Network Working Group                                            J. Dong
Internet-Draft                                                   M. Chen
Intended status: Standards Track                     Huawei Technologies
Expires: June 5, 2016                                         H. Gredler
                                                  Individual Contributor
                                                              S. Previdi
                                                     Cisco Systems, Inc.
                                                             J. Tantsura
                                                                Ericsson
                                                        December 3, 2015


   Distribution of MPLS Traffic Engineering (TE) LSP State using BGP
                 draft-ietf-idr-te-lsp-distribution-04

Abstract

   This document describes a mechanism to collect the Traffic
   Engineering (TE) LSP information using BGP.  Such information can be
   used by external components for path reoptimization, service
   placement, and network visualization.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 5, 2016.







Dong, et al.              Expires June 5, 2016                  [Page 1]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Carrying LSP State Information in BGP . . . . . . . . . . . .   4
     2.1.  MPLS TE LSP Information . . . . . . . . . . . . . . . . .   4
     2.2.  IPv4/IPv6 MPLS TE LSP NLRI  . . . . . . . . . . . . . . .   5
       2.2.1.  MPLS TE LSP Descriptors . . . . . . . . . . . . . . .   6
     2.3.  LSP State Information . . . . . . . . . . . . . . . . . .   8
       2.3.1.  RSVP Objects  . . . . . . . . . . . . . . . . . . . .  10
       2.3.2.  PCE Objects . . . . . . . . . . . . . . . . . . . . .  11
       2.3.3.  SR Encap TLVs . . . . . . . . . . . . . . . . . . . .  11
   3.  Operational Considerations  . . . . . . . . . . . . . . . . .  12
   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  12
     4.1.  BGP-LS NLRI-Types . . . . . . . . . . . . . . . . . . . .  12
     4.2.  BGP-LS Protocol-IDs . . . . . . . . . . . . . . . . . . .  12
     4.3.  BGP-LS Descriptors TLVs . . . . . . . . . . . . . . . . .  13
     4.4.  BGP-LS LSP-State TLV Protocol Origin  . . . . . . . . . .  13
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
   6.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  14
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  14
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  15
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   In some network environments, the state of established Multi-Protocol
   Label Switching (MPLS) Traffic Engineering (TE) Label Switched Paths
   (LSPs) and Tunnels in the network are required by components external
   to the network domain.  Usually this information is directly
   maintained by the ingress Label Edge Routers (LERs) of the MPLS TE
   LSPs.




Dong, et al.              Expires June 5, 2016                  [Page 2]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   One example of using the LSP information is stateful Path Computation
   Element (PCE) [I-D.ietf-pce-stateful-pce], which could provide
   benefits in path reoptimization.  While some extensions are proposed
   in Path Computation Element Communication Protocol (PCEP) for the
   Path Computation Clients (PCCs) to report the LSP states to the PCE,
   this mechanism may not be applicable in a management-based PCE
   architecture as specified in section 5.5 of [RFC4655].  As
   illustrated in the figure below, the PCC is not an LSR in the routing
   domain, thus the head-end nodes of the TE-LSPs may not implement the
   PCEP protocol.  In this case a general mechanism to collect the TE-
   LSP states from the ingress LERs is needed.  This document proposes
   an LSP state collection mechanism complementary to the mechanism
   defined in [I-D.ietf-pce-stateful-pce].

                                   -----------
                                  |   -----   |
              Service             |  | TED |<-+----------->
              Request             |   -----   |  TED synchronization
                 |                |     |     |  mechanism (for example,
                 v                |     |     |  routing protocol)
           ------------- Request/ |     v     |
          |             | Response|   -----   |
          |     NMS     |<--------+> | PCE |  |
          |             |         |   -----   |
           -------------           -----------
         Service |
         Request |
                 v
            ----------  Signaling   ----------
           | Head-End | Protocol   | Adjacent |
           |  Node    |<---------->|   Node   |
            ----------              ----------

                 Figure 1.  Management-Based PCE Usage

   In networks with composite PCE nodes as specified in section 5.1 of
   [RFC4655], PCE is implemented on several routers in the network, and
   the PCCs in the network can use the mechanism described in
   [I-D.ietf-pce-stateful-pce] to report the LSP information to the PCE
   nodes.  An external component may also need to collect the LSP
   information from all the PCEs in the network to obtain a global view
   of the LSP state in the network.

   In multi-area or multi-AS scenarios, each area or AS can have a child
   PCE to collect the LSP state in its own domain, in addition, a parent
   PCE needs to collect LSP information from multiple child PCEs to
   obtain a global view of LSPs inside and across the domains involved.




Dong, et al.              Expires June 5, 2016                  [Page 3]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   In another network scenario, a centralized controller is used for
   service placement.  Obtaining the TE LSP state information is quite
   important for making appropriate service placement decisions with the
   purpose to both meet the application's requirements and utilize
   network resources efficiently.

   The Network Management System (NMS) may need to provide global
   visibility of the TE LSPs in the network as part of the network
   visualization function.

   BGP has been extended to distribute link-state and traffic
   engineering information to external components
   [I-D.ietf-idr-ls-distribution].  Using the same protocol to collect
   TE LSP information is desirable for these external components since
   this avoids introducing multiple protocols for network information
   collection.  This document describes a mechanism to distribute TE LSP
   information to external components using BGP.

2.  Carrying LSP State Information in BGP

2.1.  MPLS TE LSP Information

   The MPLS TE LSP information is advertised in BGP UPDATE messages
   using the MP_REACH_NLRI and MP_UNREACH_NLRI attributes [RFC4760].
   The "Link-State NLRI" defined in [I-D.ietf-idr-ls-distribution] is
   extended to carry the MPLS TE LSP information.  BGP speakers that
   wish to exchange MPLS TE LSP information MUST use the BGP
   Multiprotocol Extensions Capability Code (1) to advertise the
   corresponding (AFI, SAFI) pair, as specified in [RFC4760].

   The format of "Link-State NLRI" is defined in
   [I-D.ietf-idr-ls-distribution].  A new "NLRI Type" is defined for
   MPLS TE LSP Information as following:

   o  NLRI Type: IPv4/IPv6 MPLS TE LSP NLRI (suggested codepoint value
      5, to be assigned by IANA).

   [I-D.ietf-idr-ls-distribution] defines the BGP-LS NLRI as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |            NLRI Type          |     Total NLRI Length         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     //                  Link-State NLRI (variable)                 //
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Dong, et al.              Expires June 5, 2016                  [Page 4]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   This document defines a new NLRI-Type and its format: the IPv4/IPv6
   MPLS TE LSP NLRI defined in the following section.

2.2.  IPv4/IPv6 MPLS TE LSP NLRI

   The IPv4/IPv6 MPLS TE LSP NLRI (NLRI Type 5.  Suggested value, to be
   assigned by IANA) is shown in the following figure:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+
     |  Protocol-ID  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Identifier                             |
     |                        (64 bits)                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //                MPLS TE LSP Descriptors (variable)           //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     where:

   o  Protocol-ID field specifies the type of signaling of the MPLS TE
      LSP.  The following Protocol-IDs are defined (suggested values, to
      be assigned by IANA) and apply to the IPv4/IPv6 MPLS TE LSP NLRI:

               +-------------+----------------------------------+
               | Protocol-ID | NLRI information source protocol |
               +-------------+----------------------------------+
               |      7      |   RSVP-TE                        |
               |      8      |   Segment Routing                |
               +-------------+----------------------------------+

   o  "Identifier" is an 8 octet value as defined in
      [I-D.ietf-idr-ls-distribution].

   o  Following MPLS TE LSP Descriptors are defined:

   +-----------+----------------------------------+
   | Codepoint |       Descriptor TLV             |
   +-----------+----------------------------------+
   |  267      | Tunnel ID                        |
   |  268      | LSP ID                           |
   |  269      | IPv4/6 Tunnel Head-end address   |
   |  270      | IPv4/6 Tunnel Tail-end address   |
   |  271      | SR-ENCAP Identifier              |
   +-----------+----------------------------------+





Dong, et al.              Expires June 5, 2016                  [Page 5]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


2.2.1.  MPLS TE LSP Descriptors

   This sections defines the MPLS TE Descriptors TLVs.

2.2.1.1.  Tunnel Identifier (Tunnel ID)

   The Tunnel Identifier TLV contains the Tunnel ID defined in [RFC3209]
   and has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Type              |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         Tunnel ID             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     where:

   o  Type: To be assigned by IANA (suggested value: 267)

   o  Length: 2 octets.

   o  Tunnel ID: 2 octets as defined in [RFC3209].

2.2.1.2.  LSP Identifier (LSP ID)

   The LSP Identifier TLV contains the LSP ID defined in [RFC3209] and
   has the following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Type              |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |         LSP ID                |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     where:

   o  Type: To be assigned by IANA (suggested value: 268)

   o  Length: 2 octets.

   o  LSP ID: 2 octets as defined in [RFC3209].






Dong, et al.              Expires June 5, 2016                  [Page 6]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


2.2.1.3.  IPv4/IPv6 Tunnel Head-End Address

   The IPv4/IPv6 Tunnel Head-End Address TLV contains the Tunnel Head-
   End Address defined in [RFC3209] and has following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Type              |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //        IPv4/IPv6 Tunnel Head-End Address (variable)         //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     where:

   o  Type: To be assigned by IANA (suggested value: 269)

   o  Length: 4 or 16 octets.

   When the IPv4/IPv6 Tunnel Head-end Address TLV contains an IPv4
   address, its length is 4 (octets).

   When the IPv4/IPv6 Tunnel Head-end Address TLV contains an IPv6
   address, its length is 16 (octets).

2.2.1.4.  IPv4/IPv6 Tunnel Tail-End Address

   The IPv4/IPv6 Tunnel Tail-End Address TLV contains the Tunnel Tail-
   End Address defined in [RFC3209] and has following format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Type              |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     //        IPv4/IPv6 Tunnel Tail-End Address (variable)         //
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     where:

   o  Type: To be assigned by IANA (suggested value: 270)

   o  Length: 4 or 16 octets.

   When the IPv4/IPv6 Tunnel Tail-end Address TLV contains an IPv4
   address, its length is 4 (octets).





Dong, et al.              Expires June 5, 2016                  [Page 7]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   When the IPv4/IPv6 Tunnel Tail-end Address TLV contains an IPv6
   address, its length is 16 (octets).

2.2.1.5.  SR-Encap TLV

   The SR-ENCAP TLV contains the Identifier defined in
   [I-D.sreekantiah-idr-segment-routing-te] and has the following
   format:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |             Type              |          Length               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        SR-ENCAP Identifier                    |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     where:

   o  Type: To be assigned by IANA (suggested value: 271)

   o  Length: 4 octets.

   o  SR-ENCAP Identifier: 4 octets as defined in
      [I-D.sreekantiah-idr-segment-routing-te].

2.3.  LSP State Information

   A new TLV called "LSP State TLV" (codepoint to be assigned by IANA),
   is used to describe the characteristics of the MPLS TE LSPs, which is
   carried in the optional non-transitive BGP Attribute "LINK_STATE
   Attribute" defined in [I-D.ietf-idr-ls-distribution].  These MPLS TE
   LSP characteristics include the switching technology of the LSP,
   Quality of Service (QoS) parameters, route information, the
   protection mechanisms, etc.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              Type             |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     //               LSP State Information (variable)              //
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                               LSP State TLV




Dong, et al.              Expires June 5, 2016                  [Page 8]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   Type: Suggested value 1158 (to be assigned by IANA)

   LSP State Information: Consists of a set of TE-LSP objects as defined
   in [RFC3209],[RFC3473] and [RFC5440].  Rather than replicating all
   MPLS TE LSP related objects in this document, the semantics and
   encodings of the MPLS TE LSP objects are reused.  These MPLS TE LSP
   objects are carried in the "LSP State Information" with the following
   format.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |Protocol-Origin|   Reserved    |             Length            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     //           Protocol specific TE-LSP object                   //
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           LSP State Information

   The Protocol-Origin field identifies the protocol from which the
   contained MPLS TE LSP object originated.  This allows for MPLS TE LSP
   objects defined in different protocols to be collected while avoiding
   the possible code collisions among these protocols.  Three Protocol-
   Origins are defined in this document (suggested values, to be
   assigned by IANA)

               +----------+--------------+
               | Protocol |  LSP Object  |
               |  Origin  |   Origin     |
               +----------+--------------+
               |    1     |  RSVP-TE     |
               |    2     |  PCE         |
               |    3     |  SR ENCAP    |
               +----------+--------------+

   The 8-bit Reserved field SHOULD be set to 0 on transmission and
   ignored on receipt.

   The Length field is set to the Length of the value field, which is
   the total length of the contained MPLS TE LSP object.

   The Valued field is a MPLS-TE LSP object which is defined in the
   protocol identified by the Protocol-Origin field.






Dong, et al.              Expires June 5, 2016                  [Page 9]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


2.3.1.  RSVP Objects

   RSVP-TE objects are encoded in the "Value" field of the LSP State TLV
   and consists of MPLS TE LSP objects defined in RSVP-TE [RFC3209]
   [RFC3473].  Rather than replicating all MPLS TE LSP related objects
   in this document, the semantics and encodings of the MPLS TE LSP
   objects are re-used.  These MPLS TE LSP objects are carried in the
   LSP State TLV.

   When carrying RSVP-TE objects, the "Protocol-Origin" field is set to
   "RSVP-TE" (suggested value 1, to be assigned by IANA).

   The following RSVP-TE Objects are defined:

   o  SENDER_TSPEC and FLOW_SPEC [RFC2205]

   o  SESSION_ATTRIBUTE [RFC3209]

   o  EXPLICIT_ROUTE Object (ERO) [RFC3209]

   o  ROUTE_RECORD Object (RRO) [RFC3209]

   o  FAST_REROUTE Object [RFC4090]

   o  DETOUR Object [RFC4090]

   o  EXCLUDE_ROUTE Object (XRO) [RFC4874]

   o  SECONDARY_EXPLICIT_ROUTE Object (SERO) [RFC4873]

   o  SECONDARY_RECORD_ROUTE (SRRO) [RFC4873]

   o  LSP_ATTRIBUTES Object [RFC5420]

   o  LSP_REQUIRED_ATTRIBUTES Object [RFC5420]

   o  PROTECTION Object [RFC3473][RFC4872][RFC4873]

   o  ASSOCIATION Object [RFC4872]

   o  PRIMARY_PATH_ROUTE Object [RFC4872]

   o  ADMIN_STATUS Object [RFC3473]

   o  LABEL_REQUEST Object [RFC3209][RFC3473]

   For the MPLS TE LSP Objects listed above, the corresponding sub-
   objects are also applicable to this mechanism.  Note that this list



Dong, et al.              Expires June 5, 2016                 [Page 10]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   is not exhaustive, other MPLS TE LSP objects which reflect specific
   characteristics of the MPLS TE LSP can also be carried in the LSP
   state TLV.

2.3.2.  PCE Objects

   PCE objects are encoded in the "Value" field of the MPLS TE LSP State
   TLV and consists of PCE objects defined in [RFC5440].  Rather than
   replicating all MPLS TE LSP related objects in this document, the
   semantics and encodings of the MPLS TE LSP objects are re-used.
   These MPLS TE LSP objects are carried in the LSP State TLV.

   When carrying PCE objects, the "Protocol-Origin" field is set to
   "PCE" (suggested value 2, to be assigned by IANA).

   The following PCE Objects are defined:

   o  METRIC Object [RFC5440]

   o  BANDWIDTH Object [RFC5440]

   For the MPLS TE LSP Objects listed above, the corresponding sub-
   objects are also applicable to this mechanism.  Note that this list
   is not exhaustive, other MPLS TE LSP objects which reflect specific
   characteristics of the MPLS TE LSP can also be carried in the LSP
   state TLV.

2.3.3.  SR Encap TLVs

   SR-ENCAP objects are encoded in the "Value" field of the LSP State
   TLV and consists of SR-ENCAP objects defined in
   [I-D.sreekantiah-idr-segment-routing-te].  Rather than replicating
   all MPLS TE LSP related objects in this document, the semantics and
   encodings of the MPLS TE LSP objects are re-used.  These MPLS TE LSP
   objects are carried in the LSP State TLV.

   When carrying SR-ENCAP objects, the "Protocol-Origin" field is set to
   "SR-ENCAP" (suggested value 3, to be assigned by IANA).

   The following SR-ENCAP Objects are defined:

   o  ERO TLV [I-D.sreekantiah-idr-segment-routing-te]

   o  Weight TLV [I-D.sreekantiah-idr-segment-routing-te]

   o  Binding SID TLV [I-D.sreekantiah-idr-segment-routing-te]





Dong, et al.              Expires June 5, 2016                 [Page 11]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   For the MPLS TE LSP Objects listed above, the corresponding sub-
   objects are also applicable to this mechanism.  Note that this list
   is not exhaustive, other MPLS TE LSP objects which reflect specific
   characteristics of the MPLS TE LSP can also be carried in the LSP
   state TLV.

3.  Operational Considerations

   The Existing BGP operational procedures apply to this document.  No
   new operation procedures are defined in this document.  The
   operational considerations as specified in
   [I-D.ietf-idr-ls-distribution] apply to this document.

   In general the ingress nodes of the MPLS TE LSPs are responsible for
   the distribution of LSP state information, while other nodes on the
   LSP path MAY report the LSP information when needed.  For example,
   the border routers in the inter-domain case will also distribute LSP
   state information since the ingress node may not have the complete
   information for the end-to-end path.

4.  IANA Considerations

   This document requires new IANA assigned codepoints.

4.1.  BGP-LS NLRI-Types

   IANA maintains a registry called "Border Gateway Protocol - Link
   State (BGP-LS) Parameters" with a sub-registry called "BGP-LS NLRI-
   Types".

   The following codepoints is suggested (to be assigned by IANA):

    +------+----------------------------+---------------+
    | Type | NLRI Type                  |   Reference   |
    +------+----------------------------+---------------+
    |  5   | IPv4/IPv6 MPLS TE LSP NLRI | this document |
    +------+----------------------------+---------------+

4.2.  BGP-LS Protocol-IDs

   IANA maintains a registry called "Border Gateway Protocol - Link
   State (BGP-LS) Parameters" with a sub-registry called "BGP-LS
   Protocol-IDs".

   The following Protocol-ID codepoints are suggested (to be assigned by
   IANA):





Dong, et al.              Expires June 5, 2016                 [Page 12]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


    +-------------+----------------------------------+---------------+
    | Protocol-ID | NLRI information source protocol |   Reference   |
    +-------------+----------------------------------+---------------+
    |     7       |          RSVP-TE                 | this document |
    |     8       |       Segment Routing            | this document |
    +-------------+----------------------------------+---------------+

4.3.  BGP-LS Descriptors TLVs

   IANA maintains a registry called "Border Gateway Protocol - Link
   State (BGP-LS) Parameters" with a sub-registry called "Node Anchor,
   Link Descriptor and Link Attribute TLVs".

   The following TLV codepoints are suggested (to be assigned by IANA):

   +----------+--------------------------------------+---------------+
   | TLV Code |             Description              | Value defined |
   |  Point   |                                      |       in      |
   +----------+--------------------------------------+---------------+
   |   1158   |   LSP State TLV                      | this document |
   |    267   |   Tunnel ID TLV                      | this document |
   |    268   |   LSP ID TLV                         | this document |
   |    269   |   IPv4/6 Tunnel Head-end address TLV | this document |
   |    270   |   IPv4/6 Tunnel Tail-end address TLV | this document |
   |    271   |   SR-ENCAP Identifier TLV            | this document |
   +----------+--------------------------------------+---------------+

4.4.  BGP-LS LSP-State TLV Protocol Origin

   This document requests IANA to maintain a new sub-registry under
   "Border Gateway Protocol - Link State (BGP-LS) Parameters".  The new
   registry is called "Protocol Origin" and contains the codepoints
   allocated to the "Protocol Origin" field defined in Section 2.3.  The
   registry contains the following codepoints (suggested values, to be
   assigned by IANA):

              +----------+--------------+
              | Protocol |  Description |
              |  Origin  |              |
              +----------+--------------+
              |    1     |  RSVP-TE     |
              |    2     |  PCE         |
              |    3     |  SR-ENCAP    |
              +----------+--------------+







Dong, et al.              Expires June 5, 2016                 [Page 13]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


5.  Security Considerations

   Procedures and protocol extensions defined in this document do not
   affect the BGP security model.  See [RFC6952] for details.

6.  Acknowledgements

   The authors would like to thank Dhruv Dhody, Mohammed Abdul Aziz
   Khalid, Lou Berger, Acee Lindem, Siva Sivabalan and Arjun Sreekantiah
   for their review and valuable comments.

7.  References

7.1.  Normative References

   [I-D.ietf-idr-ls-distribution]
              Gredler, H., Medved, J., Previdi, S., Farrel, A., and S.
              Ray, "North-Bound Distribution of Link-State and TE
              Information using BGP", draft-ietf-idr-ls-distribution-13
              (work in progress), October 2015.

   [I-D.sreekantiah-idr-segment-routing-te]
              Sreekantiah, A., Filsfils, C., Previdi, S., Sivabalan, S.,
              Mattes, P., and J. Marcon, "Segment Routing Traffic
              Engineering Policy using BGP", draft-sreekantiah-idr-
              segment-routing-te-00 (work in progress), October 2015.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC2205]  Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
              Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
              Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
              September 1997, <http://www.rfc-editor.org/info/rfc2205>.

   [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
              and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
              Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
              <http://www.rfc-editor.org/info/rfc3209>.

   [RFC3473]  Berger, L., Ed., "Generalized Multi-Protocol Label
              Switching (GMPLS) Signaling Resource ReserVation Protocol-
              Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
              DOI 10.17487/RFC3473, January 2003,
              <http://www.rfc-editor.org/info/rfc3473>.




Dong, et al.              Expires June 5, 2016                 [Page 14]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   [RFC4090]  Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
              Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
              DOI 10.17487/RFC4090, May 2005,
              <http://www.rfc-editor.org/info/rfc4090>.

   [RFC4760]  Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
              "Multiprotocol Extensions for BGP-4", RFC 4760,
              DOI 10.17487/RFC4760, January 2007,
              <http://www.rfc-editor.org/info/rfc4760>.

   [RFC4872]  Lang, J., Ed., Rekhter, Y., Ed., and D. Papadimitriou,
              Ed., "RSVP-TE Extensions in Support of End-to-End
              Generalized Multi-Protocol Label Switching (GMPLS)
              Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007,
              <http://www.rfc-editor.org/info/rfc4872>.

   [RFC4873]  Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel,
              "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873,
              May 2007, <http://www.rfc-editor.org/info/rfc4873>.

   [RFC4874]  Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
              Extension to Resource ReserVation Protocol-Traffic
              Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
              April 2007, <http://www.rfc-editor.org/info/rfc4874>.

   [RFC5420]  Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
              Ayyangarps, "Encoding of Attributes for MPLS LSP
              Establishment Using Resource Reservation Protocol Traffic
              Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
              February 2009, <http://www.rfc-editor.org/info/rfc5420>.

   [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
              Element (PCE) Communication Protocol (PCEP)", RFC 5440,
              DOI 10.17487/RFC5440, March 2009,
              <http://www.rfc-editor.org/info/rfc5440>.

7.2.  Informative References

   [I-D.ietf-pce-stateful-pce]
              Crabbe, E., Minei, I., Medved, J., and R. Varga, "PCEP
              Extensions for Stateful PCE", draft-ietf-pce-stateful-
              pce-13 (work in progress), December 2015.

   [RFC4655]  Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
              Element (PCE)-Based Architecture", RFC 4655,
              DOI 10.17487/RFC4655, August 2006,
              <http://www.rfc-editor.org/info/rfc4655>.




Dong, et al.              Expires June 5, 2016                 [Page 15]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   [RFC6952]  Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
              BGP, LDP, PCEP, and MSDP Issues According to the Keying
              and Authentication for Routing Protocols (KARP) Design
              Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
              <http://www.rfc-editor.org/info/rfc6952>.

Authors' Addresses

   Jie Dong
   Huawei Technologies
   Huawei Campus, No. 156 Beiqing Rd.
   Beijing  100095
   China

   Email: jie.dong@huawei.com


   Mach(Guoyi) Chen
   Huawei Technologies
   Huawei Campus, No. 156 Beiqing Rd.
   Beijing  100095
   China

   Email: mach.chen@huawei.com


   Hannes Gredler
   Individual Contributor
   Austria

   Email: hannes@gredler.at


   Stefano Previdi
   Cisco Systems, Inc.
   Via Del Serafico, 200
   Rome  00142
   Italy

   Email: sprevidi@cisco.com











Dong, et al.              Expires June 5, 2016                 [Page 16]


Internet-Draft  MPLS TE LSP State Distribution using BGP   December 2015


   Jeff Tantsura
   Ericsson
   300 Holger Way
   San Jose, CA  95134
   US

   Email: jeff.tantsura@ericsson.com












































Dong, et al.              Expires June 5, 2016                 [Page 17]