Network Working Group G. Mirsky
Internet-Draft ZTE Corp.
Intended status: Standards Track G. Jun
Expires: July 8, 2018 ZTE Corporation
H. Nydell
Accedian Networks
January 4, 2018
Simple Two-way Active Measurement Protocol
draft-ietf-ippm-stamp-00
Abstract
This document describes a Two-way Active Measurement Protocol which
enables measurement of both one-way and round-trip performance
metrics like delay, delay variation and packet loss.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on July 8, 2018.
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
Mirsky, et al. Expires July 8, 2018 [Page 1]
Internet-Draft STAMP January 2018
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Conventions used in this document . . . . . . . . . . . . . . 2
2.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Requirements Language . . . . . . . . . . . . . . . . . . 3
3. Softwarization of Performance Measurement . . . . . . . . . . 3
4. Theory of Operation . . . . . . . . . . . . . . . . . . . . . 3
4.1. Sender Behavior and Packet Format . . . . . . . . . . . . 4
4.1.1. Sender Packet Format in Unauthenticated Mode . . . . 4
4.1.2. Sender Packet Format in Authenticated and Encrypted
Modes . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2. Reflector Behavior and Packet Format . . . . . . . . . . 7
4.2.1. Reflector Packet Format in Unauthenticated Mode . . . 7
4.2.2. Reflector Packet Format in Authenticated and
Encrypted Modes . . . . . . . . . . . . . . . . . . . 8
5. TLV Extensions to STAMP . . . . . . . . . . . . . . . . . . . 9
5.1. Extra Padding TLV . . . . . . . . . . . . . . . . . . . . 10
5.2. Location TLV . . . . . . . . . . . . . . . . . . . . . . 10
5.3. Timestamp Information TLV . . . . . . . . . . . . . . . . 12
5.4. Class of Service TLV . . . . . . . . . . . . . . . . . . 12
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13
6.1. STAMP TLV Registry . . . . . . . . . . . . . . . . . . . 13
6.2. Synchronization Source Sub-registry . . . . . . . . . . . 14
6.3. Timestamp Method Sub-registry . . . . . . . . . . . . . . 14
6.4. CoS Operation Sub-registry . . . . . . . . . . . . . . . 14
7. Security Considerations . . . . . . . . . . . . . . . . . . . 14
8. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 14
9. Normative References . . . . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15
1. Introduction
2. Conventions used in this document
2.1. Terminology
STAMP - Simple Two-way Active Measurement Protocol
NTP - Network Time Protocol
PTP - Precision Time Protocol
Mirsky, et al. Expires July 8, 2018 [Page 2]
Internet-Draft STAMP January 2018
2.2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
3. Softwarization of Performance Measurement
Instance of a Simple Two-way Active Measurement Protocol (STAMP)
session between a Sender and a Reflector controlled by communication
between a Configuration Client as a manager and Configuration Servers
as agents of the configuration session that configures STAMP
measurement between Sender and Reflector. The Configuration Client
also issues queries to obtain operational state information and/or
measurement results.
o----------------------------------------------------------o
| Config client |
o----------------------------------------------------------o
|| ||
|| NETCONF/RESTCONF ||
|| ||
o-------------------o o-------------------o
| Config server | | Config server |
| | | |
+-------------------+ +-------------------+
| STAMP Sender | <--- STAMP---> | STAMP Reflector |
+-------------------+ +-------------------+
Figure 1: STAMP Reference Model
4. Theory of Operation
STAMP Sender transmits test packets toward STAMP Reflector. STAMP
Reflector receives Sender's packet and acts according to the
configuration and optional control information communicated in the
Sender's test packet. STAMP defines two different test packet
formats, one for packets transmitted by the STAMP-Sender and one for
packets transmitted by the STAMP-Reflector. STAMP supports three
modes: unauthenticated, authenticated, and encrypted.
Unauthenticated STAMP test packets are compatible on the wire with
unauthenticated TWAMP-Test [RFC5357] packet formats.
Mirsky, et al. Expires July 8, 2018 [Page 3]
Internet-Draft STAMP January 2018
By default STAMP uses symmetrical packets, i.e. size of the packet
transmitted by Reflector equals to the size of the packet received by
the Reflector.
4.1. Sender Behavior and Packet Format
4.1.1. Sender Packet Format in Unauthenticated Mode
Because STAMP supports symmetrical test packets, STAMP Sender packet
has minimum size of 44 octets in unauthenticated mode, see Figure 2,
and 48 octets in authenticated or encrypted modes , see Figure 4.
For unauthenticated mode:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Estimate | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| |
| |
| MBZ (27 octets) |
| |
| |
| |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Server Octets | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| Remaining Packet Padding (to be reflected) |
~ (length in octets specified in command) ~
+ +-+-+-+-+-+-+-+-+
| | Comp.MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: STAMP Sender test packet format in unauthenticated mode
where fields are defined as the following:
Mirsky, et al. Expires July 8, 2018 [Page 4]
Internet-Draft STAMP January 2018
o Sequence Number is four octets long field. For each new session
its value starts at zero and is incremented with each transmitted
packet.
o Timestamp is eight octets long field. STAMP node MUST support
Network Time Protocol (NTP) version 4 64-bit timestamp format
[RFC5905]. STAMP node MAY support IEEE 1588v2 Precision Time
Protocol truncated 64-bit timestamp format [IEEE.1588.2008].
o Error Estimate is two octets long field with format displayed in
Figure 3
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S|Z| Scale | Multiplier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Error Estimate Format
where S, Scale and Multiplier fields are interpreted as they have
been defined in section 4.1.2 [RFC4656]; and Z field - as has been
defined in section 2.3 [RFC8186]:
* 0 - NTP 64 bit format of a timestamp;
* 1 - PTPv2 truncated format of a timestamp.
o Must-be-Zero (MBZ) field in the sender unauthenticated packet is
27 octets long. It MUST be all zeroed on transmission and ignored
on receipt.
o Server Octets field is two octets long field. It MUST follow the
27 octets long MBZ field. The Reflect Octets capability defined
in [RFC6038]. The value in the Server Octets field equals to the
number of octets the Reflector is expected to copy back to the
Sender starting with the Server Octets field. Thus the minimal
non-zero value for the Server Octets field is two and value of one
is invalid. If none of Payload to be copied the value of the
Server Octets field MUST be set to zero on transmit.
o Remaining Packet Padding is optional field of variable length.
The number of octets in the Remaining Packet Padding field is the
value of the Server Octets field less the length of the Server
Octets field.
o Comp.MBZ is variable length field used to achieve alignment on
word boundary. Thus the length of Comp.MBZ field may be only 0,
Mirsky, et al. Expires July 8, 2018 [Page 5]
Internet-Draft STAMP January 2018
1, 2 or 3 octets. The value of the field MUST be zeroed on
transmission and ignored on receipt.
The unauthenticated STAMP Sender packet MAY include Type-Length-Value
encodings that immediately follow the Comp. MBZ field.
o Type field is two octets long. The value of the Type field is the
codepoint allocated by IANA Section 6 that identifies data in the
Value field.
o Length is two octets long field and its value is the length of the
Value field in octets.
4.1.2. Sender Packet Format in Authenticated and Encrypted Modes
For authenticated and encrypted modes:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| MBZ (12 octets) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Estimate | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| MBZ (6 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| HMAC (16 octets) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: STAMP Sender test packet format in authenticated or
encrypted modes
Mirsky, et al. Expires July 8, 2018 [Page 6]
Internet-Draft STAMP January 2018
4.2. Reflector Behavior and Packet Format
The Reflector receives the STAMP test packet, verifies it, prepares
and transmits the reflected test packet. [Editor note: Verification
may include presence and content of TLVs in the STAMP test packet.]
4.2.1. Reflector Packet Format in Unauthenticated Mode
For unauthenticated mode:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Estimate | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receive Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Error Estimate | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender TTL | |
+-+-+-+-+-+-+-+-+ +
| |
~ Packet Padding (reflected) ~
+ +-+-+-+-+-+-+-+-+
| | Comp.MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: STAMP Reflector test packet format in unauthenticated mode
where fields are defined as the following:
Mirsky, et al. Expires July 8, 2018 [Page 7]
Internet-Draft STAMP January 2018
o Sequence Number is four octets long field. The value of the
Sequence Number field is set according to the mode of the STAMP
Reflector:
* in the stateless mode the Reflector copies the value from the
received STAMP test packet's Sequence Number field;
* in the stateful mode the Reflector counts the received STAMP
test packets in each test session and uses that counter to set
value of the Sequence Number field.
o Timestamp and Receiver Timestamp fields are each 8 octets long.
The format of these fields, NTP or PTPv2, indicated by the Z flag
of the Error Estimate field as described in Section 4.1.
o Error Estimate has the same size and interpretation as described
in Section 4.1.
o Sender Sequence Number, Sender Timestamp, and Sender Error
Estimate are copies of the corresponding fields in the STAMP test
packet send by the Sender.
o Sender TTL is one octet long field and its value is the copy of
the TTL field from the received STAMP test packet.
o Packet Padding (reflected) is optional variable length field. The
length of the Packet Padding (reflected) field MUST be equal to
the value of the Server Octets field (Figure 2). If the value is
non-zero, the Reflector copies octets starting with the Server
Octets field.
o Comp.MBZ is variable length field used to achieve alignment on
word boundary. Thus the length of Comp.MBZ field may be only 0,
1, 2 or 3 octets. The value of the field MUST be zeroed on
transmission and ignored on receipt.
4.2.2. Reflector Packet Format in Authenticated and Encrypted Modes
For authenticated and encrypted modes:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ (12 octets) |
| |
| |
Mirsky, et al. Expires July 8, 2018 [Page 8]
Internet-Draft STAMP January 2018
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Estimate | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| MBZ (6 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receive Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ (8 octets) |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ (12 octets) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Timestamp |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender Error Estimate | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
| MBZ (6 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sender TTL | |
+-+-+-+-+-+-+-+-+ +
| |
| |
| MBZ (15 octets) |
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
| HMAC (16 octets) |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
Figure 6: STAMP Reflector test packet format in authenticated or
encrypted modes
5. TLV Extensions to STAMP
TBA
Mirsky, et al. Expires July 8, 2018 [Page 9]
Internet-Draft STAMP January 2018
5.1. Extra Padding TLV
TBA
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Extra Padding Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ Extra Padding ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Extra Padding TLV
where fields are defined as the following:
o Extra Padding Type - TBA1 allocated by IANA Section 6.1
o Length - 2 octets long field equals length on the Extra Padding
field in octets.
o Extra Padding - pseudo-random sequence of numbers. The field MAY
be filled with all zeroes.
5.2. Location TLV
STAMP sender MAY include the Location TLV to request information from
the reflector. The sender SHOULD NOT fill any information fields
except for Type and Length. The reflector MUST validate the Length
value against address family of the transport encapsulating the STAMP
test packet. If the value of the Length field is invalid, the
reflector MUST zero all fields and MUST NOT return any information to
the sender. The reflector MUST ignore all other fields of the
received Location TLV.
Mirsky, et al. Expires July 8, 2018 [Page 10]
Internet-Draft STAMP January 2018
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Location Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source MAC |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Destination IP Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Source IP Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Dest.port | Src.Port | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Reflector Location TLV
where fields are defined as the following:
o Location Type - TBA1 allocated by IANA Section 6.1
o Length - 2 octets long field equals length on the Value field in
octets. Length field value MUST be 20 octets for IPv4 address
family. For IPv6 address family value of the Length field MUST be
44 octets. All other values are invalid
o Source MAC - 6 octets 48 bits long field. The reflector MUST copy
Source MAC of received STAMP packet into this field.
o MBZ - two octets long field. MUST be zeroed on transmission and
ignored on reception.
o Destination IP Address - IPv4 or IPv6 destination address of the
received by the reflector STAMP packet.
o Source IP Address - IPv4 or IPv6 source address of the received by
the reflector STAMP packet.
o Dest.port - one octet long UDP destination port number of the
received STAMP packet.
o Src.port - one octet long UDP source port number of the received
STAMP packet.
Mirsky, et al. Expires July 8, 2018 [Page 11]
Internet-Draft STAMP January 2018
5.3. Timestamp Information TLV
STAMP sender MAY include the Timestamp Information TLV to request
information from the reflector. The sender SHOULD NOT fill any
information fields except for Type and Length. The reflector MUST
validate the Length value of the STAMP test packet. If the value of
the Length field is invalid, the reflector MUST zero all fields and
MUST NOT return any information to the sender.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp Information Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Synchronization Source | Timestamp Method |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Timestamp Information TLV
where fields are defined as the following:
o Timestamp Information Type - TBA1 allocated by IANA Section 6.1
o Length - 2 octets long field, equals 4 octets.
o Synchronization Source - two octets long field that characterizes
the source of clock synchronization at the reflector. The value
is one of Section 6.2.
o Timestamp Method - two octets long field that characterizes
timestamping method at the reflector. The value is one of
Section 6.3. [Ed.note: Should it be split for ingress and
egress?]
5.4. Class of Service TLV
The STAMP sender MAY include Class of Service TLV in the STAMP test
packet. If the Class of Service TLV is present in the STAMP test
packet and the value of the Op field equals Report (TBA5) value
Section 6.4, then the STAMP reflector MUST copy DSCP and ECN values
from the received STAMP test packet into DSCP and ECN fields of the
Class of Service TLV of the reflected STAMP test packet. If the
value of the Op field equals Set and Report (TBA6) Section 6.4, then
the STAMP reflector MUST use DSCP value from the Class of Service TLV
in the received STAMP test packet as DSCP value of STAMP reflected
test packet and MUST copy DSCP and ECN values of the received STAMP
test packet into DSCP and ECN fields of Class of Service TLV in the
STAMP reflected packet.
Mirsky, et al. Expires July 8, 2018 [Page 12]
Internet-Draft STAMP January 2018
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Class of Service Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSCP |ECN|Op | MBZ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Class of Service TLV
where fields are defined as the following:
o
6. IANA Considerations
6.1. STAMP TLV Registry
IANA is requested to create STAMP TLV Type registry. All code points
in the range 1 through 32759 in this registry shall be allocated
according to the "IETF Review" procedure as specified in [RFC8126].
Code points in the range 32760 through 65279 in this registry shall
be allocated according to the "First Come First Served" procedure as
specified in [RFC8126]. Remaining code points are allocated
according to the Table 1:
+---------------+--------------+-------------------------+
| Value | Description | Reference |
+---------------+--------------+-------------------------+
| 0 | Reserved | This document |
| 1- 32759 | Unassigned | IETF Review |
| 32760 - 65279 | Unassigned | First Come First Served |
| 65280 - 65519 | Experimental | This document |
| 65520 - 65534 | Private Use | This document |
| 65535 | Reserved | This document |
+---------------+--------------+-------------------------+
Table 1: STAMP TLV Type Registry
This document defines the following new values in STAMP TLV Type
registry:
Mirsky, et al. Expires July 8, 2018 [Page 13]
Internet-Draft STAMP January 2018
+-------+-----------------------+---------------+
| Value | Description | Reference |
+-------+-----------------------+---------------+
| TBA1 | Extra Padding | This document |
| TBA2 | Location | This document |
| TBA3 | Timestamp Information | This document |
| TBA4 | Class of Service | This document |
+-------+-----------------------+---------------+
Table 2: STAMP Types
6.2. Synchronization Source Sub-registry
TBD
6.3. Timestamp Method Sub-registry
TBD
6.4. CoS Operation Sub-registry
TBD
7. Security Considerations
TBD
8. Acknowledgments
TBD
9. Normative References
[IEEE.1588.2008]
"Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems",
IEEE Standard 1588, March 2008.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
Zekauskas, "A One-way Active Measurement Protocol
(OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
<https://www.rfc-editor.org/info/rfc4656>.
Mirsky, et al. Expires July 8, 2018 [Page 14]
Internet-Draft STAMP January 2018
[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
RFC 5357, DOI 10.17487/RFC5357, October 2008,
<https://www.rfc-editor.org/info/rfc5357>.
[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
"Network Time Protocol Version 4: Protocol and Algorithms
Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
<https://www.rfc-editor.org/info/rfc5905>.
[RFC6038] Morton, A. and L. Ciavattone, "Two-Way Active Measurement
Protocol (TWAMP) Reflect Octets and Symmetrical Size
Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
<https://www.rfc-editor.org/info/rfc6038>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8186] Mirsky, G. and I. Meilik, "Support of the IEEE 1588
Timestamp Format in a Two-Way Active Measurement Protocol
(TWAMP)", RFC 8186, DOI 10.17487/RFC8186, June 2017,
<https://www.rfc-editor.org/info/rfc8186>.
Authors' Addresses
Greg Mirsky
ZTE Corp.
Email: gregimirsky@gmail.com
Guo Jun
ZTE Corporation
68# Zijinghua Road
Nanjing, Jiangsu 210012
P.R.China
Phone: +86 18105183663
Email: guo.jun2@zte.com.cn
Mirsky, et al. Expires July 8, 2018 [Page 15]
Internet-Draft STAMP January 2018
Henrik Nydell
Accedian Networks
Email: hnydell@accedian.com
Mirsky, et al. Expires July 8, 2018 [Page 16]