I2NSF Working Group S. Hyun, Ed.
Internet-Draft Myongji University
Intended status: Standards Track J. Jeong, Ed.
Expires: March 2, 2021 T. Roh
S. Wi
Sungkyunkwan University
J. Park
ETRI
August 29, 2020
I2NSF Registration Interface YANG Data Model
draft-ietf-i2nsf-registration-interface-dm-09
Abstract
This document defines an information model and a YANG data model for
Registration Interface between Security Controller and Developer's
Management System (DMS) in the Interface to Network Security
Functions (I2NSF) framework to register Network Security Functions
(NSF) of the DMS with the Security Controller. The objective of
these information and data models is to support NSF capability
registration and query via I2NSF Registration Interface.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on March 2, 2021.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
Hyun, et al. Expires March 2, 2021 [Page 1]
Internet-Draft Registration Interface YANG Data Model August 2020
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3
3. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 4
5. Information Model . . . . . . . . . . . . . . . . . . . . . . 4
5.1. NSF Capability Registration . . . . . . . . . . . . . . . 5
5.1.1. NSF Capability Information . . . . . . . . . . . . . 6
5.1.2. NSF Access Information . . . . . . . . . . . . . . . 8
5.2. NSF Capability Query . . . . . . . . . . . . . . . . . . 8
6. Data Model . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.1. YANG Tree Diagram . . . . . . . . . . . . . . . . . . . . 8
6.1.1. Definition of Symbols in Tree Diagrams . . . . . . . 9
6.1.2. I2NSF Registration Interface . . . . . . . . . . . . 9
6.1.3. NSF Capability Information . . . . . . . . . . . . . 11
6.1.4. NSF Access Information . . . . . . . . . . . . . . . 12
6.2. YANG Data Modules . . . . . . . . . . . . . . . . . . . . 12
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 17
8. Security Considerations . . . . . . . . . . . . . . . . . . . 17
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.1. Normative References . . . . . . . . . . . . . . . . . . 19
9.2. Informative References . . . . . . . . . . . . . . . . . 21
Appendix A. XML Examples of I2NSF Registration Interface Data
Model . . . . . . . . . . . . . . . . . . . . . . . 22
A.1. Example 1: Registration for the Capabilities of a General
Firewall . . . . . . . . . . . . . . . . . . . . . . . . 22
A.2. Example 2: Registration for the Capabilities of a Time-
based Firewall . . . . . . . . . . . . . . . . . . . . . 25
A.3. Example 3: Registration for the Capabilities of a Web
Filter . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.4. Example 4: Registration for the Capabilities of a
VoIP/VoLTE Filter . . . . . . . . . . . . . . . . . . . . 32
A.5. Example 5: Registration for the Capabilities of an HTTP
and HTTPS Flood Mitigator . . . . . . . . . . . . . . . . 35
A.6. Example 6: Query for the Capabilities of a Time-based
Firewall . . . . . . . . . . . . . . . . . . . . . . . . 38
Appendix B. NSF Lifecycle Management in NFV Environments . . . . 41
Appendix C. Acknowledgments . . . . . . . . . . . . . . . . . . 41
Appendix D. Contributors . . . . . . . . . . . . . . . . . . . . 41
Hyun, et al. Expires March 2, 2021 [Page 2]
Internet-Draft Registration Interface YANG Data Model August 2020
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 42
1. Introduction
A number of Network Security Functions (NSF) may exist in the
Interface to Network Security Functions (I2NSF) framework [RFC8329].
Since each of these NSFs likely has different security capabilities
from each other, it is important to register the security
capabilities of the NSF with the security controller. In addition,
it is required to search NSFs of some required security capabilities
on demand. As an example, if additional security capabilities are
required to serve some security service request(s) from an I2NSF
user, the security controller should be able to request the DMS for
NSFs that have the required security capabilities.
This document describes an information model (see Section 5) and a
YANG [RFC7950] data model (see Section 6) for the I2NSF Registration
Interface [RFC8329] between the security controller and the
developer's management system (DMS) to support NSF capability
registration and query via the registration interface. It also
describes the operations which should be performed by the security
controller and the DMS via the Registration Interface using the
defined model.
2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[RFC2119] when, and only when, they appear in all capitals, as shown
here.
3. Terminology
This document uses the following terms defined in [RFC8329] and
[I-D.ietf-i2nsf-capability-data-model].
o Network Security Function (NSF): A function that is responsible
for a specific treatment of received packets. A Network Security
Function can act at various layers of a protocol stack (e.g., at
the network layer or other OSI layers). Sample Network Security
Service Functions are as follows: Firewall, Intrusion Prevention/
Detection System (IPS/IDS), Deep Packet Inspection (DPI),
Application Visibility and Control (AVC), network virus and
malware scanning, sandbox, Data Loss Prevention (DLP), Distributed
Denial of Service (DDoS) mitigation and TLS proxy.
Hyun, et al. Expires March 2, 2021 [Page 3]
Internet-Draft Registration Interface YANG Data Model August 2020
o Data Model: A data model is a representation of concepts of
interest to an environment in a form that is dependent on data
repository, data definition language, query language,
implementation language, and protocol.
o Information Model: An information model is a representation of
concepts of interest to an environment in a form that is
independent of data repository, data definition language, query
language, implementation language, and protocol.
o YANG: This document follows the guidelines of [RFC8407], uses the
common YANG types defined in [RFC6991], and adopts the Network
Management Datastore Architecture (NMDA). The meaning of the
symbols in tree diagrams is defined in [RFC8340].
4. Objectives
o Registering NSFs to I2NSF framework: Developer's Management System
(DMS) in I2NSF framework is typically run by an NSF vendor, and
uses Registration Interface to provide NSFs developed by the NSF
vendor to Security Controller. DMS registers NSFs and their
capabilities to I2NSF framework through Registration Interface.
For the registered NSFs, Security Controller maintains a catalog
of the capabilities of those NSFs.
o Updating the capabilities of registered NSFs: After an NSF is
registered into Security Controller, some modifications on the
capability of the NSF may be required later. In this case, DMS
uses Registration Interface to update the capability of the NSF,
and this update should be reflected in the catalog of NSFs.
o Asking DMS about some required capabilities: In cases that some
security capabilities are required to serve the security service
request from an I2NSF user, Security Controller searches through
the registered NSFs to find ones that can provide the required
capabilities. But Security Controller might fail to find any NSFs
having the required capabilities among the registered NSFs. In
this case, Security Controller needs to request DMS for additional
NSF(s) that can provide the required security capabilities via
Registration Interface.
5. Information Model
The I2NSF registration interface is used by Security Controller and
Developer's Management System (DMS) in I2NSF framework. The
following summarizes the operations done through the registration
interface:
Hyun, et al. Expires March 2, 2021 [Page 4]
Internet-Draft Registration Interface YANG Data Model August 2020
1) DMS registers NSFs and their capabilities to Security Controller
via the registration interface. DMS also uses the registration
interface to update the capabilities of the NSFs registered
previously.
2) In case that Security Controller fails to find some required
capabilities from any registered NSF that can provide , Security
Controller queries DMS about NSF(s) having the required
capabilities via the registration interface.
Figure 1 shows the information model of the I2NSF registration
interface, which consists of two submodels: NSF capability
registration and NSF capability query. Each submodel is used for the
operations listed above. The remainder of this section will provide
in-depth explanations of each submodel.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| I2NSF Registration Interface Information Model |
| |
| +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ |
| | NSF Capability | | NSF Capability | |
| | Registration | | Query | |
| +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: I2NSF Registration Interface Information Model
5.1. NSF Capability Registration
This submodel is used by DMS to register an NSF with Security
Controller. Figure 2 shows how this submodel is constructed. The
most important part in Figure 2 is the NSF capability, and this
specifies the set of capabilities that the NSF to be registered can
offer. The NSF Name contains a unique name of this NSF with the
specified set of capabilities. When registering the NSF, DMS
additionally includes the network access information of the NSF which
is required to enable network communications with the NSF.
The following will further explain the NSF capability information and
the NSF access information in more detail.
Hyun, et al. Expires March 2, 2021 [Page 5]
Internet-Draft Registration Interface YANG Data Model August 2020
+-+-+-+-+-+-+-+-+-+
| NSF Capability |
| Registration |
+-+-+-+-+^+-+-+-+-+
|
+---------------------+--------------------+
| | |
| | |
+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
| NSF | | NSF Capability| | NSF Access |
| Name | | Information | | Information |
+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
Figure 2: NSF Capability Registration Sub-Model
5.1.1. NSF Capability Information
NSF Capability Information basically describes the security
capabilities of an NSF. In Figure 3, we show capability objects of
an NSF. Following the information model of NSF capabilities defined
in [I-D.ietf-i2nsf-capability-data-model], we share the same I2NSF
security capabilities: Time Capabilities, Event Capabilities,
Condition Capabilities, Action Capabilities, Resolution Strategy
Capabilities, Default Action Capabilities, and IPsec Method
[I-D.ietf-i2nsf-sdn-ipsec-flow-protection]. Also, NSF Capability
Information additionally contains the performance capabilities of an
NSF as shown in Figure 3.
Hyun, et al. Expires March 2, 2021 [Page 6]
Internet-Draft Registration Interface YANG Data Model August 2020
+-+-+-+-+-+-+-+-+-+
| NSF Capability |
| Information |
+-+-+-+-^-+-+-+-+-+
|
|
+----------------------+----------------------+
| |
| |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
| I2NSF | | Performance |
| Capabilities | | Capabilities |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
|
+------+--------------+-----------------+-----------------+-------+
| | | | |
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ |
| Time | | Event | | Condition | | Action | |
| Capabilities| | Capabilities| | Capabilities| | Capabilities| |
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ |
|
+---------------------+---------------------+-------+
| | |
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ +-+-+-+-+-+-+
| Resolution | | Default | | IPsec |
| Strategy | | Action | | Method |
| Capabilities| | Capabilities| +-+-+-+-+-+-+
+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
Figure 3: NSF Capability Information
5.1.1.1. Performance Capabilities
This information represents the processing capability of an NSF.
Assuming that the current workload status of each NSF is being
collected through NSF monitoring
[I-D.ietf-i2nsf-nsf-monitoring-data-model], this capability
information of the NSF can be used to determine whether the NSF is in
congestion by comparing it with the current workload of the NSF.
Moreover, this information can specify an available amount of each
type of resource, such as processing power which are available on the
NSF. (The registration interface can control the usages and
limitations of the created instance and make the appropriate request
according to the status.) As illustrated in Figure 4, this
information consists of two items: Processing and Bandwidth.
Processing information describes the NSF's available processing
power. Bandwidth describes the information about available network
Hyun, et al. Expires March 2, 2021 [Page 7]
Internet-Draft Registration Interface YANG Data Model August 2020
amount in two cases, outbound, inbound. These two information can be
used for the NSF's instance request.
+-+-+-+-+-+-+-+-+-+
| Performance |
| Capabilities |
+-+-+-+-^-+-+-+-+-+
|
+----------------------------+
| |
| |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
| Processing | | Bandwidth |
+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
Figure 4: Performance Capability Overview
5.1.2. NSF Access Information
NSF Access Information contains the followings that are required to
communicate with an NSF: IPv4 address, IPv6 address, port number, and
supported transport protocol(s) (e.g., Virtual Extensible LAN (VXLAN)
[RFC7348], Generic Protocol Extension for VXLAN (VXLAN-GPE)
[I-D.ietf-nvo3-vxlan-gpe], Generic Route Encapsulation (GRE),
Ethernet etc.). In this document, NSF Access Information is used to
identify a specific NSF instance (i.e. NSF Access Information is the
signature(unique identifier) of an NSF instance in the overall
system).
5.2. NSF Capability Query
Security Controller may require some additional capabilities to serve
the security service request from an I2NSF user, but none of the
registered NSFs has the required capabilities. In this case,
Security Controller makes a description of the required capabilities
by using the NSF capability information sub-model in Section 5.1.1,
and sends DMS a query about which NSF(s) can provide these
capabilities.
6. Data Model
6.1. YANG Tree Diagram
This section provides the YANG Tree diagram of the I2NSF registration
interface.
Hyun, et al. Expires March 2, 2021 [Page 8]
Internet-Draft Registration Interface YANG Data Model August 2020
6.1.1. Definition of Symbols in Tree Diagrams
A simplified graphical representation of the data model is used in
this section. The meaning of the symbols used in the following
diagrams [RFC8431] is as follows:
Brackets "[" and "]" enclose list keys.
Abbreviations before data node names: "rw" means configuration
(read-write) and "ro" state data (read-only).
Symbols after data node names: "?" means an optional node and "*"
denotes a "list" and "leaf-list".
Parentheses enclose choice and case nodes, and case nodes are also
marked with a colon (":").
Ellipsis ("...") stands for contents of subtrees that are not
shown.
6.1.2. I2NSF Registration Interface
module : ietf-i2nsf-reg-interface
+--rw nsf-capability-registration
| uses nsf-registrations
rpcs :
+---x i2nsf-capability-query
| uses nsf-capability-query
Figure 5: YANG Tree of I2NSF Registration Interface
The I2NSF registration interface is used for the following purposes.
Developer's Management System (DMS) registers NSFs and their
capabilities into Security Controller via the registration interface.
In case that Security Controller fails to find any NSF among the
registered NSFs which can provide some required capabilities,
Security Controller uses the registration interface to query DMS
about NSF(s) having the required capabilities. The following
sections describe the YANG data models to support these operations.
6.1.2.1. NSF Capability Registration
This section expands the i2nsf-nsf-registrations in Figure 5.
Hyun, et al. Expires March 2, 2021 [Page 9]
Internet-Draft Registration Interface YANG Data Model August 2020
NSF Capability Registration
+--rw nsf-registrations
+--rw nsf-information* [capability-name]
+--rw capability-name string
+--rw nsf-capability-info
| uses nsf-capability-info
+--rw security-capability
| uses ietf-i2nsf-capability
+--rw performance-capability
| uses performance-capability
+--rw nsf-access-info
| uses nsf-access-info
+--rw capability-name
+--rw ip
+--rw port
Figure 6: YANG Tree of NSF Capability Registration Module
When registering an NSF to Security Controller, DMS uses this module
to describe what capabilities the NSF can offer. DMS includes the
network access information of the NSF which is required to make a
network connection with the NSF as well as the capability description
of the NSF.
6.1.2.2. NSF Capability Query
This section expands the nsf-capability-query in Figure 5.
I2NSF Capability Query
+---x nsf-capability-query
+---w input
| +---w query-nsf-capability
| | uses ietf-i2nsf-capability
+--ro output
+--ro nsf-access-info
| uses nsf-access-info
+--rw capability-name
+--rw ip
+--rw port
Figure 7: YANG Tree of NSF Capability Query Module
Security Controller may require some additional capabilities to
provide the security service requested by an I2NSF user, but none of
the registered NSFs has the required capabilities. In this case,
Security Controller makes a description of the required capabilities
using this module and then queries DMS about which NSF(s) can provide
these capabilities. Use NETCONF RPCs to send a NSF capability query.
Hyun, et al. Expires March 2, 2021 [Page 10]
Internet-Draft Registration Interface YANG Data Model August 2020
Input data is query-i2nsf-capability-info and output data is nsf-
access-info. In Figure 7, the ietf-i2nsf-capability refers to the
module defined in [I-D.ietf-i2nsf-capability-data-model].
6.1.3. NSF Capability Information
This section expands the nsf-capability-info in Figure 6 and
Figure 7.
NSF Capability Information
+--rw nsf-capability-info
+--rw security-capability
| uses ietf-i2nsf-capability
+--rw performance-capability
| uses nsf-performance-capability
Figure 8: YANG Tree of I2NSF NSF Capability Information
In Figure 8, the ietf-i2nsf-capability refers to the module defined
in [I-D.ietf-i2nsf-capability-data-model]. The performance-
capability is used to specify the performance capability of an NSF.
6.1.3.1. NSF Performance Capability
This section expands the nsf-performance-capability in Figure 8.
NSF Performance Capability
+--rw nsf-performance-capability
+--rw processing
| +--rw processing-average uint16
| +--rw processing-peak uint16
+--rw bandwidth
| +--rw outbound
| | +--rw outbound-average uint16
| | +--rw outbound-peak uint16
| +--rw inbound
| | +--rw inbound-average uint16
| | +--rw inbound-peak uint16
Figure 9: YANG Tree of I2NSF NSF Performance Capability
This module is used to specify the performance capabilities of an NSF
when registering or initiating the NSF.
Hyun, et al. Expires March 2, 2021 [Page 11]
Internet-Draft Registration Interface YANG Data Model August 2020
6.1.4. NSF Access Information
This section expands the nsf-access-info in Figure 6.
NSF Access Information
+--rw nsf-access-info
+--rw capability-name string
+--rw ip inet:ip-address
+--rw port inet:port-number
Figure 10: YANG Tree of I2NSF NSF Access Informantion
This module contains the network access information of an NSF that is
required to enable network communications with the NSF. The field of
ip can have either an IPv4 address or an IPv6 address.
6.2. YANG Data Modules
This section provides a YANG module of the data model for the
registration interface between Security Controller and Developer's
Management System, as defined in Section 5.
This YANG module imports from [RFC6991], and makes a reference to
[I-D.ietf-i2nsf-capability-data-model].
<CODE BEGINS> file "ietf-i2nsf-reg-interface@2020-08-29.yang"
module ietf-i2nsf-reg-interface {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface";
prefix nsfreg;
// RFC Ed.: replace occurences of XXXX with actual RFC number and
// remove this note
import ietf-inet-types {
prefix inet;
reference "RFC 6991";
}
import ietf-i2nsf-capability {
prefix cap;
// RFC Ed.: replace YYYY with actual RFC number of
// draft-ietf-i2nsf-capability-data-model and remove this note.
reference "RFC YYYY: I2NSF Capability YANG Data Model";
}
Hyun, et al. Expires March 2, 2021 [Page 12]
Internet-Draft Registration Interface YANG Data Model August 2020
organization
"IETF I2NSF (Interface to Network Security Functions)
Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/i2nsf>
WG List: <mailto:i2nsf@ietf.org>
Editor: Sangwon Hyun
<mailto:shyun@mju.ac.kr>
Editor: Jaehoon Paul Jeong
<mailto:pauljeong@skku.edu>";
description
"This module defines a YANG data model for I2NSF
Registration Interface.
Copyright (c) 2020 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";
// RFC Ed.: replace XXXX with actual RFC number and remove
// this note
revision "2020-08-29" {
description "Initial revision";
reference
"RFC XXXX: I2NSF Registration Interface YANG Data Model";
// RFC Ed.: replace XXXX with actual RFC number and remove
// this note
}
grouping nsf-performance-capability {
description
"Description of the performance capabilities of an NSF";
container processing {
description
Hyun, et al. Expires March 2, 2021 [Page 13]
Internet-Draft Registration Interface YANG Data Model August 2020
"Processing power of an NSF in the unit of GHz (gigahertz)";
leaf processing-average {
type uint16;
units "GHz";
description
"Average processing power";
}
leaf processing-peak {
type uint16;
units "GHz";
description
"Peak processing power";
}
}
container bandwidth {
description
"Network bandwidth available on an NSF
in the unit of Mbps (megabits per second)";
container outbound {
description
"Outbound network bandwidth";
leaf outbound-average {
type uint32;
units "Mbps";
description
"Average outbound bandwidth";
}
leaf outbound-peak {
type uint32;
units "Mbps";
description
"Peak outbound bandwidth";
}
}
container inbound {
description
"Inbound network bandwidth";
leaf inbound-average {
type uint32;
units "Mbps";
description
"Average inbound bandwidth";
}
leaf inbound-peak {
type uint32;
units "Mbps";
Hyun, et al. Expires March 2, 2021 [Page 14]
Internet-Draft Registration Interface YANG Data Model August 2020
description
"Peak inbound bandwidth";
}
}
}
}
grouping nsf-capability-info {
description
"Capability description of an NSF";
container security-capability {
description
"Description of the security capabilities of an NSF";
uses cap:nsf-capabilities;
// RFC Ed.: replace YYYY with actual RFC number of
// draft-ietf-i2nsf-capability-data-model and remove this note.
reference "RFC YYYY: I2NSF Capability YANG Data Model";
}
container performance-capability {
description
"Description of the performance capabilities of an NSF";
uses nsf-performance-capability;
}
}
grouping nsf-access-info {
description
"Information required to access an NSF";
leaf capability-name {
type string;
description
"Unique name of this NSF's capability";
}
leaf ip {
type inet:ip-address;
description
"Either an IPv4 address or an IPv6 address of this NSF";
}
leaf port {
type inet:port-number;
description
"Port available on this NSF";
}
}
container nsf-registrations {
description
"Information of an NSF that DMS registers
Hyun, et al. Expires March 2, 2021 [Page 15]
Internet-Draft Registration Interface YANG Data Model August 2020
to Security Controller";
list nsf-information {
key "capability-name";
description
"Required information for registration";
leaf capability-name {
type string;
mandatory true;
description
"Unique name of this registered NSF";
}
container nsf-capability-info {
description
"Capability description of this NSF";
uses nsf-capability-info;
}
container nsf-access-info {
description
"Network access information of this NSF";
uses nsf-access-info;
}
}
}
rpc nsf-capability-query {
description
"Description of the capabilities that the
Security Controller requests to the DMS";
input {
container query-nsf-capability {
description
"Description of the capabilities to request";
uses cap:nsf-capabilities;
// RFC Ed.: replace YYYY with actual RFC number of
// draft-ietf-i2nsf-capability-data-model and remove this note.
reference "RFC YYYY: I2NSF Capability YANG Data Model";
}
}
output {
container nsf-access-info {
description
"Network access information of an NSF
with the requested capabilities";
uses nsf-access-info;
}
}
}
}
Hyun, et al. Expires March 2, 2021 [Page 16]
Internet-Draft Registration Interface YANG Data Model August 2020
<CODE ENDS>
Figure 11: Registration Interface YANG Data Model
7. IANA Considerations
This document requests IANA to register the following URI in the
"IETF XML Registry" [RFC3688]:
URI: urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
This document requests IANA to register the following YANG module in
the "YANG Module Names" registry [RFC7950][RFC8525]:
Name: ietf-i2nsf-reg-interface
Namespace: urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface
Prefix: nsfreg
Reference: RFC XXXX
// RFC Ed.: replace XXXX with actual RFC number and remove
// this note
8. Security Considerations
The YANG module specified in this document defines a data schema
designed to be accessed through network management protocols such as
NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is
the secure transport layer, and the required secure transport is
Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS,
and the required secure transport is TLS [RFC8446].
The NETCONF access control model [RFC8341] provides a means of
restricting access to specific NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
to these data nodes without proper protection can have a negative
effect on network operations. These are the subtrees and data nodes
and their sensitivity/vulnerability:
Hyun, et al. Expires March 2, 2021 [Page 17]
Internet-Draft Registration Interface YANG Data Model August 2020
o nsf-registrations: The attacker may exploit this to register a
compromised or malicious NSF instead of a legitimate NSF with the
Security Controller.
o nsf-performance-capability: The attacker may provide incorrect
information of the performance capability of any target NSF by
illegally modifying this.
o nsf-capability-info: The attacker may provide incorrect
information of the security capability of any target NSF by
illegally modifying this.
o nsf-access-info: The attacker may provide incorrect network access
information of any target NSF by illegally modifying this.
Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. These are the subtrees and data
nodes and their sensitivity/vulnerability:
o nsf-registrations: The attacker may try to gather some sensitive
information of a registered NSF by sniffing this.
o nsf-performance-capability: The attacker may gather the
performance capability information of any target NSF and misuse
the information for subsequent attacks.
o nsf-capability-info: The attacker may gather the security
capability information of any target NSF and misuse the
information for subsequent attacks.
o nsf-access-info: The attacker may gather the network access
information of any target NSF and misuse the information for
subsequent attacks.
The RPC operation in this YANG module may be considered sensitive or
vulnerable in some network environments. It is thus important to
control access to this operation. The following is the operation and
its sensitivity/vulnerability:
o nsf-capability-query: The attacker may exploit this RPC operation
to deteriorate the availability of the DMS and/or gather the
information of some interested NSFs from the DMS.
Hyun, et al. Expires March 2, 2021 [Page 18]
Internet-Draft Registration Interface YANG Data Model August 2020
9. References
9.1. Normative References
[I-D.ietf-i2nsf-capability-data-model]
Hares, S., Jeong, J., Kim, J., Moskowitz, R., and Q. Lin,
"I2NSF Capability YANG Data Model", draft-ietf-i2nsf-
capability-data-model-08 (work in progress), August 2020.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix
Reserved for Documentation", RFC 3849,
DOI 10.17487/RFC3849, July 2004,
<https://www.rfc-editor.org/info/rfc3849>.
[RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks
Reserved for Documentation", RFC 5737,
DOI 10.17487/RFC5737, January 2010,
<https://www.rfc-editor.org/info/rfc5737>.
[RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG
Data Model Documents", RFC 6087, DOI 10.17487/RFC6087,
January 2011, <https://www.rfc-editor.org/info/rfc6087>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
Hyun, et al. Expires March 2, 2021 [Page 19]
Internet-Draft Registration Interface YANG Data Model August 2020
[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
<https://www.rfc-editor.org/info/rfc7348>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R.
Kumar, "Framework for Interface to Network Security
Functions", RFC 8329, DOI 10.17487/RFC8329, February 2018,
<https://www.rfc-editor.org/info/rfc8329>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
Documents Containing YANG Data Models", BCP 216, RFC 8407,
DOI 10.17487/RFC8407, October 2018,
<https://www.rfc-editor.org/info/rfc8407>.
[RFC8431] Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini,
S., and N. Bahadur, "A YANG Data Model for the Routing
Information Base (RIB)", RFC 8431, DOI 10.17487/RFC8431,
September 2018, <https://www.rfc-editor.org/info/rfc8431>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
Hyun, et al. Expires March 2, 2021 [Page 20]
Internet-Draft Registration Interface YANG Data Model August 2020
[RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
and R. Wilton, "YANG Library", RFC 8525,
DOI 10.17487/RFC8525, March 2019,
<https://www.rfc-editor.org/info/rfc8525>.
9.2. Informative References
[I-D.ietf-i2nsf-nsf-monitoring-data-model]
Jeong, J., Chung, C., Hares, S., Xia, L., and H. Birkholz,
"I2NSF NSF Monitoring YANG Data Model", draft-ietf-i2nsf-
nsf-monitoring-data-model-03 (work in progress), May 2020.
[I-D.ietf-i2nsf-sdn-ipsec-flow-protection]
Lopez, R., Lopez-Millan, G., and F. Pereniguez-Garcia,
"Software-Defined Networking (SDN)-based IPsec Flow
Protection", draft-ietf-i2nsf-sdn-ipsec-flow-protection-08
(work in progress), June 2020.
[I-D.ietf-nvo3-vxlan-gpe]
Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
Extension for VXLAN (VXLAN-GPE)", draft-ietf-nvo3-vxlan-
gpe-10 (work in progress), July 2020.
[nfv-framework]
"Network Functions Virtualisation (NFV); Architectureal
Framework", ETSI GS NFV 002 ETSI GS NFV 002 V1.1.1,
October 2013.
Hyun, et al. Expires March 2, 2021 [Page 21]
Internet-Draft Registration Interface YANG Data Model August 2020
Appendix A. XML Examples of I2NSF Registration Interface Data Model
This section describes XML examples of the I2NSF Registration
Interface data model under the assumption of registering several
types of NSFs and querying NSF capability.
A.1. Example 1: Registration for the Capabilities of a General Firewall
This section shows an XML example for registering the capabilities of
a general firewall in either IPv4 networks [RFC5737] or IPv6 networks
[RFC3849].
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>general_firewall_capability</capability-name>
<nsf-capability-info>
<security-capability>
<condition-capabilities>
<generic-nsf-capabilities>
<ipv4-capability>cap:ipv4-protocol</ipv4-capability>
<ipv4-capability>cap:exact-ipv4-address</ipv4-capability>
<ipv4-capability>cap:range-ipv4-address</ipv4-capability>
<tcp-capability>cap:exact-tcp-port-num</tcp-capability>
<tcp-capability>cap:range-tcp-port-num</tcp-capability>
</generic-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
Hyun, et al. Expires March 2, 2021 [Page 22]
Internet-Draft Registration Interface YANG Data Model August 2020
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>general_firewall</capability-name>
<ip>192.0.2.11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 12: Configuration XML for Registration of a General Firewall
in an IPv4 Network
Figure 12 shows the configuration XML for registering a general
firewall in an IPv4 network [RFC5737] and its capabilities as
follows.
1. The instance name of the NSF is general_firewall.
2. The NSF can inspect a protocol, an exact IPv4 address, and a
range of IPv4 addresses for IPv4 packets.
3. The NSF can inspect an exact port number and a range of port
numbers for TCP packets.
4. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
5. The NSF can support IPsec not through IKEv2, but through a
Security Controller [I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
6. The NSF can have processing power and bandwidth.
7. The IPv4 address of the NSF is 192.0.2.11.
8. The port of the NSF is 3000.
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>general_firewall_capability</capability-name>
<nsf-capability-info>
Hyun, et al. Expires March 2, 2021 [Page 23]
Internet-Draft Registration Interface YANG Data Model August 2020
<security-capability>
<condition-capabilities>
<generic-nsf-capabilities>
<ipv6-capability>cap:ipv6-protocol</ipv6-capability>
<ipv6-capability>cap:exact-ipv6-address</ipv6-capability>
<ipv6-capability>cap:range-ipv6-address</ipv6-capability>
<tcp-capability>cap:exact-tcp-port-num</tcp-capability>
<tcp-capability>cap:range-tcp-port-num</tcp-capability>
</generic-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>general_firewall</capability-name>
<ip>2001:DB8:0:1::11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 13: Configuration XML for Registration of a General Firewall
in an IPv6 Network
Hyun, et al. Expires March 2, 2021 [Page 24]
Internet-Draft Registration Interface YANG Data Model August 2020
In addition, Figure 13 shows the configuration XML for registering a
general firewall in an IPv6 network [RFC3849] and its capabilities as
follows.
1. The instance name of the NSF is general_firewall.
2. The NSF can inspect a protocol, an exact IPv6 address, and a
range of IPv6 addresses for IPv6 packets.
3. The NSF can inspect an exact port number and a range of port
numbers for TCP packets.
4. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
5. The NSF can support IPsec not through IKEv2, but through a
Security Controller [I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
6. The NSF can have processing power and bandwidth.
7. The IPv6 address of the NSF is 2001:DB8:0:1::11.
8. The port of the NSF is 3000.
A.2. Example 2: Registration for the Capabilities of a Time-based
Firewall
This section shows an XML example for registering the capabilities of
a time-based firewall in either IPv4 networks [RFC5737] or IPv6
networks [RFC3849].
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>time_based_firewall_capability</capability-name>
<nsf-capability-info>
<security-capability>
<time-capabilities>absolute-time</time-capabilities>
<time-capabilities>periodic-time</time-capabilities>
<condition-capabilities>
<generic-nsf-capabilities>
<ipv4-capability>cap:ipv4-protocol</ipv4-capability>
<ipv4-capability>cap:exact-ipv4-address</ipv4-capability>
<ipv4-capability>cap:range-ipv4-address</ipv4-capability>
<tcp-capability>cap:exact-tcp-port-num</tcp-capability>
<tcp-capability>cap:range-tcp-port-num</tcp-capability>
</generic-nsf-capabilities>
Hyun, et al. Expires March 2, 2021 [Page 25]
Internet-Draft Registration Interface YANG Data Model August 2020
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ike</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>time_based_firewall</capability-name>
<ip>192.0.2.11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 14: Configuration XML for Registration of a Time-based
Firewall in an IPv4 Network
Figure 14 shows the configuration XML for registering a time-based
firewall in an IPv4 network [RFC5737] and its capabilities as
follows.
1. The instance name of the NSF is time_based_firewall.
2. The NSF can enforce the security policy rule according to
absolute time and periodic time.
Hyun, et al. Expires March 2, 2021 [Page 26]
Internet-Draft Registration Interface YANG Data Model August 2020
3. The NSF can inspect a protocol, an exact IPv4 address, and a
range of IPv4 addresses for IPv4 packets.
4. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
5. The NSF can support IPsec through IKEv2
[I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
6. The NSF can have processing power and bandwidth.
7. The IPv4 address of the NSF is 192.0.2.11.
8. The port of the NSF is 3000.
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>time_based_firewall_capability</capability-name>
<nsf-capability-info>
<security-capability>
<time-capabilities>absolute-time</time-capabilities>
<time-capabilities>periodic-time</time-capabilities>
<condition-capabilities>
<generic-nsf-capabilities>
<ipv6-capability>cap:ipv6-protocol</ipv6-capability>
<ipv6-capability>cap:exact-ipv6-address</ipv6-capability>
<ipv6-capability>cap:range-ipv6-address</ipv6-capability>
<tcp-capability>cap:exact-tcp-port-num</tcp-capability>
<tcp-capability>cap:range-tcp-port-num</tcp-capability>
</generic-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ike</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
Hyun, et al. Expires March 2, 2021 [Page 27]
Internet-Draft Registration Interface YANG Data Model August 2020
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>time_based_firewall</capability-name>
<ip>2001:DB8:0:1::11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 15: Configuration XML for Registration of a Time-based
Firewall in an IPv6 Network
In addition, Figure 15 shows the configuration XML for registering a
time-based firewall in an IPv6 network [RFC3849] and its capabilities
as follows.
1. The instance name of the NSF is time_based_firewall.
2. The NSF can enforce the security policy rule according to
absolute time and periodic time.
3. The NSF can inspect a protocol, an exact IPv6 address, and a
range of IPv6 addresses for IPv6 packets.
4. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
5. The NSF can support IPsec through IKEv2
[I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
6. The NSF can have processing power and bandwidth.
7. The IPv6 address of the NSF is 2001:DB8:0:1::11.
8. The port of the NSF is 3000.
Hyun, et al. Expires March 2, 2021 [Page 28]
Internet-Draft Registration Interface YANG Data Model August 2020
A.3. Example 3: Registration for the Capabilities of a Web Filter
This section shows an XML example for registering the capabilities of
a web filter in either IPv4 networks [RFC5737] or IPv6 networks
[RFC3849].
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>web_filter</capability-name>
<nsf-capability-info>
<security-capability>
<condition-capabilities>
<advanced-nsf-capabilities>
<url-capability>cap:user-defined</url-capability>
</advanced-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>web_filter</capability-name>
<ip>192.0.2.11</ip>
Hyun, et al. Expires March 2, 2021 [Page 29]
Internet-Draft Registration Interface YANG Data Model August 2020
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 16: Configuration XML for Registration of a Web Filter in an
IPv4 Network
Figure 16 shows the configuration XML for registering a web filter in
an IPv4 network [RFC5737] and its capabilities are as follows.
1. The instance name of the NSF is web_filter.
2. The NSF can inspect URL for HTTP and HTTPS packets.
3. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
4. The NSF can support IPsec not through IKEv2, but through a
Security Controller [I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
5. The NSF can have processing power and bandwidth.
6. The IPv4 address of the NSF is 192.0.2.11.
7. The port of the NSF is 3000.
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>web_filter</capability-name>
<nsf-capability-info>
<security-capability>
<condition-capabilities>
<advanced-nsf-capabilities>
<url-capability>cap:user-defined</url-capability>
</advanced-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
Hyun, et al. Expires March 2, 2021 [Page 30]
Internet-Draft Registration Interface YANG Data Model August 2020
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>web_filter</capability-name>
<ip>2001:DB8:0:1::11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 17: Configuration XML for Registration of a Web Filter in an
IPv6 Network
In addition, Figure 17 shows the configuration XML for registering a
web filter in an IPv6 network [RFC3849] and its capabilities are as
follows.
1. The instance name of the NSF is web_filter.
2. The NSF can inspect URL for HTTP and HTTPS packets.
3. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
4. The NSF can support IPsec not through IKEv2, but through a
Security Controller [I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
5. The NSF can have processing power and bandwidth.
6. The IPv6 address of the NSF is 2001:DB8:0:1::11.
7. The port of the NSF is 3000.
Hyun, et al. Expires March 2, 2021 [Page 31]
Internet-Draft Registration Interface YANG Data Model August 2020
A.4. Example 4: Registration for the Capabilities of a VoIP/VoLTE
Filter
This section shows an XML example for registering the capabilities of
a VoIP/VoLTE filter in either IPv4 networks [RFC5737] or IPv6
networks [RFC3849].
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>voip_volte_filter</capability-name>
<nsf-capability-info>
<security-capability>
<condition-capabilities>
<advanced-nsf-capabilities>
<voip-volte-capability>cap:voice-id</voip-volte-capability>
</advanced-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>voip_volte_filter</capability-name>
Hyun, et al. Expires March 2, 2021 [Page 32]
Internet-Draft Registration Interface YANG Data Model August 2020
<ip>192.0.2.11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 18: Configuration XML for Registration of a VoIP/VoLTE Filter
in an IPv4 Network
Figure 18 shows the configuration XML for registering a VoIP/VoLTE
filter in an IPv4 network [RFC5737] and its capabilities are as
follows.
1. The instance name of the NSF is voip_volte_filter.
2. The NSF can inspect a voice id for VoIP/VoLTE packets.
3. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
4. The NSF can support IPsec not through IKEv2, but through a
Security Controller [I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
5. The NSF can have processing power and bandwidth.
6. The IPv4 address of the NSF is 192.0.2.11.
7. The port of the NSF is 3000.
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>voip_volte_filter</capability-name>
<nsf-capability-info>
<security-capability>
<condition-capabilities>
<advanced-nsf-capabilities>
<voip-volte-capability>cap:voice-id</voip-volte-capability>
</advanced-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
Hyun, et al. Expires March 2, 2021 [Page 33]
Internet-Draft Registration Interface YANG Data Model August 2020
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>voip_volte_filter</capability-name>
<ip>2001:DB8:0:1::11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 19: Configuration XML for Registration of a VoIP/VoLTE Filter
in an IPv6 Network
Figure 19 shows the configuration XML for registering a VoIP/VoLTE
filter in an IPv6 network [RFC3849] and its capabilities are as
follows.
1. The instance name of the NSF is voip_volte_filter.
2. The NSF can inspect a voice id for VoIP/VoLTE packets.
3. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
4. The NSF can support IPsec not through IKEv2, but through a
Security Controller [I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
5. The NSF can have processing power and bandwidth.
6. The IPv6 address of the NSF is 2001:DB8:0:1::11.
Hyun, et al. Expires March 2, 2021 [Page 34]
Internet-Draft Registration Interface YANG Data Model August 2020
7. The port of the NSF is 3000.
A.5. Example 5: Registration for the Capabilities of an HTTP and HTTPS
Flood Mitigator
This section shows an XML example for registering the capabilities of
an HTTP and HTTPS flood mitigator in either IPv4 networks [RFC5737]
or IPv6 networks [RFC3849].
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>
http_and_https_flood_mitigator
</capability-name>
<nsf-capability-info>
<security-capability>
<condition-capabilities>
<advanced-nsf-capabilities>
<anti-ddos-capability>
cap:http-flood-action
</anti-ddos-capability>
<anti-ddos-capability>
cap:https-flood-action
</anti-ddos-capability>
</advanced-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ike</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
Hyun, et al. Expires March 2, 2021 [Page 35]
Internet-Draft Registration Interface YANG Data Model August 2020
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>
http_and_https_flood_mitigation
</capability-name>
<ip>192.0.2.11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Figure 20: Configuration XML for Registration of an HTTP and HTTPS
Flood Mitigator in an IPv4 Network
Figure 20 shows the configuration XML for registering an HTTP and
HTTPS flood mitigator in an IPv4 network [RFC5737] and its
capabilities are as follows.
1. The instance name of the NSF is http_and_https_flood_mitigator.
2. The NSF can control the amount of packets for HTTP and HTTPS
packets.
3. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
4. The NSF can support IPsec through IKEv2
[I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
5. The NSF can have processing power and bandwidth.
6. The IPv4 address of the NSF is 192.0.2.11.
7. The port of the NSF is 3000.
<nsf-registrations
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<nsf-information>
<capability-name>
http_and_https_flood_mitigator
</capability-name>
Hyun, et al. Expires March 2, 2021 [Page 36]
Internet-Draft Registration Interface YANG Data Model August 2020
<nsf-capability-info>
<security-capability>
<condition-capabilities>
<advanced-nsf-capabilities>
<anti-ddos-capability>
cap:http-flood-action
</anti-ddos-capability>
<anti-ddos-capability>
cap:https-flood-action
</anti-ddos-capability>
</advanced-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ike</ipsec-method>
</security-capability>
<performance-capability>
<processing>
<processing-average>1000</processing-average>
<processing-peak>5000</processing-peak>
</processing>
<bandwidth>
<outbound>
<outbound-average>1000</outbound-average>
<outbound-peak>5000</outbound-peak>
</outbound>
<inbound>
<inbound-average>1000</inbound-average>
<inbound-peak>5000</inbound-peak>
</inbound>
</bandwidth>
</performance-capability>
</nsf-capability-info>
<nsf-access-info>
<capability-name>
http_and_https_flood_mitigation
</capability-name>
<ip>2001:DB8:0:1::11</ip>
<port>3000</port>
</nsf-access-info>
</nsf-information>
</nsf-registrations>
Hyun, et al. Expires March 2, 2021 [Page 37]
Internet-Draft Registration Interface YANG Data Model August 2020
Figure 21: Configuration XML for Registration of an HTTP and HTTPS
Flood Mitigator in an IPv6 Network
In addition, Figure 21 shows the configuration XML for registering an
HTTP and HTTPS flood mitigator in an IPv6 network [RFC3849] and its
capabilities are as follows.
1. The instance name of the NSF is http_and_https_flood_mitigator.
2. The NSF can control the amount of packets for HTTP and HTTPS
packets.
3. The NSF can determine whether the packets are allowed to pass,
drop, or alert.
4. The NSF can support IPsec through IKEv2
[I-D.ietf-i2nsf-sdn-ipsec-flow-protection].
5. The NSF can have processing power and bandwidth.
6. The IPv6 address of the NSF is 2001:DB8:0:1::11.
7. The port of the NSF is 3000.
A.6. Example 6: Query for the Capabilities of a Time-based Firewall
This section shows an XML example for querying the capabilities of a
time-based firewall in either IPv4 networks [RFC5737] or IPv6
networks [RFC3849].
Hyun, et al. Expires March 2, 2021 [Page 38]
Internet-Draft Registration Interface YANG Data Model August 2020
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<nsf-capability-query
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<query-i2nsf-capability-info>
<time-capabilities>absolute-time</time-capabilities>
<time-capabilities>periodic-time</time-capabilities>
<condition-capabilities>
<generic-nsf-capabilities>
<ipv4-capability>cap:ipv4-protocol</ipv4-capability>
<ipv4-capability>cap:exact-ipv4-address</ipv4-capability>
<ipv4-capability>cap:range-ipv4-address</ipv4-capability>
</generic-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
</query-i2nsf-capability-info>
</nsf-capability-query>
</rpc>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<nsf-access-info
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface">
<capability-name>time-based-firewall</capability-name>
<ip>192.0.2.11</ip>
<port>3000</port>
</nsf-access-info>
</rpc-reply>
Figure 22: Configuration XML for Query of a Time-based Firewall in an
IPv4 Network
Figure 22 shows the XML configuration for querying the capabilities
of a time-based firewall in an IPv4 network [RFC5737]. The access
information of the announced time-based firewall has the IPv4 address
of 192.0.2.11 and the port number of 3000.
Hyun, et al. Expires March 2, 2021 [Page 39]
Internet-Draft Registration Interface YANG Data Model August 2020
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<nsf-capability-query
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"
xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
<query-i2nsf-capability-info>
<time-capabilities>absolute-time</time-capabilities>
<time-capabilities>periodic-time</time-capabilities>
<condition-capabilities>
<generic-nsf-capabilities>
<ipv6-capability>cap:ipv6-protocol</ipv6-capability>
<ipv6-capability>cap:exact-ipv6-address</ipv6-capability>
<ipv6-capability>cap:range-ipv6-address</ipv6-capability>
</generic-nsf-capabilities>
</condition-capabilities>
<action-capabilities>
<ingress-action-capability>cap:pass</ingress-action-capability>
<ingress-action-capability>cap:drop</ingress-action-capability>
<ingress-action-capability>cap:alert</ingress-action-capability>
<egress-action-capability>cap:pass</egress-action-capability>
<egress-action-capability>cap:drop</egress-action-capability>
<egress-action-capability>cap:alert</egress-action-capability>
</action-capabilities>
<ipsec-method>cap:ikeless</ipsec-method>
</query-i2nsf-capability-info>
</nsf-capability-query>
</rpc>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<nsf-access-info
xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface">
<capability-name>time-based-firewall</capability-name>
<ip>2001:DB8:0:1::11</ip>
<port>3000</port>
</nsf-access-info>
</rpc-reply>
Figure 23: Configuration XML for Query of a Time-based Firewall in an
IPv6 Network
In addition, Figure 23 shows the XML configuration for querying the
capabilities of a time-based firewall in an IPv6 network [RFC3849].
The access information of the announced time-based firewall has the
IPv6 address of 2001:DB8:0:1::11 and the port number of 3000.
Hyun, et al. Expires March 2, 2021 [Page 40]
Internet-Draft Registration Interface YANG Data Model August 2020
Appendix B. NSF Lifecycle Management in NFV Environments
Network Functions Virtualization (NFV) can be used to implement I2NSF
framework. In NFV environments, NSFs are deployed as virtual network
functions (VNFs). Security Controller can be implemented as an
Element Management (EM) of the NFV architecture, and is connected
with the VNF Manager (VNFM) via the Ve-Vnfm interface
[nfv-framework]. Security Controller can use this interface for the
purpose of the lifecycle management of NSFs. If some NSFs need to be
instantiated to enforce security policies in the I2NSF framework,
Security Controller could request the VNFM to instantiate them
through the Ve-Vnfm interface. Or if an NSF, running as a VNF, is
not used by any traffic flows for a time period, Security Controller
may request deinstantiating it through the interface for efficient
resource utilization.
Appendix C. Acknowledgments
This work was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea
MSIT (Ministry of Science and ICT) (No. 2016-0-00078, Cloud Based
Security Intelligence Technology Development for the Customized
Security Service Provisioning).
Appendix D. Contributors
This document is made by the group effort of I2NSF working group.
Many people actively contributed to this document, such as Reshad
Rahman. The authors sincerely appreciate their contributions.
The following are co-authors of this document:
Jinyong Tim Kim
Department of Electronic, Electrical and Computer Engineering
Sungkyunkwan University
2066 Seo-ro Jangan-gu
Suwon, Gyeonggi-do 16419
Republic of Korea
EMail: timkim@skku.edu
Chaehong Chung
Department of Electronic, Electrical and Computer Engineering
Sungkyunkwan University
2066 Seo-ro Jangan-gu
Suwon, Gyeonggi-do 16419
Republic of Korea
Hyun, et al. Expires March 2, 2021 [Page 41]
Internet-Draft Registration Interface YANG Data Model August 2020
EMail: darkhong@skku.edu
Susan Hares
Huawei
7453 Hickory Hill
Saline, MI 48176
USA
EMail: shares@ndzh.com
Diego R. Lopez
Telefonica I+D
Jose Manuel Lara, 9
Seville, 41013
Spain
EMail: diego.r.lopez@telefonica.com
Authors' Addresses
Sangwon Hyun (editor)
Department of Computer Engineering
Myongji University
116 Myongji-ro, Cheoin-gu
Yongin, Gyeonggi-do 17058
Republic of Korea
EMail: shyun@mju.ac.kr
Jaehoon Paul Jeong (editor)
Department of Computer Science and Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon, Gyeonggi-Do 16419
Republic of Korea
Phone: +82 31 299 4957
Fax: +82 31 290 7996
EMail: pauljeong@skku.edu
URI: http://iotlab.skku.edu/people-jaehoon-jeong.php
Hyun, et al. Expires March 2, 2021 [Page 42]
Internet-Draft Registration Interface YANG Data Model August 2020
Taekyun Roh
Department of Electronic, Electrical and Computer Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon, Gyeonggi-Do 16419
Republic of Korea
Phone: +82 31 290 7222
Fax: +82 31 299 6673
EMail: tkroh0198@skku.edu
Sarang Wi
Department of Electronic, Electrical and Computer Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon, Gyeonggi-Do 16419
Republic of Korea
Phone: +82 31 290 7222
Fax: +82 31 299 6673
EMail: dnl9795@skku.edu
Jung-Soo Park
Electronics and Telecommunications Research Institute
218 Gajeong-Ro, Yuseong-Gu
Daejeon 305-700
Republic of Korea
Phone: +82 42 860 6514
EMail: pjs@etri.re.kr
Hyun, et al. Expires March 2, 2021 [Page 43]