IPFIX Working Group                                          B. Trammell
Internet-Draft                                                 E. Boschi
Intended status: Standards Track                          Hitachi Europe
Expires: April 27, 2009                                          L. Mark
                                                         Fraunhofer IFAM
                                                                T. Zseby
                                                        Fraunhofer FOKUS
                                                               A. Wagner
                                                              ETH Zurich
                                                        October 24, 2008


                 Specification of the IPFIX File Format
                      draft-ietf-ipfix-file-03.txt

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on April 27, 2009.

Abstract

   This document describes a file format for the storage of flow data
   based upon the IPFIX Protocol.  It proposes a set of requirements for
   flat-file, binary flow data file formats, then specifies the IPFIX
   File format to meet these requirements based upon IPFIX Messages.
   This IPFIX File format is designed to facilitate interoperability and
   reusability among a wide variety of flow storage, processing, and



Trammell, et al.         Expires April 27, 2009                 [Page 1]


Internet-Draft                 IPFIX Files                  October 2008


   analysis tools.


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
     1.1.  IPFIX Documents Overview . . . . . . . . . . . . . . . . .  4
   2.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  5
   3.  Design Overview  . . . . . . . . . . . . . . . . . . . . . . .  6
   4.  Motivation . . . . . . . . . . . . . . . . . . . . . . . . . .  7
   5.  Requirements . . . . . . . . . . . . . . . . . . . . . . . . .  9
     5.1.  Record Format Flexibility  . . . . . . . . . . . . . . . . 10
     5.2.  Self Description . . . . . . . . . . . . . . . . . . . . . 10
     5.3.  Data Compression . . . . . . . . . . . . . . . . . . . . . 11
     5.4.  Indexing and Searching . . . . . . . . . . . . . . . . . . 11
     5.5.  Data Integrity . . . . . . . . . . . . . . . . . . . . . . 12
     5.6.  Creator Authentication and Confidentiality . . . . . . . . 12
     5.7.  Anonymization and Obfuscation  . . . . . . . . . . . . . . 13
     5.8.  Session Auditability and Replayability . . . . . . . . . . 13
     5.9.  Performance Characteristics  . . . . . . . . . . . . . . . 14
   6.  Applicability  . . . . . . . . . . . . . . . . . . . . . . . . 14
     6.1.  Storage of IPFIX-collected Flow Data . . . . . . . . . . . 14
     6.2.  Storage of NetFlow V9-collected Flow Data  . . . . . . . . 14
     6.3.  Testing IPFIX Collecting Processes . . . . . . . . . . . . 15
     6.4.  IPFIX Device Diagnostics . . . . . . . . . . . . . . . . . 15
   7.  Detailed File Format Specification . . . . . . . . . . . . . . 16
     7.1.  File Reader Specification  . . . . . . . . . . . . . . . . 16
     7.2.  File Writer Specification  . . . . . . . . . . . . . . . . 17
     7.3.  Specific File Writer Use Cases . . . . . . . . . . . . . . 18
       7.3.1.  Collocating a File Writer with a Collecting Process  . 18
       7.3.2.  Collocating a File Writer with a Metering Process  . . 19
       7.3.3.  Using IPFIX Files for Archival Storage . . . . . . . . 20
       7.3.4.  Using IPFIX Files as Documents . . . . . . . . . . . . 20
       7.3.5.  Using IPFIX Files for Testing  . . . . . . . . . . . . 21
       7.3.6.  Writing IPFIX Files for Device Diagnostics . . . . . . 21
   8.  File Format Metadata Specification . . . . . . . . . . . . . . 21
     8.1.  Recommended Options Templates for IPFIX Files  . . . . . . 22
       8.1.1.  Message Checksum Options Template  . . . . . . . . . . 22
       8.1.2.  File Time Window Options Template  . . . . . . . . . . 22
       8.1.3.  Export Session Details Options Template  . . . . . . . 23
       8.1.4.  Message Details Options Template . . . . . . . . . . . 25
     8.2.  Recommended Information Elements for IPFIX Files . . . . . 27
       8.2.1.  collectionTimeMilliseconds . . . . . . . . . . . . . . 28
       8.2.2.  exportSctpStreamId . . . . . . . . . . . . . . . . . . 28
       8.2.3.  maxExportSeconds . . . . . . . . . . . . . . . . . . . 28
       8.2.4.  maxFlowEndMicroseconds . . . . . . . . . . . . . . . . 29
       8.2.5.  maxFlowEndMilliseconds . . . . . . . . . . . . . . . . 29
       8.2.6.  maxFlowEndNanoseconds  . . . . . . . . . . . . . . . . 29



Trammell, et al.         Expires April 27, 2009                 [Page 2]


Internet-Draft                 IPFIX Files                  October 2008


       8.2.7.  maxFlowEndSeconds  . . . . . . . . . . . . . . . . . . 30
       8.2.8.  messageMD5Checksum . . . . . . . . . . . . . . . . . . 30
       8.2.9.  messageScope . . . . . . . . . . . . . . . . . . . . . 31
       8.2.10. minExportSeconds . . . . . . . . . . . . . . . . . . . 31
       8.2.11. minFlowStartMicroseconds . . . . . . . . . . . . . . . 31
       8.2.12. minFlowStartMilliseconds . . . . . . . . . . . . . . . 32
       8.2.13. minFlowStartNanoseconds  . . . . . . . . . . . . . . . 32
       8.2.14. minFlowStartSeconds  . . . . . . . . . . . . . . . . . 33
       8.2.15. opaqueOctets . . . . . . . . . . . . . . . . . . . . . 33
       8.2.16. sessionScope . . . . . . . . . . . . . . . . . . . . . 33
   9.  Recommended Error Resilience Strategies  . . . . . . . . . . . 34
     9.1.  Compression Error Resilience . . . . . . . . . . . . . . . 34
     9.2.  Encryption Error Resilience  . . . . . . . . . . . . . . . 35
   10. Recommended File Integration Strategies  . . . . . . . . . . . 36
     10.1. Encapsulation of Non-IPFIX Data in IPFIX Files . . . . . . 36
     10.2. Encapsulation of IPFIX Files within Other File Formats . . 36
   11. Security Considerations  . . . . . . . . . . . . . . . . . . . 37
   12. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 37
   13. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 38
   14. References . . . . . . . . . . . . . . . . . . . . . . . . . . 39
     14.1. Normative References . . . . . . . . . . . . . . . . . . . 39
     14.2. Informative References . . . . . . . . . . . . . . . . . . 39
   Appendix A.  Example IPFIX File  . . . . . . . . . . . . . . . . . 40
     A.1.  Example Options Templates  . . . . . . . . . . . . . . . . 42
     A.2.  Example Supplemental Options Data  . . . . . . . . . . . . 44
     A.3.  Example Message Checksum . . . . . . . . . . . . . . . . . 46
     A.4.  File Example Data Set  . . . . . . . . . . . . . . . . . . 47
     A.5.  Complete File Example  . . . . . . . . . . . . . . . . . . 47
   Appendix B.  Applicability of IPFIX Files to NetFlow V9 flow
                storage . . . . . . . . . . . . . . . . . . . . . . . 49
     B.1.  Comparing NetFlow V9 to IPFIX  . . . . . . . . . . . . . . 49
       B.1.1.  Message Header Format  . . . . . . . . . . . . . . . . 49
       B.1.2.  Set Header Format  . . . . . . . . . . . . . . . . . . 50
       B.1.3.  Template Format  . . . . . . . . . . . . . . . . . . . 51
       B.1.4.  Information Model  . . . . . . . . . . . . . . . . . . 51
       B.1.5.  Template Management  . . . . . . . . . . . . . . . . . 51
       B.1.6.  Transport  . . . . . . . . . . . . . . . . . . . . . . 51
     B.2.  A Method for Transforming NetFlow V9 messages to IPFIX . . 52
     B.3.  NetFlow V9 Transformation Example  . . . . . . . . . . . . 53
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 55
   Intellectual Property and Copyright Statements . . . . . . . . . . 57










Trammell, et al.         Expires April 27, 2009                 [Page 3]


Internet-Draft                 IPFIX Files                  October 2008


1.  Introduction

   This document specifies a file format based upon IPFIX, designed to
   facilitate interoperability and reusability among a wide variety of
   flow storage, processing, and analysis tools.  It begins with an
   overview of the IPFIX File format, and a quick summary of how IPFIX
   Files work in Section 3.  The detailed specification of the IPFIX
   File format appears in Section 7; this section includes general
   specifications for IPFIX File Readers and IPFIX File Writers and
   specific recommendations for common situations in which they are
   used.  The format makes use of the IPFIX Options mechanism for
   additional file metadata, in order to avoid requiring any protocol
   extensions, and to minimize the effort required to adapt IPFIX
   implementations to use the file format; a detailed definition of the
   Options Templates used for storage metadata appears in Section 8.

   Section 9 and Section 10 provide specific recommendations for error
   resilience during long-term storage and integration of IPFIX File
   data with other formats.  Appendix A contains a detailed example
   IPFIX File.  These sections are intended to give additional
   information to implementors of IPFIX Files.

   The IPFIX File format was designed to be applicable to a wide variety
   of flow storage situations; the motivation behind its creation is
   described in Section 4.  The document outlines of the set of
   requirements the format is designed to meet in Section 5, and
   explores the applicability of such a format to various specific
   application areas in Section 6.  These sections are intended to give
   background on the development of IPFIX Files.

1.1.  IPFIX Documents Overview

   "Specification of the IPFIX Protocol for the Exchange of IP Traffic
   Flow Information" [RFC5101] and its associated documents define the
   IPFIX Protocol, which provides network engineers and administrators
   with access to IP traffic flow information.

   "Architecture for IP Flow Information Export" [I-D.ietf-ipfix-arch]
   defines the architecture for the export of measured IP flow
   information out of an IPFIX Exporting Process to an IPFIX Collecting
   Process, and the basic terminology used to describe the elements of
   this architecture, per the requirements defined in "Requirements for
   IP Flow Information Export" [RFC3917].  [RFC5101] then covers the
   details of the method for transporting IPFIX Data Records and
   Templates via a congestion-aware transport protocol from an IPFIX
   Exporting Process to an IPFIX Collecting Process.

   "Information Model for IP Flow Information Export" [RFC5102]



Trammell, et al.         Expires April 27, 2009                 [Page 4]


Internet-Draft                 IPFIX Files                  October 2008


   describes the Information Elements used by IPFIX, including details
   on Information Element naming, numbering, and data type encoding.

   "IPFIX Applicability" [I-D.ietf-ipfix-as] describes the various
   applications of the IPFIX protocol and their use of information
   exported via IPFIX, and relates the IPFIX architecture to other
   measurement architectures and frameworks.

   In addition, "Exporting Type Information for IPFIX Information
   Elements" [I-D.ietf-ipfix-exporting-type] specifies a method for
   encoding Information Model properties within an IPFIX Message stream.

   This document references [RFC5101] and the architecture document for
   terminology, defines IPFIX File Writer and IPFIX File Reader in terms
   of the IPFIX Exporting Processes and IPFIX Collecting Process
   definitions from [RFC5101], and extends the IPFIX Information Model
   defined in [RFC5102] to provide new Information Elements for IPFIX
   File metadata.  It uses the method described in "Exporting Type
   Information for IPFIX Information Elements"
   [I-D.ietf-ipfix-exporting-type] document to support the self-
   description of IPFIX Files containing enterprise-specific Information
   Elements.


2.  Terminology

   This section defines terminology related to the IPFIX File Format.
   In addition, terms used in this document that are defined in the
   Terminology section of [RFC5101] are to be interpreted as defined
   there.

   IPFIX File:   An IPFIX File is a serialized stream of IPFIX Messages;
      this stream may be stored on a filesystem or transported using any
      technique customarily used for files.  Any IPFIX Message stream
      that would be considered valid when transported one or more of the
      specified IPFIX transports (SCTP, TCP, or UDP) as defined in
      [RFC5101] is considered an IPFIX File.  However, this document
      extends that definition with recommendations on the construction
      of IPFIX Files that meet the requirements identified in Section 5.

   IPFIX File Reader:   An IPFIX File Reader is a process which reads
      IPFIX Files from a filesystem.  An IPFIX File Reader operates as
      an IPFIX Collecting Process as specified in [RFC5101], except as
      modified by this document.







Trammell, et al.         Expires April 27, 2009                 [Page 5]


Internet-Draft                 IPFIX Files                  October 2008


   IPFIX File Writer:   An IPFIX File Writer is a process which writes
      IPFIX Files to a filesystem.  An IPFIX File Writer operates as an
      IPFIX Exporting Process as specified in [RFC5101], except as
      modified by this document.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].


3.  Design Overview

   An IPFIX File is simply a data stream containing one or more IPFIX
   Messages serialized to some filesystem.  Though any set of valid
   IPFIX Messages can be serialized into an IPFIX File, the
   specification includes guidelines designed to ease storage and
   retrieval of flow data using the IPFIX File format.

   IPFIX Files contain only IPFIX Messages; any file metadata such as
   checksums or export session details are stored using Options within
   the IPFIX Message.  This design has several advantages, including
   complete compatibility with the IPFIX Protocol on the wire and free
   manipulability of IPFIX Files through concatenation, appending, and
   splitting (on IPFIX Message boundaries).  A schematic of a typical
   IPFIX File is shown below:


























Trammell, et al.         Expires April 27, 2009                 [Page 6]


Internet-Draft                 IPFIX Files                  October 2008


             +=======================================+
             | IPFIX File                            |
             | +===================================+ |
             | | IPFIX Message                     | |
             | | +-------------------------------+ | |
             | | | IPFIX Message Header          | | |
             | | +-------------------------------+ | |
             | | +-------------------------------+ | |
             | | | Options Template Set          | | |
             | | |   Options Template Record     | | |
             | | |           . . .               | | |
             | | +-------------------------------+ | |
             | | +-------------------------------+ | |
             | | | Template Set                  | | |
             | | |   Template Record             | | |
             | | |            . . .              | | |
             | | +-------------------------------+ | |
             | +===================================+ |
             | | IPFIX Message                     | |
             | | +-------------------------------+ | |
             | | | IPFIX Message Header          | | |
             | | +-------------------------------+ | |
             | | +-------------------------------+ | |
             | | | Data Set                      | | |
             | | |   Data Record                 | | |
             | | |            . . .              | | |
             | | +-------------------------------+ | |
             | | +-------------------------------+ | |
             | | | Data Set                      | | |
             | | |   Data Record                 | | |
             | | |            . . .              | | |
             | | +-------------------------------+ | |
             | |              . . .                | |
             | +===================================+ |
             |                . . .                  |
             +=======================================+

                     Figure 1: Typical File Structure


4.  Motivation

   There is a wide variety of applications for the file-based storage of
   IP flow data, across a continuum of time scales.  Tools used in the
   analysis of flow data and creation of analysis products often use
   files as a convenient unit of work, with an ephemeral lifetime.  A
   set of flows relevant to a security investigation may be stored in a
   file for the duration of that investigation, and further exchanged



Trammell, et al.         Expires April 27, 2009                 [Page 7]


Internet-Draft                 IPFIX Files                  October 2008


   among incident handlers via email or within an external incident
   handling workflow application.  Sets of flow data relevant to
   Internet measurement research may be published as files, much as
   libpcap packet trace files are, to provide common datasets for the
   repeatability of research efforts; these files would have lifetimes
   measured in months or years.  Operational flow measurement systems
   also have a need for long-term, archival storage of flow data, either
   as a primary flow data repository, or as a backing tier for online
   storage in a relational database management system (RDBMS).

   The variety of applications of flow data, and the variety of
   presently deployed storage approaches, indicates the need for a
   standard approach to flow storage with applicability across the
   continuum of time scales over which flow data is stored.  A storage
   format based around flat files would best address the variety of
   storage requirements.  While much work has been done on structured
   storage via RDBMS, relational database systems are not a good basis
   for format standardization owing to the fact that their internal data
   structures are generally private to a single implementation and
   subject to change for internal reasons.  Also, there are a wide
   variety of operations available on flat files, and external tools and
   standards can be leveraged to meet file-based flow storage
   requirements.  Further, flow data is often not very semantically
   complicated, and is managed in very high volume; therefore, an RDBMS-
   based flow storage system would not benefit much from the advantages
   of relational database technology.

   The simplest way to create a new file format is simply to serialize
   some internal data model to disk, with either textual or binary
   representation of data elements, and some framing strategy for
   delimiting fields and records.  "Ad-hoc" file formats such as this
   have several important disadvantages.  They impose the semantics of
   the data model from which they are derived on the file format, and as
   such, they are difficult to extend, describe, and standardize.

   Indeed, one de facto standard for the storage of flow data is one of
   these ad-hoc formats.  A common method of storing data collected via
   Cisco NetFlow is to serialize a stream of raw NetFlow datagrams into
   files.  These NetFlow PDU files consist of a collection of header-
   prefixed blocks (corresponding to the datagrams as received on the
   wire) containing fixed-length binary flow records.  NetFlow V5, V7,
   and V8 data may be mixed within a given file, as the header on each
   datagram defines the NetFlow version of the records following.  While
   this NetFlow PDU file format has all the disadvantages of an ad-hoc
   format, and is not extensible to data models other than that defined
   by Cisco NetFlow, it is at least reasonably well-understood due to
   its ubiquity.




Trammell, et al.         Expires April 27, 2009                 [Page 8]


Internet-Draft                 IPFIX Files                  October 2008


   Over the past decade XML markup has emerged as a new "universal"
   representation format for structured data.  It is intended to be
   human-readable; indeed, that is one reason for its rapid adoption.
   However XML has limited usefulness for representing network flow
   data.  Network flow data has a simple, repetitive, non-hierarchical
   structure that does not benefit much from XML.  An XML representation
   of flow data would be an essentially flat list of the attributes and
   their values for each flow record.

   The XML approach to data encoding is very heavyweight when compared
   to binary flow encoding.  XML's use of start- and end-tags, and
   plain-text encoding of the actual values, leads to significant
   inefficiency in encoding size.  Typical network traffic datasets can
   contain millions or billions of flows per hour of traffic
   represented.  Any increase in storage size per record can have
   dramatic impact on flow data storage and transfer sizes.  While data
   compression algorithms can partially remove the redundancy introduced
   by XML encoding, they introduce additional overhead of their own.

   A further problem is that XML processing tools require a full XML
   parser.  XML parsers are fully general and therefore complex,
   resource-intensive and relatively slow, introducing significant
   processing time overhead for large network-flow datasets.  In
   contrast, parsers for typical binary flow data encodings are simply
   structured, since they only need to parse a very small header and
   then have complete knowledge of all following fields for the
   particular flow.  These can then be read in a very efficient linear
   fashion.

   This leads us to propose the IPFIX Message format as the basis for a
   new flow data file format.  The IPFIX working group, in defining the
   IPFIX Protocol, has already defined an information model and data
   formatting rules for representation of flow data.  Especially at
   shorter time scales, when a file is a unit of data interchange, the
   filesystem may be viewed as simply another IPFIX Message transport
   between processes.  This format is especially well suited to
   representing flow data, as it was designed specifically for flow data
   export; it is easily extensible unlike ad-hoc serialization, and
   compact unlike XML.  In addition, IPFIX is an IETF standard for the
   export and collection of flow data; using a common format for storage
   and analysis at the collection side allows implementors to use
   substantially the same information model and data formatting
   implementation for transport as well as storage.


5.  Requirements

   In this section, we outline a proposed set of requirements



Trammell, et al.         Expires April 27, 2009                 [Page 9]


Internet-Draft                 IPFIX Files                  October 2008


   [SAINT2007] for any persistent storage format for flow data.  First
   and foremost, a flow data file format should support storage across
   the continuum of time scales important to flow storage applications.
   Each of the requirements enumerated in the sections below is broadly
   applicable to flow storage applications, though each may be more
   important at certain time scales.  For each, we first identify the
   requirement, then explain how the IPFIX Message format addresses it,
   or briefly outline the changes that must be made in order for an
   IPFIX-based file format to meet the requirement.

5.1.  Record Format Flexibility

   Due to the wide variety of flow attributes collected by different
   network flow attribute measurement systems, the ideal flow storage
   format will not impose a single data model or a specific record type
   on the flows it stores.  The file format must be flexible and
   extensible; that is, it must support the definition of multiple
   record types within the file itself, and must be able to support new
   field types for data within the records in a graceful way.

   IPFIX provides record format flexibility through the use of Templates
   to describe each Data Record, through the use of an IANA Registry to
   define its Information Elements, and through the use of enterprise-
   specific Information Elements.

5.2.  Self Description

   Archived data may be read at a time in the future where any external
   reference to the meaning of the data may be lost.  The ideal flow
   storage format should be self-describing; that is, a process reading
   flow data from storage should be able to properly interpret the
   stored flows without reference to anything other than standard
   sources (e.g., the standards document describing the file format) and
   the stored flow data itself.

   The IPFIX Message format is partially self-describing; that is, IPFIX
   Templates containing only IANA-assigned Information Elements can be
   completely interpreted according to the IPFIX Information Model
   without additional external data.

   However, Templates containing private information elements lack
   detailed type and semantic information; a Collecting Process
   receiving Data Records described by a Template containing enterprise-
   specific Information Elements it does not understand can only treat
   the data contained within those Information Elements as octet arrays.
   To be fully self-describing, enterprise-specific Information Elements
   must be additionally described via IPFIX Options according to the
   Information Element Type Options Template defined in "Exporting Type



Trammell, et al.         Expires April 27, 2009                [Page 10]


Internet-Draft                 IPFIX Files                  October 2008


   Information for IPFIX Information Elements"
   [I-D.ietf-ipfix-exporting-type].

5.3.  Data Compression

   Regardless of the representation format, flow data describing traffic
   on real networks tends to be highly compressible.  Compression tends
   to improve the scalability of flow collection systems, by reducing
   the disk storage and I/O bandwidth requirement for a given workload.
   The ideal flow storage format should support applications which wish
   to leverage this fact by supporting compression of stored data.

   The IPFIX Message format has no support for data compression, as the
   IPFIX protocol was designed for speed and simplicity of export.  Of
   course, any flat file is readily compressible using a wide variety of
   external data compression tools, formats, and algorithms; therefore,
   this requirement can be met externally.

   However, a couple of simple optimizations can be made by File Writers
   to increase the integrity and usability of compressed IPFIX data;
   these are outlined in Section 9.1.

5.4.  Indexing and Searching

   Binary, record stream oriented file formats natively support only one
   form of searching, sequential scan in file order.  By choosing the
   order of records in a file carefully (e.g., by flow end time), a file
   can be indexed by a single key.

   Beyond this, properly addressing indexing is an application-specific
   problem, as it inherently involves tradeoffs between storage
   complexity and retrieval speed, and requirements vary widely based on
   time scales and the types of queries used from site to site.
   However, a generic standard flow storage format may provide limited
   direct support for indexing and searching.

   The ideal flow storage format will support a limited table of
   contents facility noting that the records in a file contain data
   relating only to certain keys or values of keys, in order to keep
   multi-file search implementations from having to scan a file for data
   it does not contain.

   The IPFIX Message format has no direct support for indexing.
   However, the technique described in "Reducing Redundancy in IPFIX and
   PSAMP Reports" [I-D.ietf-ipfix-reducing-redundancy] can be used to
   describe the contents of a file in a limited way.  Additionally, as
   flow data is often sorted and divided by time, the start and end time
   of the flows in a file may be declared using the File Time Window



Trammell, et al.         Expires April 27, 2009                [Page 11]


Internet-Draft                 IPFIX Files                  October 2008


   Options Template defined in Section 8.1.2.

5.5.  Data Integrity

   When storing flow data for archival purposes, it is important to
   ensure that hardware or software faults do not introduce errors into
   the data over time.  The ideal flow storage format will support the
   detection and correction of encoding-level errors in the data.

   Note that more advanced error correction is best handled at a layer
   below that addressed by this document.  Error correction is a topic
   well addressed by the storage industry in general (e.g. by RAID and
   other technologies), and by specifying a flow storage format based
   upon files, we can leverage these features to meet this requirement.

   However, the ideal flow storage format will be resilient against
   errors, providing an internal facility for the detection of errors
   and the ability to isolate errors to as few data records as possible.

   Note that this requirement interacts with the choice of data
   compression or encryption algorithm.  The use of block compression
   algorithms can serve to isolate errors to a single compression block,
   unlike stream compressors, which may fail to resynchronize after a
   single bit error, invalidating the entire message stream.  Similarly,
   the use of a stream cipher can serve to isolate errors in the
   plaintext without amplifying them as, for example, a cipher in CBC
   mode can.  See the "Recommended Compression Error Resilience
   Strategy" and "Recommended Encryption Error Resilience Strategy"
   sections below for more on this interaction.

   The IPFIX Message format does not support data integrity assurance.
   It is assumed that advanced error correction will be provided
   externally.  For simple error detection support, checksums may be
   attached to messages via IPFIX Options according to the Message
   Checksum Options Template defined in Section 8.1.1.

5.6.  Creator Authentication and Confidentiality

   Archival storage of flow data may also require assurance that no
   unauthorized entity can read or modify the stored data.  Asymmetric-
   key cryptography can be applied to this problem, by signing flow data
   with the private key of the creator, and encrypting it with the
   public keys of those authorized to read it.  The ideal flow storage
   format will support the encryption and signing of flow data.

   As with error correction, this problem has been addressed well at a
   layer below that addressed by this document.  Instead of specifying a
   particular choice of encryption technology, we can leverage the fact



Trammell, et al.         Expires April 27, 2009                [Page 12]


Internet-Draft                 IPFIX Files                  October 2008


   that existing cryptographic technologies work quite well on data
   stored in files to meet this requirement.

   Beyond support for the use of TLS for transport over TCP or DTLS for
   transport over SCTP or UDP, both of which provide transient
   authentication and confidentiality, the IPFIX protocol does not
   support this requirement directly.  It is assumed that this
   requirement will be met externally.

5.7.  Anonymization and Obfuscation

   To ensure the privacy of individuals and organizations at the
   endpoints of communications represented by flow records, it is often
   necessary to obfuscate or anonymize stored and exported flow data.
   The ideal flow storage format will provide for a notation that a
   given information element on a given record type represents
   anonymized, rather than real, data.

   The IPFIX Protocol presently has no support for anonymization
   notation.  It should be noted that anonymization is one of the
   requirements given for IPFIX in [RFC3917].  The decision to qualify
   this requirement with 'MAY' and not 'MUST' in the requirements
   document, and its subsequent lack of specification in the current
   version of the IPFIX protocol, is due to the fact that anonymization
   algorithms are still an open area of research, and that there
   currently exist no standardized methods for anonymization.

   No support is presently defined in [RFC5101] or this IPFIX-based File
   Format for anonymization, as anonymization notation is an area of
   open work for the IPFIX working group.

5.8.  Session Auditability and Replayability

   Certain use cases for archival flow storage require the storage of
   collection infrastructure details alongside the data itself.  These
   details include information about how and when data was received, and
   where it was received from, and are useful for auditing as well as
   for the replaying received data for testing purposes.

   The IPFIX Protocol contains no direct support for auditability and
   replayability, though the IPFIX Information Model does define various
   Information Elements required to represent collection infrastructure
   details.  These details may be stored in IPFIX Files using the Export
   Session Details Options Template defined in Section 8.1.3 and the
   Message Details Options Template defined in Section 8.1.4.






Trammell, et al.         Expires April 27, 2009                [Page 13]


Internet-Draft                 IPFIX Files                  October 2008


5.9.  Performance Characteristics

   The ideal standard flow storage format will not have a significant
   negative impact on the performance of the application generating or
   processing flow data stored in the format.  This is a non-functional
   requirement, but it is important to note that a standard that implies
   a significant performance penalty is unlikely to be widely
   implemented and adopted.

   An examination of the IPFIX Protocol would seem to suggest that
   implementations of it are not particularly prone to slowness; indeed,
   a template-based data representation is more easily subject to
   optimization for common cases than representations that embed
   structural information directly in the data stream (e.g.  XML).
   However, a full analysis of the impact of using IPFIX Messages as a
   basis for flow data storage on read/write performance will require
   more implementation experience and performance measurement.


6.  Applicability

   This section describes the specific applicability of IPFIX Files to
   various use cases.  IPFIX Files are particularly useful in a flow
   collection and processing infrastructure using IPFIX for flow export.
   We explore the applicability and provide guidelines for using IPFIX
   files for the storage of flow data collected by IPFIX Collecting
   Processes and NetFlow V9 collectors, the testing of IPFIX Collecting
   Processes, and diagnostics of IPFIX Devices.

6.1.  Storage of IPFIX-collected Flow Data

   IPFIX Files can naturally be used to store flow data collected by an
   IPFIX Collecting Process; indeed, this was one of the primary initial
   motivations behind the file format described within this document.
   Using IPFIX Files as such provides a single, standard, well-
   understood encoding to be used for flow data on disk and on the wire,
   and allows IPFIX implementations to leverage substantially the same
   code for flow export and flow storage.  In addition, the storage of
   single Transport Sessions in IPFIX Files is particularly important
   for network measurement research, allowing repeatability of
   experiments by providing a format for the storage and exchange of
   IPFIX flow trace data much as the libpcap format is used for
   experiments on packet trace data.

6.2.  Storage of NetFlow V9-collected Flow Data

   Although the IPFIX protocol is based on the Cisco Netflow Services,
   Version 9 (NetFlow V9) protocol [RFC3954], the two have diverged



Trammell, et al.         Expires April 27, 2009                [Page 14]


Internet-Draft                 IPFIX Files                  October 2008


   since work began on IPFIX.  However, since the NetFlow V9 information
   model is a compatible subset of the IPFIX information model, it is
   possible to use IPFIX files to store collected NetFlow V9 flow data.
   This approach may be particularly useful in multi-vendor, multi-
   protocol collection infrastructures using both NetFlow V9 and IPFIX
   to export flow data.

   The applicability of IPFIX Files to this use case is outlined in
   Appendix B.

6.3.  Testing IPFIX Collecting Processes

   IPFIX Files can be used to store IPFIX Messages for the testing of
   IPFIX Collecting Processes.  A variety of test cases may be stored in
   IPFIX Files.  First, IPFIX data collected in real network
   environments and stored in an IPFIX File can be used as input to
   check the behavior of new or extended implementations of IPFIX
   Collectors.  Furthermore, IPFIX Files can be used to validate the
   operation of a given IPFIX Collecting Process in a new environment,
   i.e., to test with recorded IPFIX data from the target network before
   installing the Collecting Process in the network.

   The IPFIX File format can also be used to store artificial, non-
   compliant reference messages for specific Collecting Process test
   cases.  Examples for such test cases are sets of IPFIX records with
   undefined Information Elements, Data Records described by missing
   Templates, or incorrectly framed Messages or Data Sets.
   Representative error handling test cases are defined in "IPFIX
   Testing" [I-D.ietf-ipfix-testing].

   Furthermore, fast replay of IPFIX Messages stored in a file can be
   used for stress/load tests (e.g., high rate of incoming Data Records,
   large Templates with high Information Element counts), as described
   in "IPFIX Testing" [I-D.ietf-ipfix-testing].  The provisioning and
   use of a set of reference files for testing simplifies the
   performance of tests and increases the comparability of test results.

6.4.  IPFIX Device Diagnostics

   As an IPFIX File can be used store any collection of flows, the
   format may also be used for dumping and storing various types of flow
   data for IPFIX Device diagnostics (e.g., the open flow cache of a
   Metering Process or the flow backlog of an Exporting or Collecting
   Process at the time of a process reset or crash).  File-based storage
   is preferable to remote transmission in such error-recovery
   situations.





Trammell, et al.         Expires April 27, 2009                [Page 15]


Internet-Draft                 IPFIX Files                  October 2008


7.  Detailed File Format Specification

   Any valid serialized IPFIX Message stream MUST be accepted by a File
   Reader as a valid IPFIX File.  In this way, the filesystem is simply
   treated as another IPFIX transport alongside SCTP, TCP, and UDP,
   albeit a potentially high-latency transport, as the File Reader and
   File Writer do not necessarily run at the same time.

   This section specifies the detailed actions of File Readers and File
   Writers in handling IPFIX Files, and further specifies actions of
   File Writers in specific use cases.  Unless otherwise specified
   herein, IPFIX File Writers MUST behave as IPFIX Exporting Processes,
   and IPFIX File Readers MUST behave as IPFIX Collecting Processes,
   where appropriate.

7.1.  File Reader Specification

   An IPFIX File Reader MUST act as an IPFIX Collecting Process as
   specified in [RFC5101], except as modified by this document.

   An IPFIX File Reader MUST accept as valid any serialized IPFIX
   Message stream that would be considered valid by one or more of the
   other defined IPFIX transport layers.  Practically, this means that
   the union of IPFIX Template management features supported by SCTP,
   TCP, and UDP MUST be supported in IPFIX Files.  File Readers MUST:

   o  accept IPFIX Messages containing Template Sets, Options Template
      Sets, and Data Sets within the same message, as with IPFIX over
      TCP or UDP;

   o  accept Template Sets that define Templates already defined within
      the File, as may occur with retransmission of Templates when using
      IPFIX over UDP as described in section 10.3.6 of [RFC5101];

   o  resolve any conflict between a resent definition and a previous
      definition by assuming that the new Template replaces the old, as
      consistent with Template expiration and ID reuse when using UDP at
      the IPFIX transport protocol; and

   o  accept Template Withdrawals as described in section 8 of
      [RFC5101], provided that the Template to be withdrawn is defined,
      as is the case with IPFIX over TCP and SCTP.

   Considering the filesystem-as-transport view, in the general case an
   IPFIX File SHOULD be treated as containing a single Transport Session
   as defined by [RFC5101].  However, some applications may benefit from
   the ability to treat a collection of IPFIX Files as a single
   Transport Session; see especially Section 7.3.3 below.  A File Reader



Trammell, et al.         Expires April 27, 2009                [Page 16]


Internet-Draft                 IPFIX Files                  October 2008


   MAY be configurable to treat a collection of Files as a single
   Transport Session.  However, a File Reader MUST NOT treat a single
   IPFIX File as containing multiple Transport Sessions.

   If an IPFIX File uses the technique described in "Reducing Redundancy
   in IPFIX and PSAMP Reports" [I-D.ietf-ipfix-reducing-redundancy] AND
   all of the non-Options Templates in the File contain the
   commonPropertiesId Information Element, a File Reader MAY assume the
   set of commonPropertiesId definitions provides a complete table of
   contents for the File for searching purposes.

7.2.  File Writer Specification

   An IPFIX File Writer MUST act as an IPFIX Exporting Process as
   specified in [RFC5101], except as modified by this document.  This
   section contains specifications for IPFIX File Writers in all
   situations; specifications and recommendations for specific File
   Writer use cases are found in below.

   File Writers SHOULD store the Templates and Options required to
   decode the data within the File in the File itself, unless modified
   by the requirements of a specific use case in a subsection of
   Section 7.3.  In this way, a single IPFIX File generally contains a
   single notional Transport Session as defined by [RFC5101].

   File Writers SHOULD emit each Template Set or Options Template Set to
   appear in the File before any Data Set described by the Templates
   within that Set, to ensure the File Reader can decode every Data Set
   without waiting to process subsequent Templates or Options Templates.

   File Writers SHOULD emit Data Records described by Options Templates
   to appear in the File before any Data Records which depend on the
   scopes defined by those options.

   File Writers SHOULD use Template Withdrawals to withdraw Templates if
   Template IDs need to be reused.  Template Withdrawals SHOULD NOT be
   used unless necessary to reuse Template IDs.

   File Writers SHOULD write IPFIX Messages within an IPFIX File in
   ascending Export Time order.

   File Writers MAY write Data Records to an IPFIX File in any order.
   However, File Writers that write flow records to an IPFIX File in
   flowStartTime or flowEndTime order SHOULD be consistent in this
   ordering within each File.






Trammell, et al.         Expires April 27, 2009                [Page 17]


Internet-Draft                 IPFIX Files                  October 2008


7.3.  Specific File Writer Use Cases

   The specifications in this section apply to specific situations.
   Each section below extends or modifies the base File Writer
   specification in Section 7.2.  Considerations for collocation of a
   File Writer with IPFIX Collecting Processes and Metering Processes
   are given, as are specific guidelines for using IPFIX Files for
   archival storage, or as documents.  Also covered are the use of IPFIX
   Files in the testing and diagnostics of IPFIX Devices.

7.3.1.  Collocating a File Writer with a Collecting Process

   When collocating a File Writer with an IPFIX Collecting Process for
   archival storage of collected data in IPFIX Files as described in
   Section 6.1, the following recommendations may improve the usefulness
   of the stored data.

   The simplest way for a File Writer to store the data collected in a
   single Transport Session is to simply write the incoming IPFIX
   Messages to an IPFIX File as they are collected.  This approach has
   several drawbacks.  First, if the original Exporting Process did not
   conform to the recommendations in Section 7.2 with respect to
   Template and Data Record ordering, the written file can be difficult
   to use later; in this case, File Writers MAY reorder records as
   received in order to ensure that Templates appear before the Data
   Records they describe.

   A File Writer collocated with a Collecting Process that starts
   writing data from a running Transport Session SHOULD write all the
   Templates currently active within that Transport Session before
   writing any Data Records described by them.

   Also, the resulting IPFIX Files will lack information about the IPFIX
   Transport Session used to export them, such as the network addresses
   of the Exporting and Collecting Processes and the protocols used to
   transport them.  In this case, if information about the Transport
   Session is required, the File Writer SHOULD store a single IPFIX
   Transport Session in an IPFIX File and SHOULD record information
   about the Transport Session using the Export Session Details Options
   Template described in Section 8.1.3.

   Additional per-Message information MAY be recorded by the File Writer
   using the Message Details Options Template described in
   Section 8.1.4.  Per-Message information includes the time at which
   each IPFIX Message was received at the Collecting Process, and can be
   used to resend IPFIX Messages while keeping the original measurement
   plane traffic profile.




Trammell, et al.         Expires April 27, 2009                [Page 18]


Internet-Draft                 IPFIX Files                  October 2008


   When collocating a File Writer with a Collecting Process, the Export
   Time of each Message SHOULD be the Export Time of the Message
   received by the Collecting Process containing the first Data Record
   in the Message.  Note that File Writers storing IPFIX data collected
   from an IPFIX Collecting Process using SCTP as the transport protocol
   SHOULD interleave messages from multiple streams in order to preserve
   Export Time order, and SHOULD reorder the written messages as
   necessary to ensure that each Template Set or Options Template Set
   appears in the File before any Data Set described by the Templates
   within that Set. Template reordering MUST preserve the sequence of
   Template Sets with Template Withdrawals in order to ensure
   consistency of Templates.

   Note that when adding additional information to IPFIX Messages
   received from Collecting Processes (e.g.  Message Checksum Options,
   Message Detail Options), the File Writer SHOULD extend the length of
   the Message for the additional data if possible; otherwise, the
   Message SHOULD be split into two approximately equal-size Messages
   aligned on a Data Set or Template Set boundary from the original
   Message if possible; otherwise, the Message SHOULD be split into
   approximately two equal size Messages aligned on a Data Record
   boundary.  Note that, since the MSS or MTU of most network links
   (1500-9000 for common Ethernets) is smaller than the maximum IPFIX
   Message size (65536) within an IPFIX File, it is expected that
   message length extension will suffice in most circumstances.

7.3.2.  Collocating a File Writer with a Metering Process

   Note that File Writers may also be collocated directly with IPFIX
   Metering Processes, for writing measured information directly to disk
   without intermediate IPFIX Exporting or Collecting Processes.  This
   arrangement may be particularly useful when providing data to an
   analysis environment with an IPFIX File based workflow, or when
   testing Metering Processes during development.

   When collocating a File Writer with a Metering Process, note that
   Information Elements associated with Exporting or Collecting
   Processes are meaningless, and SHOULD NOT appear in the Export
   Session Details Options Template described in Section 8.1.3 or the
   Message Details Options Template described in Section 8.1.4.

   When collocating a File Writer with an Metering Process, the Export
   Time of each Message SHOULD be the time at which the first Data
   Record in the Message was received from the Metering Process.







Trammell, et al.         Expires April 27, 2009                [Page 19]


Internet-Draft                 IPFIX Files                  October 2008


7.3.3.  Using IPFIX Files for Archival Storage

   While in the general case File Writers should store one Transport
   Session per IPFIX File, some applications storing large collections
   of data over long periods of time may benefit from the ability to
   treat a collection of IPFIX Files as a single Transport Session.  A
   File Writer MAY be configurable to write data from a single Transport
   Session into multiple IPFIX Files; however, File Writers supporting
   such a configuration option MUST provide a configuration option to
   support one-file-per-session behavior for interoperability purposes.

   File Writers compressing or encrypting archival data and File Readers
   reading compressed or encrypted archival data SHOULD follow the
   recommendations in Section 9.

7.3.4.  Using IPFIX Files as Documents

   When IPFIX Files are used as documents, to store a set of flows
   relevant to query, investigation, or other common context, or for the
   publication of traffic datasets relevant to network research, each
   File MUST be readable as a single Transport Session, self-contained
   and making no reference to metadata stored in separate Files, in
   order to ensure interoperability.

   When writing Files to be used as documents, File Writers MAY emit the
   special Data Records described by Options Templates before any other
   Data Records in the File in the following order to ease the
   inspection and use of documents by File Readers:

   o  Time Window records described by the File Time Window Options
      Template as defined in Section 8.1.2 below; followed by

   o  Information Element Type Records as described in "Exporting Type
      Information for IPFIX Information Elements"
      [I-D.ietf-ipfix-exporting-type]; followed by

   o  commonPropertiesId definitions as described in "Reducing
      Redundancy in IPFIX and PSAMP Reports"
      [I-D.ietf-ipfix-reducing-redundancy]; followed by

   o  Export Session details records described by the Export Session
      Details Options Template as defined in Section 8.1.3 below.

   The Export Time of each Message within a File used as a document
   SHOULD be the time at which the Message was written by the File
   Writer.

   If an IPFIX File used as a document uses the technique described in



Trammell, et al.         Expires April 27, 2009                [Page 20]


Internet-Draft                 IPFIX Files                  October 2008


   "Reducing Redundancy in IPFIX and PSAMP Reports"
   [I-D.ietf-ipfix-reducing-redundancy] AND all of the non-Options
   Templates in the File contain the commonPropertiesId Information
   Element, a File Reader MAY assume the set of commonPropertiesId
   definitions provides a complete table of contents for the File for
   searching purposes.

7.3.5.  Using IPFIX Files for Testing

   IPFIX Files can be used for testing IPFIX Collecting Processes in two
   ways.  First, IPFIX Files can be used to store specific flow data for
   regression and stress testing of Collectors; there are no special
   considerations for IPFIX Files used in this way.

   Second, IPFIX Files are useful for storing reference messages which
   do not comply to the IPFIX Protocol in order to test the error
   handling and recovery behavior of Collectors.  Of course, IPFIX Files
   intended to be used in this application necessarily MAY violate any
   of the specifications in this document or in [RFC5101], and such
   Files MUST NOT be transmitted to Collecting Processes or given as
   input File Readers not under test.

   Note that an extremely simple IPFIX Exporting Process may be crafted
   for testing purposes by simply reading an IPFIX File and transmitting
   it directly to a Collecting Process.  Similarly, an extremely simple
   Collecting Process may be crafted for testing purposes by simply
   accepting connections and/or IPFIX Messages from Exporting Processes
   and writing the session's message stream to an IPFIX File.

7.3.6.  Writing IPFIX Files for Device Diagnostics

   IPFIX Files can be used in the debugging of devices which use flow
   data as internal state, as a common format for the representation of
   flow tables.  In such situations, the opaqueOctets information
   element can be used to store additional non-IPFIX encoded, non-flow
   information (e.g., stack backtraces, process state, etc.) within the
   IPFIX File as in Section 10.1; the IPFIX flow table information could
   also be embedded in a larger proprietary diagnostic format using
   delimiters as in Section 10.2


8.  File Format Metadata Specification

   This section defines the Options Templates used for IPFIX File
   metadata, and the Information Elements they require.






Trammell, et al.         Expires April 27, 2009                [Page 21]


Internet-Draft                 IPFIX Files                  October 2008


8.1.  Recommended Options Templates for IPFIX Files

   The following Options Templates allow IPFIX Message streams to meet
   the requirements outlined above without extension to the message
   format or protocol.  They are defined in terms of existing
   Information Elements defined in [RFC5102], the Information Elements
   defined in "Exporting Type Information for IPFIX Information
   Elements" [I-D.ietf-ipfix-exporting-type], as well as Information
   Elements defined in Section 8.2.  IPFIX File Readers and Writers
   SHOULD support these Options Templates as defined below.

   In addition, IPFIX File Readers and Writers SHOULD support the
   Options Templates defined in "Exporting Type Information for IPFIX
   Information Elements" [I-D.ietf-ipfix-exporting-type] in order to
   support self-description of enterprise-specific Information Elements.

8.1.1.  Message Checksum Options Template

   The Message Checksum Options Template specifies the structure of a
   Data Record for attaching an MD5 message checksum to an IPFIX
   Message.  An MD5 message checksum as described MAY be used if data
   integrity is important to the application.  The described Data Record
   MUST appear only once per IPFIX Message, but MAY appear anywhere
   within the Message.

   This Options Template SHOULD contain the following Information
   Elements:

   +--------------------+----------------------------------------------+
   | IE                 | Description                                  |
   +--------------------+----------------------------------------------+
   | messageScope       | A marker denoting this Option applies to the |
   | [scope]            | whole IPFIX Message; content is ignored.     |
   |                    | This Information Element MUST be defined as  |
   |                    | a Scope Field.                               |
   | messageMD5Checksum | The MD5 checksum of the containing IPFIX     |
   |                    | Message.                                     |
   +--------------------+----------------------------------------------+

8.1.2.  File Time Window Options Template

   The File Time Window Options Template specifies the structure of a
   Data Record for attaching a time window to an IPFIX File; this Data
   Record is referred to as a time window record.  A time window record
   defines the earliest flow start time and the latest flow end time of
   the flow records within a File.  One and only one time window record
   MAY appear within an IPFIX File if the time window information is
   available; a File Writer MUST NOT write more than one time window



Trammell, et al.         Expires April 27, 2009                [Page 22]


Internet-Draft                 IPFIX Files                  October 2008


   record to an IPFIX File.  A File Writer that writes a time window
   record to a File MUST NOT write any Flow with a start time before the
   beginning of the window or an end time after the end of the window to
   that File.

   This Options Template SHOULD contain the following Information
   Elements:

   +---------------+---------------------------------------------------+
   | IE            | Description                                       |
   +---------------+---------------------------------------------------+
   | sessionScope  | A marker denoting this Option applies to the      |
   | [scope]       | whole IPFIX Transport Session (i.e., the IPFIX    |
   |               | File in the common case); content is ignored.     |
   |               | This Information Element MUST be defined as a     |
   |               | Scope Field.                                      |
   | minFlowStart* | Exactly one of minFlowStartSeconds,               |
   |               | minFlowStartMilliseconds,                         |
   |               | minFlowStartMicroseconds, or                      |
   |               | minFlowStartNanoseconds; SHOULD match the         |
   |               | precision of the accompanying maxFlowEnd*         |
   |               | Information Element.  The start time of the       |
   |               | earliest flow in the Transport Session (i.e.,     |
   |               | File).                                            |
   | maxFlowEnd*   | Exactly one of maxFlowEndSeconds,                 |
   |               | maxFlowEndMilliseconds, maxFlowEndMicroseconds,   |
   |               | or maxFlowEndNanoseconds; SHOULD match the        |
   |               | precision of the accompanying minFlowStart*       |
   |               | Information Element.  The end time of the latest  |
   |               | flow in the Transport Session (i.e., File).       |
   +---------------+---------------------------------------------------+

8.1.3.  Export Session Details Options Template

   The Export Session Details Options Template specifies the structure
   of a Data Record for recording the details of an IPFIX Transport
   Session in an IPFIX File.  It is intended for use in storing a single
   complete IPFIX Transport Session in a single IPFIX File.  The
   described Data Record SHOULD appear only once in a given IPFIX File.

   This Options Template SHOULD contain at least the following
   Information Elements, subject to applicability as noted on each
   Information Element:








Trammell, et al.         Expires April 27, 2009                [Page 23]


Internet-Draft                 IPFIX Files                  October 2008


   +----------------------------+--------------------------------------+
   | IE                         | Description                          |
   +----------------------------+--------------------------------------+
   | sessionScope [scope]       | A marker denoting this Option        |
   |                            | applies to the whole IPFIX Transport |
   |                            | Session (i.e., the IPFIX File in the |
   |                            | common case); content is ignored.    |
   |                            | This Information Element MUST be     |
   |                            | defined as a Scope Field.            |
   | exporterIPv4Address        | IPv4 address of the IPFIX Exporting  |
   |                            | Process from which the Messages in   |
   |                            | this Transport Session were          |
   |                            | received.  Present only for          |
   |                            | Exporting Processes with an IPv4     |
   |                            | interface.  For multi-homed SCTP     |
   |                            | associations, this SHOULD be the     |
   |                            | primary path endpoint address of the |
   |                            | Exporting Process.                   |
   | exporterIPv6Address        | IPv6 address of the IPFIX Exporting  |
   |                            | Process from which the Messages in   |
   |                            | this Transport Session were          |
   |                            | received.  Present only for          |
   |                            | Exporting Processes with an IPv6     |
   |                            | interface.  For multi-homed SCTP     |
   |                            | associations, this SHOULD be the     |
   |                            | primary path endpoint address of the |
   |                            | Exporting Process.                   |
   | exporterTransportPort      | The source port from which the       |
   |                            | Messages in this Transport Session   |
   |                            | were received.                       |
   | collectorIPv4Address       | IPv4 address of the IPFIX Collecting |
   |                            | Process which received the Messages  |
   |                            | in this Transport Session.  Present  |
   |                            | only for Collecting Processes with   |
   |                            | an IPv4 interface.  For multi-homed  |
   |                            | SCTP associations, this SHOULD be    |
   |                            | the primary path endpoint address of |
   |                            | the Collecting Process.              |
   | collectorIPv6Address       | IPv6 address of the IPFIX Collecting |
   |                            | Process which received the Messages  |
   |                            | in this Transport Session.  Present  |
   |                            | only for Collecting Processes with   |
   |                            | an IPv6 interface.  For multi-homed  |
   |                            | SCTP associations, this SHOULD be    |
   |                            | the primary path endpoint address of |
   |                            | the Collecting Process.              |





Trammell, et al.         Expires April 27, 2009                [Page 24]


Internet-Draft                 IPFIX Files                  October 2008


   | collectorTransportPort     | The destination port on which the    |
   |                            | Messages in this Transport Session   |
   |                            | were received.                       |
   | collectorTransportProtocol | The IP Protocol Identifier of the    |
   |                            | transport protocol used to transport |
   |                            | Messages within this Transport       |
   |                            | Session.                             |
   | collectorProtocolVersion   | The version of the export protocol   |
   |                            | used to transport Messages within    |
   |                            | this Transport Session.  Applicable  |
   |                            | only in mixed NetFlow V9-IPFIX       |
   |                            | collection environments when storing |
   |                            | NetFlow V9 data in IPFIX Messages,   |
   |                            | as in Appendix B                     |
   | minExportSeconds           | The Export Time of the first Message |
   |                            | in the Transport Session.            |
   | maxExportSeconds           | The Export Time of the last Message  |
   |                            | in the Transport Session.            |
   +----------------------------+--------------------------------------+

8.1.4.  Message Details Options Template

   The Message Details Options Template specifies the structure of a
   Data Record for attaching additional export details to an IPFIX
   Message.  These details include the time at which a message was
   received and information about the export and collection
   infrastructure used to transport the Message.  This Options Template
   also allows the storage of the export session metadata provided the
   Export Session Details Options Template, for storing information from
   multiple Transport Sessions in the same IPFIX File.

   This Options Template SHOULD contain at least the following
   Information Elements, subject to applicability as noted for each
   Information Element.  Note that when used in conjunction with the
   Export Session Details Options Template, when storing a single
   complete IPFIX Transport Session in an IPFIX File, this Options
   Template SHOULD contain only the messageScope and
   collectionTimeMilliseconds Information Elements, and the
   exportSctpStreamId Information Element for Messages transported via
   SCTP.











Trammell, et al.         Expires April 27, 2009                [Page 25]


Internet-Draft                 IPFIX Files                  October 2008


   +----------------------------+--------------------------------------+
   | IE                         | Description                          |
   +----------------------------+--------------------------------------+
   | messageScope [scope]       | A marker denoting this Option        |
   |                            | applies to the whole IPFIX message;  |
   |                            | content is ignored.  This            |
   |                            | Information Element MUST be defined  |
   |                            | as a Scope Field.                    |
   | collectionTimeMilliseconds | The absolute time at which this      |
   |                            | Message was received by the IPFIX    |
   |                            | Collecting Process.                  |
   | exporterIPv4Address        | IPv4 address of the IPFIX Exporting  |
   |                            | Process from which this Message was  |
   |                            | received.  Present only for          |
   |                            | Exporting Processes with an IPv4     |
   |                            | interface, and if this information   |
   |                            | is not available via the Export      |
   |                            | Session Details Options Template.    |
   |                            | For multi-homed SCTP associations,   |
   |                            | this SHOULD be the primary path      |
   |                            | endpoint address of the Exporting    |
   |                            | Process.                             |
   | exporterIPv6Address        | IPv6 address of the IPFIX Exporting  |
   |                            | Process this Message was received.   |
   |                            | Present only for Exporting Processes |
   |                            | with an IPv6 interface, and if this  |
   |                            | information is not available via the |
   |                            | Export Session Details Options       |
   |                            | Template.  For multi-homed SCTP      |
   |                            | associations, this SHOULD be the     |
   |                            | primary path endpoint address of the |
   |                            | Exporting Process.                   |
   | exporterTransportPort      | The source port from which this      |
   |                            | Message received.  Present only if   |
   |                            | this information is not available    |
   |                            | via the Export Session Details       |
   |                            | Options Template.                    |
   | collectorIPv4Address       | IPv4 address of the IPFIX Collecting |
   |                            | Process which received this Message. |
   |                            | Present only for Collecting          |
   |                            | Processes with an IPv4 interface,    |
   |                            | and if this information is not       |
   |                            | available via the Export Session     |
   |                            | Details Options Template.  For       |
   |                            | multi-homed SCTP associations, this  |
   |                            | SHOULD be the primary path endpoint  |
   |                            | address of the Collecting Process.   |




Trammell, et al.         Expires April 27, 2009                [Page 26]


Internet-Draft                 IPFIX Files                  October 2008


   | collectorIPv6Address       | IPv6 address of the IPFIX Collecting |
   |                            | Process which received this Message. |
   |                            | Present only for Collecting          |
   |                            | Processes with an IPv6 interface,    |
   |                            | and if this information is not       |
   |                            | available via the Export Session     |
   |                            | Details Options Template.  For       |
   |                            | multi-homed SCTP associations, this  |
   |                            | SHOULD be the primary path endpoint  |
   |                            | address of the Collecting Process.   |
   | collectorTransportPort     | The destination port on which this   |
   |                            | Message was received.  Present only  |
   |                            | if this information is not available |
   |                            | via the Export Session Details       |
   |                            | Options Template.                    |
   | collectorTransportProtocol | The IP Protocol Identifier of the    |
   |                            | transport protocol used to transport |
   |                            | this Message.  Present only if this  |
   |                            | information is not available via the |
   |                            | Export Session Details Options       |
   |                            | Template.                            |
   | collectorProtocolVersion   | The version of the export protocol   |
   |                            | used to transport this Message.      |
   |                            | Present only if necessary and if     |
   |                            | this information is not available    |
   |                            | via the Export Session Details       |
   |                            | Options Template.                    |
   | exportSctpStreamId         | The SCTP stream used to transport    |
   |                            | this Message.  Present only if the   |
   |                            | Message was transported via SCTP.    |
   +----------------------------+--------------------------------------+

8.2.  Recommended Information Elements for IPFIX Files

   The following Information Elements are used by the Options Templates
   in Section 8.1 to allow IPFIX Message streams to meet the
   requirements outlined above without extension of the protocol.  IPFIX
   File Readers and Writers SHOULD support these Information Elements as
   defined below.

   In addition, IPFIX File Readers and Writers SHOULD support the
   Information Elements defined in "Exporting Type Information for IPFIX
   Information Elements" [I-D.ietf-ipfix-exporting-type] in order to
   support full self-description of Information Elements.







Trammell, et al.         Expires April 27, 2009                [Page 27]


Internet-Draft                 IPFIX Files                  October 2008


8.2.1.  collectionTimeMilliseconds

   Description:   The absolute timestamp at which the data within the
      scope containing this Information Element was received by a
      Collecting Process.  This Information Element SHOULD be bound to
      its containing IPFIX Message via IPFIX Options and the
      messageScope Information Element, as defined below.

   Abstract Data Type:   dateTimeMilliseconds

   ElementId:   TBD1

   Status:   current

8.2.2.  exportSctpStreamId

   Description:   The value of the SCTP Stream Identifier used by the
      Exporting Process for exporting IPFIX Message data.  This is
      carried in the Stream Identifier field of the header of the SCTP
      DATA chunk containing the IPFIX Message(s).

   Abstract Data Type:   unsigned16

   Data Type Semantics:   identifier

   ElementId:   TBD2

   Status:   current

8.2.3.  maxExportSeconds

   Description:   The absolute Export Time of the latest IPFIX Message
      within the scope containing this Information Element.  This
      Information Element SHOULD be bound to its containing IPFIX
      Transport Session via IPFIX Options and the sessionScope
      Information Element.

   Abstract Data Type:   dateTimeSeconds

   ElementId:   TBD3

   Status:   current

   Units:   seconds







Trammell, et al.         Expires April 27, 2009                [Page 28]


Internet-Draft                 IPFIX Files                  October 2008


8.2.4.  maxFlowEndMicroseconds

   Description:   The latest absolute timestamp of the last packet
      within any Flow within the scope containing this Information
      Element, rounded up to the microsecond if necessary.  This
      Information Element SHOULD be bound to its containing IPFIX
      Transport Session via IPFIX Options and the sessionScope
      Information Element.  This Information Element SHOULD be used only
      in Transport Sessions containing Flow Records with microsecond-
      precision (or better) timestamp Information Elements.

   Abstract Data Type:   dateTimeMicroeconds

   ElementId:   TBD11

   Status:   current

   Units:   microseconds

8.2.5.  maxFlowEndMilliseconds

   Description:   The latest absolute timestamp of the last packet
      within any Flow within the scope containing this Information
      Element, rounded up to the millisecond if necessary.  This
      Information Element SHOULD be bound to its containing IPFIX
      Transport Session via IPFIX Options and the sessionScope
      Information Element.  This Information Element SHOULD be used only
      in Transport Sessions containing Flow Records with millisecond-
      precision (or better) timestamp Information Elements.

   Abstract Data Type:   dateTimeMilliseconds

   ElementId:   TBD12

   Status:   current

   Units:   milliseconds

8.2.6.  maxFlowEndNanoseconds

   Description:   The latest absolute timestamp of the last packet
      within any Flow within the scope containing this Information
      Element.  This Information Element SHOULD be bound to its
      containing IPFIX Transport Session via IPFIX Options and the
      sessionScope Information Element.  This Information Element SHOULD
      be used only in Transport Sessions containing Flow Records with
      nanosecond-precision timestamp Information Elements.




Trammell, et al.         Expires April 27, 2009                [Page 29]


Internet-Draft                 IPFIX Files                  October 2008


   Abstract Data Type:   dateTimeNanoseconds

   ElementId:   TBD13

   Status:   current

   Units:   nanoseconds

8.2.7.  maxFlowEndSeconds

   Description:   The latest absolute timestamp of the last packet
      within any Flow within the scope containing this Information
      Element, rounded up to the second if necessary.  This Information
      Element SHOULD be bound to its containing IPFIX Transport Session
      via IPFIX Options and the sessionScope Information Element.

   Abstract Data Type:   dateTimeSeconds

   ElementId:   TBD4

   Status:   current

   Units:   seconds

8.2.8.  messageMD5Checksum

   Description:   The MD5 checksum of the IPFIX Message containing this
      record.  This Information Element SHOULD be bound to its
      containing IPFIX Message via an options record and the
      messageScope Information Element, as defined below, and SHOULD
      appear only once in a given IPFIX Message.  To calculate the value
      of this Information Element, first buffer the containing IPFIX
      Message, setting the value of this Information Element to all
      zeroes.  Then caluclate the MD5 checksum of the resulting buffer
      as defined in [RFC1321], place the resulting value in this
      Information Element, and export the buffered message.

   Abstract Data Type:   octetArray (16 bytes)

   ElementId:   TBD5

   Status:   current

   Reference:   RFC 1321, The MD5 Message-Digest Algorithm [RFC1321]







Trammell, et al.         Expires April 27, 2009                [Page 30]


Internet-Draft                 IPFIX Files                  October 2008


8.2.9.  messageScope

   Description:   The presence of this Information Element as scope in
      an Options Template signifies that the options described by the
      Template apply to the IPFIX Message that contains them.  It is
      defined for general purpose message scoping of options, and
      proposed specifically to allow the attachment a checksum to a
      message via IPFIX Options.  The value of this Information Element
      MUST be written as 0 by the File Writer or Exporting Process.  The
      value of this Information Element MUST be ignored by the File
      Reader or the Collecting Process.

   Abstract Data Type:   octet

   ElementId:   TBD6

   Status:   current

8.2.10.  minExportSeconds

   Description:   The absolute Export Time of the earliest IPFIX Message
      within the scope containing this Information Element.  This
      Information Element SHOULD be bound to its containing IPFIX
      Transport Session via an options record and the sessionScope
      Information Element.

   Abstract Data Type:   dateTimeSeconds

   ElementId:   TBD7

   Status:   current

   Units:   seconds

8.2.11.  minFlowStartMicroseconds

   Description:   The earliest absolute timestamp of the first packet
      within any Flow within the scope containing this Information
      Element, rounded down to the microsecond if necessary.  This
      Information Element SHOULD be bound to its containing IPFIX
      Transport Session via an options record and the sessionScope
      Information Element.  This Information Element SHOULD be used only
      in Transport Sessions containing Flow Records with microsecond-
      precision (or better) timestamp Information Elements.







Trammell, et al.         Expires April 27, 2009                [Page 31]


Internet-Draft                 IPFIX Files                  October 2008


   Abstract Data Type:   dateTimeMicroseconds

   ElementId:   TBD14

   Status:   current

   Units:   microseconds

8.2.12.  minFlowStartMilliseconds

   Description:   The earliest absolute timestamp of the first packet
      within any Flow within the scope containing this Information
      Element, rounded down to the millisecond if necessary.  This
      Information Element SHOULD be bound to its containing IPFIX
      Transport Session via an options record and the sessionScope
      Information Element.  This Information Element SHOULD be used only
      in Transport Sessions containing Flow Records with millisecond-
      precision (or better) timestamp Information Elements.

   Abstract Data Type:   dateTimeMilliseconds

   ElementId:   TBD15

   Status:   current

   Units:   milliseconds

8.2.13.  minFlowStartNanoseconds

   Description:   The earliest absolute timestamp of the first packet
      within any Flow within the scope containing this Information
      Element.  This Information Element SHOULD be bound to its
      containing IPFIX Transport Session via an options record and the
      sessionScope Information Element.  This Information Element SHOULD
      be used only in Transport Sessions containing Flow Records with
      nanosecond-precision timestamp Information Elements.

   Abstract Data Type:   dateTimeNanoseconds

   ElementId:   TBD16

   Status:   current

   Units:   nanoseconds







Trammell, et al.         Expires April 27, 2009                [Page 32]


Internet-Draft                 IPFIX Files                  October 2008


8.2.14.  minFlowStartSeconds

   Description:   The earliest absolute timestamp of the first packet
      within any Flow within the scope containing this Information
      Element, rounded down to the second if necessary.  This
      Information Element SHOULD be bound to its containing IPFIX
      Transport Session via an options record and the sessionScope
      Information Element.

   Abstract Data Type:   dateTimeSeconds

   ElementId:   TBD8

   Status:   current

   Units:   seconds

8.2.15.  opaqueOctets

   Description:   This Information Element is used to encapsulate non-
      IPFIX data into an IPFIX Message stream, for the purpose of
      allowing a non-IPFIX data processor to store a data stream inline
      within an IPFIX File.  A Collecting Process or File Writer MUST
      NOT try to interpret this binary data.  This Information Element
      differs from paddingOctets as its contents are meaningful in some
      non-IPFIX context, while the contents of paddingOctets MUST be
      0x00 and are intended only for Information Element alignment.

   Abstract Data Type:   octet

   ElementId:   TBD9

   Status:   current

8.2.16.  sessionScope

   Description:   The presence of this Information Element as scope in
      an Options Template signifies that the options described by the
      Template apply to the IPFIX Transport Session that contains them.
      Note that as all options are implicitly scoped to Transport
      Session and Observation Domain, this Information Element is
      equivalent to a "null" scope.  It is defined for general purpose
      session scoping of options, and proposed specifically to allow the
      attachment of time window to an IPFIX File via IPFIX Options.  The
      value of this Information Element MUST be written as 0 by the File
      Writer or Exporting Process.  The value of this Information
      Element MUST be ignored by the File Reader or the Collecting
      Process.



Trammell, et al.         Expires April 27, 2009                [Page 33]


Internet-Draft                 IPFIX Files                  October 2008


   Abstract Data Type:   octet

   ElementId:   TBD10

   Status:   current


9.  Recommended Error Resilience Strategies

   This section describes recommended methods for making IPFIX Files
   resilient to errors during storage.  It is intended primarily for
   applications using IPFIX Files for long-term archival storage of flow
   data.

9.1.  Compression Error Resilience

   Note that, since any file may be compressed and decompressed with a
   variety of widely available tools implementing a variety of
   compression standards (both specified and de facto), compression of
   IPFIX File data can be accomplished externally.  However, compression
   at the file level is not particularly resilient to errors; in the
   worst case, a single bit error in a stream-compressed file may result
   in the loss of the entire file.

   To limit the impact of errors on the recoverability of compressed
   data, we recommend the use of block compression where possible.
   Ideally, the block compression algorithm should support the
   identification and isolation of blocks containing errors; bzip2 is an
   example of such a block compressor.

   Since the block boundary of a block-compressed IPFIX File may fall in
   the middle of an IPFIX Message, resynchronization of an IPFIX Message
   stream by a File Reader after a compression error requires some care.
   The beginning of an IPFIX Message may be identified by its header
   signature (the Version field of the Message Header, 0x00 0x0A,
   followed by a 16-bit Message Length), but simply searching for the
   first occurance of the Version field is insufficient, since these two
   bytes may occur in valid IPFIX Template or Data Sets.

   Therefore, we propose the following algorithm for File Readers to
   resynchronize an IPFIX Message Stream after skipping a compressed
   block containing errors:

   1.  Search after the error for the first occurrence of the octet
       string 0x00, 0x0A (the IPFIX Message Header Version field.)

   2.  Treat this field as the beginning of a candidate IPFIX Message.
       Read the two bytes following the Version field as a Message



Trammell, et al.         Expires April 27, 2009                [Page 34]


Internet-Draft                 IPFIX Files                  October 2008


       Length, and seek to that offset from the beginning of the
       candidate IPFIX Message.

   3.  If the first two octets after the candidate IPFIX Message are
       0x00, 0x0A (i.e., the IPFIX Message Header Version field of the
       next message in the stream), or if end-of-file is reached
       precisely at the end of the candidate IPFIX Message, presume that
       the candidate IPFIX Message is valid, and begin reading the IPFIX
       File from the start of the candidate IPFIX Message.

   4.  If not, or if the seek reaches end-of-file or another block
       containing errors before finding the end of the candidate
       message, go back to step 1, starting the search two bytes from
       the start of the candidate IPFIX Message.

   The algorithm above will improperly identify a non-message as a
   message approximately 1 in 2^32 times, assuming random IPFIX data.
   It may be expanded to consider multiple candidate IPFIX Messages in
   order to increase reliability.

   In applications (e.g. archival storage) in which error resilience is
   very important, File Writers SHOULD use block compression algorithms,
   and MAY attempt to align IPFIX Messages within compression blocks to
   ease resynchronization after errors, if such is supported by the
   chosen block compressor.  File Readers SHOULD use the
   resynchronization algorithm above to minimize data loss due to
   compression errors.

9.2.  Encryption Error Resilience

   File-level encryption has error resilience issues similar to file-
   level compression.  Single bit errors in the encrypted data stream
   can result in unreadability of the entire remaining file, dependent
   on the encryption method used.  The use of CBC (Cipher Block
   Chaining) mode, which suffers from this low error resilience, is
   relatively common.

   In applications (e.g. archival storage) in which error resilience is
   very important, File Writers SHOULD use a stream cipher, for example
   a block cipher in OFB (Output Feedback) mode (often referred to as
   stream mode) instead of modes like CBC when encrypting, since errors
   are not amplified by stream ciphers: A single-bit error in the
   ciphertext results in a single bit error in the plaintext.
   Alternatively File Writers SHOULD use any other cipher which can
   resynchronize after bit errors.  An example is a block cipher in CBC
   mode that is reinitialized after a specific amount of data has been
   encrypted.  The maximum data loss per bit-error is then up to the
   next reinitialization point.  In this case, File Writers SHOULD also



Trammell, et al.         Expires April 27, 2009                [Page 35]


Internet-Draft                 IPFIX Files                  October 2008


   use the Message Checksum Options Template to attach a checksum to
   each IPFIX Message in the IPFIX File, in order to support the
   recognition of errors in the decrypted data.


10.  Recommended File Integration Strategies

   This section describes methods for integrating IPFIX File data with
   other file formats.

10.1.  Encapsulation of Non-IPFIX Data in IPFIX Files

   At times it may be useful to export or store non-IPFIX data inline in
   an IPFIX File or Message stream.  To do this cleanly, this data must
   be encapsulated into IPFIX Messages so that an IPFIX File Reader or
   Collecting Process can handle it without any need to interpret it.
   At the same time, this data must not be changed during transmission
   or storage.  The opaqueOctets Information Element as defined in
   Section 8.2.15 is provided for this encapsulation.

   Processing the encapsulated non-IPFIX data is left to a separate
   processing mechanisms that can identify encapsulated non-IPFIX data
   in an IPFIX message stream, but need not have any other IPFIX
   handling capability, except the ability to skip over all IPFIX
   messages that do not encapsulate non-IPFIX data.

   The Message Checksum Options Template, described in Section 8.1.1 may
   be used as a uniform mechanism to identify errors within encapsulated
   data.

   Note that this mechanism can only encapsulate data objects up to
   65,515 octets in length.  If the space available in one IPFIX Message
   is not enough for the amount of data to be encapsulated, then the
   data must be broken into smaller segments that are encapsulated into
   consecutive IPFIX Messages.  Any additional structuring or semantics
   of the raw data is outside the scope of IPFIX and must be implemented
   within the encapsulated binary data itself.  Furthermore, the raw
   encapsulated data cannot be assumed by an IPFIX File Reader to have
   any specific format.

10.2.  Encapsulation of IPFIX Files within Other File Formats

   Consequently, it may also be useful to reverse the encapsulation,
   that is, to export or store IPFIX data inline within a non-IPFIX file
   or data stream.  This makes sense when the other file format is not
   compatible with the encapsulation described above in Section 10.1.
   Generally speaking, the encapsulation here will be specific to the
   format of the containing file.  For example, IPFIX Files may be



Trammell, et al.         Expires April 27, 2009                [Page 36]


Internet-Draft                 IPFIX Files                  October 2008


   embedded in XML elements using hex or Base64 encoding, or in raw
   binary files using start and end delimiters or some form of run-
   length encoding.  As there are as many potential encapsulations here
   as there are potential file formats, the specifics of each are out of
   scope for this specification.


11.  Security Considerations

   The IPFIX File format itself does not directly introduce security
   issues.  Rather it is used to store information which may for privacy
   or business reasons be considered sensitive.  The file format must
   therefore provide appropriate procedures to guarantee the integrity
   and confidentiality of the stored information.

   The underlying protocol used to exchange the information that will be
   stored using the format proposed in this document must as well apply
   appropriate procedures to guarantee the integrity and confidentiality
   of the exported information.  Such issues are addressed in [RFC5101].

   Implementors of IPFIX File Writers which store data taken from an
   IPFIX Collecting Process using TLS or DTLS for transport security
   should note that IPFIX Files may present a potential breach of
   confidentiality if IPFIX data collected using TLS or DTLS is stored
   in unencrypted files, and should consider providing an external file
   encryption option to mitigate this risk.


12.  IANA Considerations

   This document specifies the creation of several new IPFIX Information
   Elements in the IPFIX Information Element registry located at
   http://www.iana.org/assignments/ipfix, as defined in Section 8.2
   above.  IANA has assigned the following Information Element numbers
   for their respective Information Elements as specified below:

   o  Information Element number TBD1 for the collectionTimeMilliseconds
      Information Element.

   o  Information Element number TBD2 for the exportSctpStreamId
      Information Element.

   o  Information Element number TBD3 for the maxExportSeconds
      Information Element.

   o  Information Element number TBD11 for the maxFlowEndMicroseconds
      Information Element.




Trammell, et al.         Expires April 27, 2009                [Page 37]


Internet-Draft                 IPFIX Files                  October 2008


   o  Information Element number TBD12 for the maxFlowEndMilliseconds
      Information Element.

   o  Information Element number TBD13 for the maxFlowEndNanoseconds
      Information Element.

   o  Information Element number TBD4 for the maxFlowEndSeconds
      Information Element.

   o  Information Element number TBD5 for the messageMD5Checksum
      Information Element.

   o  Information Element number TBD6 for the messageScope Information
      Element.

   o  Information Element number TBD7 for the minExportSeconds
      Information Element.

   o  Information Element number TBD14 for the minFlowStartMicroseconds
      Information Element.

   o  Information Element number TBD15 for the minFlowStartMilliseconds
      Information Element.

   o  Information Element number TBD16 for the minFlowStartNanoseconds
      Information Element.

   o  Information Element number TBD8 for the minFlowStartSeconds
      Information Element.

   o  Information Element number TBD9 for the opaqueOctets Information
      Element.

   o  Information Element number TBD10 for the sessionScope Information
      Element.

   [NOTE for IANA: The text TBDn should be replaced with the respective
   assigned Information Element numbers where they appear in this
   document.]


13.  Acknowledgements

   Thanks to Maurizio Molina, Tom Kosnar, and Andreas Kind for technical
   assistance with the requirements for a standard flow storage format.
   Thanks to Benoit Claise, Paul Aitken, Andrew Johnson, and Gerhard
   Muenz for their reviews and feedback.




Trammell, et al.         Expires April 27, 2009                [Page 38]


Internet-Draft                 IPFIX Files                  October 2008


14.  References

14.1.  Normative References

   [RFC5101]  Claise, B., "Specification of the IP Flow Information
              Export (IPFIX) Protocol for the Exchange of IP Traffic
              Flow Information", RFC 5101, January 2008.

   [RFC5102]  Quittek, J., Bryant, S., Claise, B., Aitken, P., and J.
              Meyer, "Information Model for IP Flow Information Export",
              RFC 5102, January 2008.

   [I-D.ietf-ipfix-exporting-type]
              Boschi, E., Trammell, B., Mark, L., and T. Zseby,
              "Exporting Type Information for IPFIX Information
              Elements", draft-ietf-ipfix-exporting-type-02 (work in
              progress), July 2008.

   [RFC1321]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
              April 1992.

14.2.  Informative References

   [I-D.ietf-ipfix-arch]
              Sadasivan, G. and N. Brownlee, "Architecture Model for IP
              Flow Information Export", draft-ietf-ipfix-arch-02 (work
              in progress), October 2003.

   [I-D.ietf-ipfix-as]
              Zseby, T., "IPFIX Applicability", draft-ietf-ipfix-as-12
              (work in progress), July 2007.

   [I-D.ietf-ipfix-reducing-redundancy]
              Boschi, E., "Reducing Redundancy in IP Flow Information
              Export (IPFIX) and Packet  Sampling (PSAMP) Reports",
              draft-ietf-ipfix-reducing-redundancy-04 (work in
              progress), May 2007.

   [I-D.ietf-ipfix-testing]
              Schmoll, C., Aitken, P., and B. Claise, "Guidelines for IP
              Flow Information eXport (IPFIX) Testing",
              draft-ietf-ipfix-testing-05 (work in progress),
              April 2008.

   [RFC3954]  Claise, B., "Cisco Systems NetFlow Services Export Version
              9", RFC 3954, October 2004.

   [RFC3917]  Quittek, J., Zseby, T., Claise, B., and S. Zander,



Trammell, et al.         Expires April 27, 2009                [Page 39]


Internet-Draft                 IPFIX Files                  October 2008


              "Requirements for IP Flow Information Export (IPFIX)",
              RFC 3917, October 2004.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [SAINT2007]
              Trammell, B., Boschi, E., Mark, L., and T. Zseby,
              "Requirements for a standardized flow storage solution",
               in Proceedings of the SAINT 2007 workshop on Internet
              Measurement Technology, Hiroshima, Japan, January 2007.


Appendix A.  Example IPFIX File

   In this section we will explore an example IPFIX File which
   demonstrates the various features of the IPFIX File format.  This
   File contains flow records described by a single Template.  This File
   also contains a File Time Window record to note the start and end
   time of the data, and an Export Session Details record to record
   collection infrastructure information.  Each Message within this File
   also contains a Message Checksum record, as this File may be
   externally encrypted and/or stored as an archive.  The structure of
   this File is shown in Figure 2.



























Trammell, et al.         Expires April 27, 2009                [Page 40]


Internet-Draft                 IPFIX Files                  October 2008


             +=================================================+
             | IPFIX Message                       seq. 0      |
             | +---------------------------------------------+ |
             | | Template Set (id 2)                  1 rec  | |
             | |   Data Tmpl. id 256                         | |
             | +---------------------------------------------+ |
             | | Options Template Set (id 3)          3 recs | |
             | |   File Time Window Opt. Tmpl. id 257        | |
             | |   Message Checksum Opt. Tmpl. id 259        | |
             | |   Export Session Details Opt. Tmpl. id 258  | |
             | +---------------------------------------------+ |
             | | Data Set (id 259) [Message Checksum] 1 rec  | |
             | +---------------------------------------------+ |
             +=================================================+
             | IPFIX Message                       seq. 1      |
             | +---------------------------------------------+ |
             | | Data Set (id 257) [File Time Window] 1 rec  | |
             | +---------------------------------------------+ |
             | | Data Set (id 258) [Export Session]   1 rec  | |
             | +---------------------------------------------+ |
             | | Data Set (id 259) [Message Checksum] 1 rec  | |
             | +---------------------------------------------+ |
             +=================================================+
             | IPFIX Message                       seq. 4      |
             | +---------------------------------------------+ |
             | | Data Set (id 256)                   50 recs | |
             | |  contains flow data                         | |
             | +---------------------------------------------+ |
             | | Data Set (id 259) [Message Checksum] 1 rec  | |
             | +---------------------------------------------+ |
             +=================================================+
             | IPFIX Message                       seq. 55     |
             |                    . . .                        |

                     Figure 2: File Example Structure

   The Template describing the data records contains a flow start
   timestamp, an IPv4 5-tuple, and packet and octet total counts.  The
   Template Set defining this is as shown in Figure 3 below:












Trammell, et al.         Expires April 27, 2009                [Page 41]


Internet-Draft                 IPFIX Files                  October 2008


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Set ID = 2           |          Length =  40         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Template ID = 256        |        Field Count = 8        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| flowStartSeconds      = 150 |       Field Length =  4       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| sourceIPv4Address     =   8 |       Field Length =  4       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| dest.IPv4Address      =  12 |       Field Length =  4       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| sourceTransportPort   =   7 |       Field Length =  2       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| dest.TransportPort    =  11 |       Field Length =  2       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| protocolIdentifier    =   4 |       Field Length =  1       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| octetTotalCount       =  85 |       Field Length =  4       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| packetTotalCount      =  86 |       Field Length =  4       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 3: File Example Data Template

A.1.  Example Options Templates

   This is followed by an Options Template Set containing the Options
   Templates required to read the File: the File Time Window Options
   Template defined in Section 8.1.2 above, the Export Session Details
   Options Template defined in Section 8.1.3 above, and the Message
   Checksum Options Template defined in Section 8.1.1 above.  This
   Options Template Set is shown in Figure 4 and Figure 5 below:

















Trammell, et al.         Expires April 27, 2009                [Page 42]


Internet-Draft                 IPFIX Files                  October 2008


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Set ID = 3           |          Length =  80         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Template ID = 257        |        Field Count = 3        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Scope Field Count = 1      |0| sessionScope        = TBD10 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  1       |0| minFlowStartSeconds  = TBD8 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  4       |0| maxFlowEndSeconds    = TBD4 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length = 4        |      Template ID = 259        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Count = 2         |    Scope Field Count = 1      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| messageScope         = TBD6 |       Field Length =  1       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| messageMD5Checksum   = TBD5 |       Field Length = 16       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 4: File Example Options Templates (Time Window and Checksum)




























Trammell, et al.         Expires April 27, 2009                [Page 43]


Internet-Draft                 IPFIX Files                  October 2008


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Template ID = 258       |         Field Count = 9       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Scope Field Count = 1      |0| sessionScope        = TBD10 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  1       |0| exporterIPv4Address   = 130 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  4       |0| collectorIPv4Address  = 211 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  4       |0| exporterTransportPort = 217 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  2       |0| col.TransportPort     = 216 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  2       |0| col.TransportProtocol = 215 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  1       |0| col.ProtocolVersion   = 214 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  1       |0| minExportSeconds     = TBD7 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  4       |0| maxExportSeconds     = TBD3 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Field Length =  4       |     set padding (2 octets)    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Figure 5: File Example Options Templates, Continued (Session Details)

A.2.  Example Supplemental Options Data

   Following the Templates required to decode the File is the
   supplemental IPFIX Options information used to describe the File's
   contents and type information.  First comes the File Time Window
   record; it notes that the File contains data from 9 October 2007
   between 00:01:13 and 23:56:27 UTC, and appears as in Figure 6:
















Trammell, et al.         Expires April 27, 2009                [Page 44]


Internet-Draft                 IPFIX Files                  October 2008


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Set ID = 257         |          Length =  13         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | sessionScope  |           minFlowStartSeconds
   |       0       |         2007-10-09 00:01:13 UTC           . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   |            maxFlowEndSeconds
   . . .           |         2007-10-09 23:56:27 UTC           . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   |
   . . .           |
   +-+-+-+-+-+-+-+-+

                    Figure 6: File Example Time Window

   This is followed by information about how the data in the File was
   collected, in the Export Session Details record.  This record notes
   that the session stored in this File was sent via SCTP from an
   exporter at 192.0.2.30 port 32769 to an collector at 192.0.2.40 port
   4739, and contains messages exported between 00:01:57 and 23:57:12
   UTC on 9 October 2007; it is represented in its Data Set as in
   Figure 7:



























Trammell, et al.         Expires April 27, 2009                [Page 45]


Internet-Draft                 IPFIX Files                  October 2008


                       1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Set ID = 258         |          Length =  27         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | sessionScope  |           exporterIPv4Address
   |       0       |               192.0.2.30                  . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   |           collectorIPv4Address
   . . .           |               192.0.2.31                  . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   |     exporterTransportPort     |   cTPort
   . . .           |             32769             |    4739   . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   |   cTProtocol  |  cPVersion    |
   . . .           |      132      |     10        |           . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                minExportSeconds                   |
   . . .     2007-10-09 00:01:57 UTC               |           . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                maxExportSeconds                   |
   . . .     2007-10-09 23:57:12 UTC               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 7: File Example Export Session Details

A.3.  Example Message Checksum

   Each IPFIX Message within the File is completed with a Message
   Checksum record; the structure of this record within its Data Set is
   as in Figure 8:

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Set ID = 259         |          Length =  24         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | messageScope  |                                               |
   |       0       |                                               |
   +-+-+-+-+-+-+-+-+                                               |
   |                       messageMD5Checksum                      |
   |           (16 byte MD5 checksum of options message)           |
   |                                                               |
   |                                                               |
   |               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               |              set padding (3 octets)           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 8: File Example Message Checksum



Trammell, et al.         Expires April 27, 2009                [Page 46]


Internet-Draft                 IPFIX Files                  October 2008


A.4.  File Example Data Set

   After the Templates and supplemental Options information comes the
   data itself.  The first record of an example Data Set is shown with
   its message and set headers in Figure 9:

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Version = 10              |         Length = 1296         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Export Time = 2007-10-09 00:01:57 UTC                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      Sequence Number = 4                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Observation Domain ID = 1                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Set ID = 256           |          Length = 1254         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      flowStartSeconds                         |
   |                    2007-10-09 00:01:13 UTC                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      sourceIPv4Address                        |
   |                          192.0.2.2                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    destinationIPv4Address                     |
   |                          192.0.2.3                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      sourceTransportPort      |   destinationTransportPort    |
   |             32770             |               80              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  protocolId   |             totalOctetCount
   |       6       |                  18000                    . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   |             totalPacketCount
   . . .           |                    65                     . . .
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                   |             (49 more records)
   . . .           |
   +-+-+-+-+-+-+-+-+

                      Figure 9: File Example Data Set

A.5.  Complete File Example

   Bringing together the examples above and adding message headers as
   appropriate, a hex dump of the first 317 bytes of the example Gile
   constructed above would appear as in the annotated Figure 10 below.



Trammell, et al.         Expires April 27, 2009                [Page 47]


Internet-Draft                 IPFIX Files                  October 2008


   [EDITOR'S NOTE: In this figure, xx refers to unassigned IANA IE
   numbers as in the IANA Considerations section above; cs refers to
   message checksum bytes that depend on the rest of the message
   contents.  These will have to be replaced if we keep this example
   once the IE numbers are assigned.]

     0:|00 0A 00 A0 47 0A B6 E5 00 00 00 00 00 00 00 01
      [^ first message header (length 160 bytes) -->
    16:|00 02 00 28 01 00 00 08 00 96 00 04 00 08 00 04
      [^ data template set -->
    32: 00 0C 00 04 00 07 00 02 00 0B 00 02 00 04 00 01

    48: 00 55 00 04 00 56 00 04|00 03 00 50 01 01 00 03
                              [^ opt template set -->
    64: 00 01 xx xx 00 01 xx xx 00 04 xx xx 00 04 01 03

    80: 00 02 00 01 xx xx 00 01 xx xx 00 10 01 02 00 09

    96: 00 01 xx xx 00 01 00 82 00 04 00 D3 00 04 00 D9

   112: 00 02 00 D8 00 02 00 D7 00 01 00 D0 00 01 xx xx

   128: 00 04 xx xx 00 04 00 00|01 03 00 18 00 cs cs cs
                              [^ checksum record -->
   144: cs cs cs cs cs cs cs cs cs cs cs cs cs 00 00 00

   176:|00 0A 00 50 47 0A B6 E5 00 00 00 01 00 00 00 01
      [^ second message header (length 80 bytes) -->
   192:|01 01 00 0E 00 47 0A B6 B9 47 0C 07 1B 00|01 02
      [^ time window rec -> [ session detail rec ^ -->
   208: 00 1C 00 C0 00 02 1E 0C 00 02 1F 80 01 12 83 84

   224: 0A 47 0A B6 E5 47 0C 07 48 00|01 03 00 18 00 cs
              [ message checksum rec ^ -->
   240: cs cs cs cs cs cs cs cs cs cs cs cs cs cs cs 00

   256:|00 0A 05 10 47 0A B6 E5 00 00 00 06 00 00 00 01
      [^ third message header (length 1296 bytes) -->
   272:|01 00 04 E6|47 0A B6 B9 C0 00 02 02 C0 00 02 03
      [^ set hdr ][^ first data rec -->
   288: 80 02 00 50 06 00 00 46 50 00 00 00 41

                     Figure 10: File Example Hex Dump








Trammell, et al.         Expires April 27, 2009                [Page 48]


Internet-Draft                 IPFIX Files                  October 2008


Appendix B.  Applicability of IPFIX Files to NetFlow V9 flow storage

   As the IPFIX Message format is nearly a superset of the NetFlow V9
   packet format, IPFIX Files can be used for store NetFlow V9 data
   relatively easily.  This section describes a method for doing so.
   The differences between the two protocols are outlined in
   Appendix B.1 below.  A simple, lightweight, message-for-message
   translation method for transforming V9 Packets into IPFIX Messages
   for storage within IPFIX Files is described in Appendix B.2.  An
   example of this translation method is given in Appendix B.3.

B.1.  Comparing NetFlow V9 to IPFIX

   With a few caveats, the IPFIX Protocol is a superset of the NetFlow
   V9 protocol, having evolved from it largely through a process of
   feature addition to bring it into compliance with the IPFIX
   Requirements and the needs of stakeholders within the IPFIX Working
   Group.  This appendix outlines the differences between the two
   protocols.  It is informative only, and presented as an exploration
   of the two protocols to motivate the usage of IPFIX Files to store
   V9-collected flow data.

B.1.1.  Message Header Format

   Both NetFlow V9 and IPFIX use streams of messages prefixed by a
   message header, though the message header differs significantly
   between the two.  Note that in NetFlow V9 terminology, these messages
   are called packets, and messages must be delimited by datagram
   boundaries.  IPFIX does not have this constraint.  The header formats
   are detailed below:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Version Number          |            Count              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           sysUpTime                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           UNIX Secs                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Sequence Number                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Source ID                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 11: NetFlow V9 Packet Header Format





Trammell, et al.         Expires April 27, 2009                [Page 49]


Internet-Draft                 IPFIX Files                  October 2008


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Version Number          |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Export Time                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Sequence Number                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Observation Domain ID                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 12: IPFIX Message Header Format

   Version Number:   The IPFIX Version Number MUST be 10, while the
      NetFlow V9 Version Number MUST be 9.

   Length vs. Count:   The Count field in the NetFlow V9 packet header
      counts records in the message (including Data and Template
      Records), while the Length field in the IPFIX Message Header
      counts octets in the message.  Note that this implies that NetFlow
      V9 collectors must rely on datagram boundaries or some other
      external delimeter; or otherwise must completely consume a message
      before finding its end.

   System Uptime:   System uptime in milliseconds is exported in the
      NetFlow V9 packet header.  This field is not present in the IPFIX
      Message Header, and must be exported using an IPFIX Option if
      required.

   Export Time:   Aside from being called UNIX Secs in the NetFlow V9
      packet header specification, the export time in seconds since 1
      January 1970 at 0000 UTC appears in both NetFlow V9 and IPFIX
      message headers.

   Sequence Number:   The NetFlow V9 Sequence Number counts packets,
      while the IPFIX Sequence Number counts records in Data Sets.  Both
      are scoped to Observation Domain.

   Observation Domain ID:   Similarly, the NetFlow V9 sourceID has
      become the IPFIX Observation Domain ID.

B.1.2.  Set Header Format

   Set headers are identical between NetFlow V9 and IPFIX; that is, each
   Set (FlowSet in NetFlow V9 terminology) is prefixed by a 4-byte set
   header containing the Set ID and the length of the set in octets.




Trammell, et al.         Expires April 27, 2009                [Page 50]


Internet-Draft                 IPFIX Files                  October 2008


   Note that the special Set IDs are different between IPFIX and NetFlow
   V9.  IPFIX Template Sets are identified by Set ID 2, while NetFlow V9
   Template FlowSets are identified by Set ID 0.  Similarly, IPFIX
   Options Template Sets are identified by Set ID 3, while NetFlow V9
   Options Template FlowSets are identified by Set ID 1.

   Both protocols reserve Set IDs 0-255, and use Set IDs 256-65535 for
   Data Sets (or FlowSets, in NetFlow V9 terminology).

B.1.3.  Template Format

   Template FlowSets in NetFlow V9 support a subset of functionality of
   those in IPFIX.  Specifically, NetFlow V9 does not have any support
   for vendor-specific Information Elements as IPFIX does, so there is
   no enterprise bit or facility for associating a private enterprise
   number with an information element.  NetFlow V9 also does not support
   variable-length fields.

   Options Template FlowSets in NetFlow V9 are similar to Options
   Template Sets in IPFIX in the same way.

B.1.4.  Information Model

   The NetFlow V9 field type definitions are a compatible subset of, and
   have evolved in concert with, the IPFIX Information Model.  IPFIX
   Information Element identifiers in the range 1-127 are defined by the
   IPFIX Information Model [RFC5102] to be compatible with the
   corresponding NetFlow V9 field types.

B.1.5.  Template Management

   NetFlow V9 has no concept of a Transport Session as in IPFIX, as
   NetFlow V9 was designed with a connectionless transport in mind.
   Template IDs are therefore scoped to an Exporting Process lifetime
   (i.e., an Exporting Process instance between restarts).  There is no
   facility in NetFlow V9 as in IPFIX for Template withdrawal or
   Template ID reuse.  Template retransmission at the Exporter works as
   in UDP-based IPFIX Exporting Processes.

B.1.6.  Transport

   In practice, though NetFlow V9 is designed to be transport-
   independent, it is transported only over UDP.  There is no facility
   as in IPFIX for full connection-oriented transport without datagram
   boundaries, due to the use of a record count field as opposed to a
   message length field in the packet header.  There is no support in
   NetFlow V9 for transport layer security via TLS or DTLS.




Trammell, et al.         Expires April 27, 2009                [Page 51]


Internet-Draft                 IPFIX Files                  October 2008


B.2.  A Method for Transforming NetFlow V9 messages to IPFIX

   This appendix describes a method for transforming NetFlow V9 Packets
   into IPFIX Messages, which can be used to store NetFlow V9 data in
   IPFIX Files.  A process transforming NetFlow V9 Packets into IPFIX
   Messages must handle the fact that NetFlow V9 Packets and IPFIX
   Messages are framed differently, that sequence numbering works
   differently, and that the NetFlow V9 field type definitions are only
   compatible with the IPFIX Information Model below Information Element
   identifier 128.

   For each incoming NetFlow V9 packet, the transformation process must:

   1.  Verify that the Version field of the packet header is 9.

   2.  Verify that the Sequence Number field of the packet header is
       valid.

   3.  Scan the packet to:

       1.  verify that it contains no Templates with field types outside
           the range 1-127;

       2.  verify that it contains no FlowSets with Set IDs between 2
           and 255 inclusive;

       3.  verify that it contains the number of records in FlowSets,
           Template FlowSets, and Options Template FlowSets declared in
           the Count field of the packet header; and

       4.  count the number of records in Data FlowSets for calculating
           the IPFIX Sequence Number.

   4.  Calculate a Sequence Number for each IPFIX Observation Domain by
       storing the last Sequence Number sent for each Observation Domain
       plus the count of records in Data FlowSets in the previous step
       to be sent as the Sequence Number for the IPFIX Message following
       this one within that Observation Domain.

   5.  Generate a new IPFIX Message Header with:

       1.  a Version field of 10;

       2.  a Length field with the number of octets in the IPFIX
           Message, generally available by subtracting 4 from the length
           of the NetFlow V9 packet as returned from the transport layer
           (accounting for the difference in message header lengths);




Trammell, et al.         Expires April 27, 2009                [Page 52]


Internet-Draft                 IPFIX Files                  October 2008


       3.  the Sequence Number calculated for this message by the
           Sequence Number calculation step; and

       4.  Export Time and Observation Domain ID taken from the UNIX
           secs and Source ID fields of the NetFlow V9 packet header,
           respectively.

   6.  Copy each FlowSet from the Netflow V9 packet to the IPFIX Message
       after the header.  Replace Set ID 0 with Set ID 2 for Template
       Sets, and Set ID 1 with Set ID 3 for Options Template Sets.

   Note that this process loses system uptime information; if such
   information is required, the transformation process will have to
   export that information using IPFIX Options.  This may require a more
   sophisticated transformation process structure.

B.3.  NetFlow V9 Transformation Example

   The following two figures show a single NetFlow V9 packet with
   templates and the corresponding IPFIX Message, exporting a single
   flow record representing 60,303 octets sent from 192.0.2.2 to
   192.0.2.3.  This would be the 3rd packet exported in Observation
   Domain 33 from the NetFlow V9 exporter, containing records starting
   with the 12th record (packet and record sequence numbers count from
   0).

   The ** symbol in the IPFIX example shows those fields that required
   modification from the NetFlow V9 packet by the transformation
   process.






















Trammell, et al.         Expires April 27, 2009                [Page 53]


Internet-Draft                 IPFIX Files                  October 2008


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Version = 9          |         Count = 2             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               Uptime = 3750405 ms (1:02:30.405)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Export Time = 1171557627 epoch sec (2007-02-15 16:40:27)    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Sequence Number = 2                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Observation Domain ID = 33                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Set ID = 0          |       Set Length = 20         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Template ID = 256       |       Field Count = 3         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | IPV4_SRC_ADDR           =   8 |       Field Length = 4        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | IPV4_DST_ADDR           =  12 |       Field Length = 4        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | IN_BYTES                =   1 |       Field Length = 4        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Set ID = 256         |       Set Length = 16         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         IPV4_SRC_ADDR                         |
   |                           192.0.2.2                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         IPV4_DST_ADDR                         |
   |                           192.0.2.3                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           IN_BYTES                            |
   |                             60303                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 13: Example NetFlow V9 Packet















Trammell, et al.         Expires April 27, 2009                [Page 54]


Internet-Draft                 IPFIX Files                  October 2008


                       1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | **       Version = 10         | **      Length = 52           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   Export Time = 1171557627 epoch sec (2007-02-15 16:40:27)    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | **                   Sequence Number = 11                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Observation Domain ID = 33                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | **         Set ID = 2         |       Set Length = 20         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       Template ID = 256       |       Field Count  = 3        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| sourceIPv4Address      =  8 |       Field Length = 4        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| destinationIPv4Address = 12 |       Field Length = 4        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0| octetDeltaCount        =  1 |       Field Length = 4        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Set ID = 256         |       Set Length = 16         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       sourceIPv4Address                       |
   |                           192.0.2.2                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     destinationIPv4Address                    |
   |                           192.0.2.3                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        octetDeltaCount                        |
   |                             60303                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 14: Corresponding Example IPFIX Message


Authors' Addresses

   Brian Trammell
   Hitachi Europe
   c/o ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Phone: +41 44 632 70 13
   Email: brian.trammell@hitachi-eu.com




Trammell, et al.         Expires April 27, 2009                [Page 55]


Internet-Draft                 IPFIX Files                  October 2008


   Elisa Boschi
   Hitachi Europe
   c/o ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Phone: +41 44 632 70 57
   Email: elisa.boschi@hitachi-eu.com


   Lutz Mark
   Fraunhofer IFAM
   Weiner Str. 12
   38259 Bremen
   Germany

   Phone: +49 421 2246206
   Email: lutz.mark@ifam.fraunhofer.de


   Tanja Zseby
   Fraunhofer Institute for Open Communication Systems
   Kaiserin-Augusta-Allee 31
   10589 Berlin
   Germany

   Phone: +49 30 3463 7153
   Email: tanja.zseby@fokus.fraunhofer.de


   Arno Wagner
   ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Phone: +41 44 632 70 04
   Email: arno@wagner.name












Trammell, et al.         Expires April 27, 2009                [Page 56]


Internet-Draft                 IPFIX Files                  October 2008


Full Copyright Statement

   Copyright (C) The IETF Trust (2008).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.











Trammell, et al.         Expires April 27, 2009                [Page 57]