, 2014                 [Page 60]


Internet-Draft                  HTTP/2.0                   December 2013


Appendix A.  Change Log (to be removed by RFC Editor before publication)

A.1.  Since draft-ietf-httpbis-http2-08

   Added cookie crumbling for more efficient header compression.

   Added header field ordering with the value-concatenation mechanism.

A.2.  Since draft-ietf-httpbis-http2-07

   Marked draft for implementation.

A.3.  Since draft-ietf-httpbis-http2-06

   Adding definition for CONNECT method.

   Constraining the use of push to safe, cacheable methods with no
   request body.

   Changing from :host to :authority to remove any potential confusion.

   Adding setting for header compression table size.

   Adding settings acknowledgement.

   Removing unnecessary and potentially problematic flags from
   CONTINUATION.

   Added denial of service considerations.

A.4.  Since draft-ietf-httpbis-http2-05

   Marking the draft ready for implementation.

   Renumbering END_PUSH_PROMISE flag.

   Editorial clarifications and changes.

A.5.  Since draft-ietf-httpbis-http2-04

   Added CONTINUATION frame for HEADERS and PUSH_PROMISE.

   PUSH_PROMISE is no longer implicitly prohibited if
   SETTINGS_MAX_CONCURRENT_STREAMS is zero.

   Push expanded to allow all safe methods without a request body.

   Clarified the use of HTTP header fields in requests and responses.



Belshe, et al.            Expires June 7, 2014                 [Page 61]


Internet-Draft                  HTTP/2.0                   December 2013


   Prohibited HTTP/1.1 hop-by-hop header fields.

   Requiring that intermediaries not forward requests with missing or
   illegal routing :-headers.

   Clarified requirements around handling different frames after stream
   close, stream reset and GOAWAY.

   Added more specific prohibitions for sending of different frame types
   in various stream states.

   Making the last received setting value the effective value.

   Clarified requirements on TLS version, extension and ciphers.

A.6.  Since draft-ietf-httpbis-http2-03

   Committed major restructuring atrocities.

   Added reference to first header compression draft.

   Added more formal description of frame lifecycle.

   Moved END_STREAM (renamed from FINAL) back to HEADERS/DATA.

   Removed HEADERS+PRIORITY, added optional priority to HEADERS frame.

   Added PRIORITY frame.

A.7.  Since draft-ietf-httpbis-http2-02

   Added continuations to frames carrying header blocks.

   Replaced use of "session" with "connection" to avoid confusion with
   other HTTP stateful concepts, like cookies.

   Removed "message".

   Switched to TLS ALPN from NPN.

   Editorial changes.

A.8.  Since draft-ietf-httpbis-http2-01

   Added IANA considerations section for frame types, error codes and
   settings.

   Removed data frame compression.



Belshe, et al.            Expires June 7, 2014                 [Page 62]


Internet-Draft                  HTTP/2.0                   December 2013


   Added PUSH_PROMISE.

   Added globally applicable flags to framing.

   Removed zlib-based header compression mechanism.

   Updated references.

   Clarified stream identifier reuse.

   Removed CREDENTIALS frame and associated mechanisms.

   Added advice against naive implementation of flow control.

   Added session header section.

   Restructured frame header.  Removed distinction between data and
   control frames.

   Altered flow control properties to include session-level limits.

   Added note on cacheability of pushed resources and multiple tenant
   servers.

   Changed protocol label form based on discussions.

A.9.  Since draft-ietf-httpbis-http2-00

   Changed title throughout.

   Removed section on Incompatibilities with SPDY draft#2.

   Changed INTERNAL_ERROR on GOAWAY to have a value of 2 <https://
   groups.google.com/forum/?fromgroups#!topic/spdy-dev/cfUef2gL3iU>.

   Replaced abstract and introduction.

   Added section on starting HTTP/2.0, including upgrade mechanism.

   Removed unused references.

   Added flow control principles (Section 5.2.1) based on <http://
   tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01>.

A.10.  Since draft-mbelshe-httpbis-spdy-00

   Adopted as base for draft-ietf-httpbis-http2.




Belshe, et al.            Expires June 7, 2014                 [Page 63]


Internet-Draft                  HTTP/2.0                   December 2013


   Updated authors/editors list.

   Added status note.

Authors' Addresses

   Mike Belshe
   Twist

   EMail: mbelshe@chromium.org


   Roberto Peon
   Google, Inc

   EMail: fenix@google.com


   Martin Thomson (editor)
   Microsoft
   3210 Porter Drive
   Palo Alto  94304
   US

   EMail: martin.thomson@gmail.com


   Alexey Melnikov (editor)
   Isode Ltd
   5 Castle Business Village
   36 Station Road
   Hampton, Middlesex  TW12 2BX
   UK

   EMail: Alexey.Melnikov@isode.com
















Belshe, et al.            Expires June 7, 2014                 [Page 64]