KITTEN                                                          W. Mills
Internet-Draft                                                 Microsoft
Intended status: Standards Track                            T. Showalter
Expires: July 24, 2015
                                                           H. Tschofenig
                                                                ARM Ltd.
                                                        January 20, 2015


                   A set of SASL Mechanisms for OAuth
                  draft-ietf-kitten-sasl-oauth-19.txt

Abstract

   OAuth enables a third-party application to obtain limited access to a
   protected resource, either on behalf of a resource owner by
   orchestrating an approval interaction, or by allowing the third-party
   application to obtain access on its own behalf.

   This document defines how an application client uses credentials
   obtained via OAuth over the Simple Authentication and Security Layer
   (SASL) to access a protected resource at a resource serve.  Thereby,
   it enables schemes defined within the OAuth framework for non-HTTP-
   based application protocols.

   Clients typically store the user's long-term credential.  This does,
   however, lead to significant security vulnerabilities, for example,
   when such a credential leaks.  A significant benefit of OAuth for
   usage in those clients is that the password is replaced by a shared
   secret with higher entropy, i.e., the token.  Tokens typically
   provide limited access rights and can be managed and revoked
   separately from the user's long-term password.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."




Mills, et al.             Expires July 24, 2015                 [Page 1]


Internet-Draft                 SASL OAuth                   January 2015


   This Internet-Draft will expire on July 24, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   5
   3.  OAuth SASL Mechanism Specifications . . . . . . . . . . . . .   6
     3.1.  Initial Client Response . . . . . . . . . . . . . . . . .   7
       3.1.1.  Reserved Key/Values . . . . . . . . . . . . . . . . .   8
     3.2.  Server's Response . . . . . . . . . . . . . . . . . . . .   8
       3.2.1.  OAuth Identifiers in the SASL Context . . . . . . . .   9
       3.2.2.  Server Response to Failed Authentication  . . . . . .   9
       3.2.3.  Completing an Error Message Sequence  . . . . . . . .  10
     3.3.  OAuth Access Token Types using Keyed Message Digests  . .  10
   4.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  11
     4.1.  Successful Bearer Token Exchange  . . . . . . . . . . . .  12
     4.2.  Successful OAuth 1.0a Token Exchange  . . . . . . . . . .  13
     4.3.  Failed Exchange . . . . . . . . . . . . . . . . . . . . .  13
     4.4.  SMTP Example of a Failed Negotiation  . . . . . . . . . .  15
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  15
   6.  Internationalization Considerations . . . . . . . . . . . . .  17
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  17
     7.1.  SASL Registration . . . . . . . . . . . . . . . . . . . .  17
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  18
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  19
   Appendix A.  Acknowlegements  . . . . . . . . . . . . . . . . . .  19
   Appendix B.  Document History . . . . . . . . . . . . . . . . . .  20
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  23







Mills, et al.             Expires July 24, 2015                 [Page 2]


Internet-Draft                 SASL OAuth                   January 2015


1.  Introduction

   OAuth 1.0a [RFC5849] and OAuth 2.0 [RFC6749] are protocol frameworks
   that enable a third-party application to obtain limited access to a
   protected resource, either on behalf of a resource owner by
   orchestrating an approval interaction, or by allowing the third-party
   application to obtain access on its own behalf.

   The core OAuth 2.0 specification [RFC6749] specifies the interaction
   between the OAuth client and the authorization server; it does not
   define the interaction between the OAuth client and the resource
   server for the access to a protected resource using an Access Token.
   Instead, the OAuth client to resource server interaction is described
   in separate specifications, such as the bearer token specification
   [RFC6750].  OAuth 1.0a included the protocol specification for the
   communication between the OAuth client and the resource server in
   [RFC5849].

   The main use cases for OAuth 2.0 and OAuth 1.0a have so far focused
   on an HTTP-based [RFC2616] environment only.  This document
   integrates OAuth 1.0a and OAuth 2.0 into non-HTTP-based applications
   using the integration into SASL.  Hence, this document takes
   advantage of the OAuth protocol and its deployment base to provide a
   way to use the Simple Authentication and Security Layer (SASL)
   [RFC4422] to gain access to resources when using non-HTTP-based
   protocols, such as the Internet Message Access Protocol (IMAP)
   [RFC3501] and the Simple Mail Transfer Protocol (SMTP) [RFC5321],
   which is what this memo uses in the examples.

   To illustrate the impact of integrating this specification into an
   OAuth-enabled application environment, Figure 1 shows the abstract
   message flow of OAuth 2.0 [RFC6749].  As indicated in the figure,
   this document impacts the exchange of messages (E) and (F) since SASL
   is used for interaction between the client and the resource server
   instead of HTTP.
















Mills, et al.             Expires July 24, 2015                 [Page 3]


Internet-Draft                 SASL OAuth                   January 2015


                                                              ----+
   +--------+                                  +---------------+  |
   |        |--(A)-- Authorization Request --->|   Resource    |  |
   |        |                                  |     Owner     |  |Plain
   |        |<-(B)------ Access Grant ---------|               |  |OAuth
   |        |                                  +---------------+  |2.0
   |        |                                                     |
   |        |         Client Credentials &     +---------------+  |
   |        |--(C)------ Access Grant -------->| Authorization |  |
   | Client |                                  |     Server    |  |
   |        |<-(D)------ Access Token ---------|               |  |
   |        |      (w/ Optional Refresh Token) +---------------+  |
   |        |                                                 ----+
   |        |                                                 ----+
   |        |                                  +---------------+  |
   |        |                                  |               |  |OAuth
   |        |--(E)------ Access Token -------->|    Resource   |  |over
   |        |                                  |     Server    |  |SASL
   |        |<-(F)---- Protected Resource -----|               |  |
   |        |                                  |               |  |
   +--------+                                  +---------------+  |
                                                              ----+

                     Figure 1: OAuth 2.0 Protocol Flow

   The Simple Authentication and Security Layer (SASL) is a framework
   for providing authentication and data security services in
   connection-oriented protocols via replaceable authentication
   mechanisms.  It provides a structured interface between protocols and
   mechanisms.  The resulting framework allows new protocols to reuse
   existing authentication protocols and allows old protocols to make
   use of new authentication mechanisms.  The framework also provides a
   protocol for securing subsequent exchanges within a data security
   layer.

   When OAuth is integrated into SASL the high-level steps are as
   follows:

      (A) The client requests authorization from the resource owner.
      The authorization request can be made directly to the resource
      owner (as shown), or preferably indirectly via the authorization
      server as an intermediary.

      (B) The client receives an authorization grant which is a
      credential representing the resource owner's authorization,
      expressed using one of the grant types defined in [RFC6749] or
      [RFC5849] or using an extension grant type.  The authorization




Mills, et al.             Expires July 24, 2015                 [Page 4]


Internet-Draft                 SASL OAuth                   January 2015


      grant type depends on the method used by the client to request
      authorization and the types supported by the authorization server.

      (C) The client requests an access token by authenticating with the
      authorization server and presenting the authorization grant.

      (D) The authorization server authenticates the client and
      validates the authorization grant, and if valid issues an access
      token.

      (E) The client requests the protected resource from the resource
      server and authenticates by presenting the access token.

      (F) The resource server validates the access token, and if valid,
      indicates a successful authentication.

   Again, steps (E) and (F) are not defined in [RFC6749] (but are
   described in, for example, [RFC6750] for the OAuth Bearer Token
   instead) and are the main functionality specified within this
   document.  Consequently, the message exchange shown in Figure 1 is
   the result of this specification.  The client will generally need to
   determine the authentication endpoints (and perhaps the service
   endpoints) before the OAuth 2.0 protocol exchange messages in steps
   (A)-(D) are executed.  The discovery of the resource owner,
   authorization server endpoints, and client registration are outside
   the scope of this specification.  The client must discover the
   authorization endpoints using a discovery mechanism such as OpenID
   Connect Discovery [OpenID.Discovery] or Webfinger using host-meta
   [RFC7033].  Once credentials are obtained the client proceeds to
   steps (E) and (F) defined in this specification.  Authorization
   endpoints MAY require client registration and generic clients SHOULD
   support the Dynamic Client Registration protocol
   [I-D.ietf-oauth-dyn-reg].

   OAuth 1.0 follows a similar model but uses a different terminology
   and does not separate the resource server from the authorization
   server.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   The reader is assumed to be familiar with the terms used in the OAuth
   2.0 specification [RFC6749] and SASL [RFC4422].





Mills, et al.             Expires July 24, 2015                 [Page 5]


Internet-Draft                 SASL OAuth                   January 2015


   In examples, "C:" and "S:" indicate lines sent by the client and
   server respectively.  Line breaks have been inserted for readability.

   Note that the IMAP SASL specification requires base64 encoding, see
   Section 4 of [RFC4648], not this memo.

3.  OAuth SASL Mechanism Specifications

   SASL is used as an authentication framework in a variety of
   application layer protocols.  This document defines the following
   SASL mechanisms for usage with OAuth:



      OAUTHBEARER:  OAuth 2.0 bearer tokens, as described in [RFC6750].
         RFC 6750 uses Transport Layer Security (TLS) to secure the
         protocol interaction between the client and the resource
         server.

      OAUTH10A:  OAuth 1.0a MAC tokens (using the HMAC-SHA1 keyed
         message digest), as described in Section 3.4.2 of [RFC5849].

   New extensions may be defined to add additional OAuth Access Token
   Types.  Such a new SASL OAuth mechanism can be added by simply
   registering the new name(s) and citing this specification for the
   further definition.

   These mechanisms are client initiated and lock-step, the server
   always replying to a client message.  In the case where the client
   has and correctly uses a valid token the flow is:

   1.  Client sends a valid and correct initial client response.

   2.  Server responds with a successful authentication.

   In the case where authentication fails the server sends an error
   result, then client MUST then send an additional message to the
   server in order to allow the server to finish the exchange.  Some
   protocols and common SASL implementations do not support both sending
   a SASL message and finalizing a SASL negotiation.  The additional
   client message in the error case deals with this problem.  This
   exchange is:

   1.  Client sends an invalid initial client response.

   2.  Server responds with an error message.

   3.  Client sends a dummy client response.



Mills, et al.             Expires July 24, 2015                 [Page 6]


Internet-Draft                 SASL OAuth                   January 2015


   4.  Server fails the authentication.

3.1.  Initial Client Response

   Client responses are a GS2 [RFC5801] header followed by zero or more
   key/value pairs, or may be empty.  The gs2-header is defined here for
   compatibility with GS2 if a GS2 mechanism is formally defined, but
   this document does not define one.  These key/value pairs take the
   place of the corresponding HTTP headers and values to convey the
   information necessary to complete an OAuth style HTTP authorization.
   Unknown key/value pairs MUST be ignored by the server.  The ABNF
   [RFC5234] syntax is:


     kvsep          = %x01
     key            = 1*(ALPHA)
     value          = *(VCHAR / SP / HTAB / CR / LF )
     kvpair         = key "=" value kvsep
   ;;gs2-header     = See RFC 5801
     client_resp    = (gs2-header kvsep 0*kvpair kvsep) / kvsep

   The GS2 header MAY include the user name associated with the resource
   being accessed, the "authzid".  It is worth noting that application
   protocols are allowed to require an authzid, as are specific server
   implementations.

   The client response consisting of only a single kvsep is used only
   when authentication fails, and is only valid in that context.  If
   sent as the first message from the client the server MAY simply fail
   the authentication without returning discovery information since
   there is no user or server name indication.

   The following keys and corresponding values are defined in the client
   response:



      auth (REQUIRED):  The payload that would be in the HTTP
         Authorization header if this OAuth exchange was being carried
         out over HTTP.

      host:  Contains the host name to which the client connected.  In
         an HTTP context this is the value of the HTTP Host header.

      port:  Contains the port number represented as a decimal positive
         integer string without leading zeros to which the client
         connected.




Mills, et al.             Expires July 24, 2015                 [Page 7]


Internet-Draft                 SASL OAuth                   January 2015


   For OAuth token types such as OAuth 1.0a that use keyed message
   digests the client MUST send host and port number key/values, and the
   server MUST fail an authorization request requiring keyed message
   digests that are not accompanied by host and port values.  In OAuth
   1.0a for example, the so-called "signature base string calculation"
   includes the reconstructed HTTP URL.

3.1.1.  Reserved Key/Values

   In these mechanisms values for path, query string and post body are
   assigned default values.  OAuth authorization schemes MAY define
   usage of these in the SASL context and extend this specification.
   For OAuth Access Token Types that include a keyed message digest of
   the request the default values MUST be used unless explicit values
   are provided in the client response.  The following key values are
   reserved for future use:



      mthd (RESERVED):  HTTP method, the default value is "POST".

      path (RESERVED):  HTTP path data, the default value is "/".

      post (RESERVED):  HTTP post data, the default value is "".

      qs (RESERVED):  The HTTP query string, the default value is "".

3.2.  Server's Response

   The server validates the response according the specification for the
   OAuth Access Token Types used.  If the OAuth Access Token Type
   utilizes a keyed message digest of the request parameters then the
   client must provide a client response that satisfies the data
   requirements for the scheme in use.

   The server responds to a successfully verified client message by
   completing the SASL negotiation.  The authenticated identity reported
   by the SASL mechanism is the identity securely established for the
   client with the OAuth credential.  The application, not the SASL
   mechanism, based on local access policy determines whether the
   identity reported by the mechanism is allowed access to the requested
   resource.  Note that the semantics of the authorization identity is
   specified by the SASL framework [RFC4422].








Mills, et al.             Expires July 24, 2015                 [Page 8]


Internet-Draft                 SASL OAuth                   January 2015


3.2.1.  OAuth Identifiers in the SASL Context

   In the OAuth framework the client may be authenticated by the
   authorization server and the resource owner is authenticated to the
   authorization server.  OAuth access tokens may contain information
   about the authentication of the resource owner and about the client
   and may therefore make this information accessible to the resource
   server.

   If both identifiers are needed by an application the developer will
   need to provide a way to communicate that from the SASL mechanism
   back to the application.

3.2.2.  Server Response to Failed Authentication

   For a failed authentication the server returns a JSON [RFC7159]
   formatted error result, and fails the authentication.  The error
   result consists of the following values:



      status (REQUIRED):  The authorization error code.  Valid error
         codes are defined in the IANA "OAuth Extensions Error Registry"
         specified in the OAuth 2 core specification.

      scope (OPTIONAL):  An OAuth scope which is valid to access the
         service.  This may be empty which implies that unscoped tokens
         are required, or a scope value.  If a scope is specified then a
         single scope is preferred, use of a space separated list of
         scopes is NOT RECOMMENDED.

      openid-configuration (OPTIONAL):  The URL for a document following
         the OpenID Provider Configuration Information schema as
         described in OpenID Connect Discovery (OIDCD)
         [OpenID.Discovery] section 3 that is appropriate for the user.
         As specified in OIDCD this will have the "https" URL scheme.
         This document MUST have all OAuth related data elements
         populated.  The server MAY return different URLs for users in
         different domains and the client SHOULD NOT cache a single
         returned value and assume it applies for all users/domains that
         the server suports.  The returned discovery document SHOULD
         have all data elements required by the OpenID Connect Discovery
         specification populated.  In addition, the discovery document
         SHOULD contain the 'registration_endpoint' element to learn
         about the endpoint to be used with the Dynamic Client
         Registration protocol [I-D.ietf-oauth-dyn-reg] to obtain the
         minimum number of parameters necessary for the OAuth protocol




Mills, et al.             Expires July 24, 2015                 [Page 9]


Internet-Draft                 SASL OAuth                   January 2015


         exchange to function.  Another comparable discovery or client
         registration mechanism MAY be used if available.

         The use of the 'offline_access' scope, as defined in
         [OpenID.Core] is RECOMMENDED to give clients the capability to
         explicitly request a refresh token.

   If the resource server provides a scope then the client MUST always
   request scoped tokens from the token endpoint.  If the resource
   server provides no scope to the client then the client SHOULD presume
   an empty scope (unscoped token) is required to access the resource.

   Since clients may interact with a number of application servers, such
   as email servers and XMPP servers, they need to have a way to
   determine whether dynamic client registration has been performed
   already and whether an already available refresh token can be re-used
   to obtain an access token for the desired resource server.  This
   specification RECOMMENDs that a client uses the information in the
   'iss' element defined in OpenID Connect Core [OpenID.Core] to make
   this determination.

3.2.3.  Completing an Error Message Sequence

   Section 3.6 of SASL [RFC4422] explicitly prohibits additional
   information in an unsuccessful authentication outcome.  Therefore,
   the error message is sent in a normal message.  The client MUST then
   send either an additional client response consisting of a single %x01
   (control A) character to the server in order to allow the server to
   finish the exchange or send a SASL cancellation token as generally
   defined in section 3.5 of SASL [RFC4422].  A specific example of a
   cancellation token can be found in IMAP [RFC3501] section 6.2.2.

3.3.  OAuth Access Token Types using Keyed Message Digests

   OAuth Access Token Types may use keyed message digests and the client
   and the resource server may need to perform a cryptographic
   computation for integrity protection and data origin authentication.

   OAuth is designed for access to resources identified by URIs.  SASL
   is designed for user authentication, and has no facility for more
   fine-grained access control.  In this specification we require or
   define default values for the data elements from an HTTP request
   which allow the signature base string to be constructed properly.
   The default HTTP path is "/" and the default post body is empty.
   These atoms are defined as extension points so that no changes are
   needed if there is a revision of SASL which supports more specific
   resource authorization, e.g., IMAP access to a specific folder or FTP
   access limited to a specific directory.



Mills, et al.             Expires July 24, 2015                [Page 10]


Internet-Draft                 SASL OAuth                   January 2015


   Using the example in the OAuth 1.0a specification as a starting
   point, on an IMAP server running on port 143 and given the OAuth 1.0a
   style authorization request (with %x01 shown as ^A and line breaks
   added for readability) below:

   n,a=user@example.com,^A
   host=example.com^A
   port=143^A
   auth=OAuth realm="Example",
              oauth_consumer_key="9djdj82h48djs9d2",
              oauth_token="kkk9d7dh3k39sjv7",
              oauth_signature_method="HMAC-SHA1",
              oauth_timestamp="137131201",
              oauth_nonce="7d8f3e4a",
              oauth_signature="Tm90IGEgcmVhbCBzaWduYXR1cmU"^A^A

   The signature base string would be constructed per the OAuth 1.0
   specification [RFC5849] with the following things noted:

   o  The method value is defaulted to POST.

   o  The scheme defaults to be "http", and any port number other than
      80 is included.

   o  The path defaults to "/".

   o  The query string defaults to "".

   In this example the signature base string with line breaks added for
   readability would be:

   POST&http%3A%2F%2Fexample.com:143%2F&oauth_consumer_key%3D9djdj82h4
   8djs9d2%26oauth_nonce%3D7d8f3e4a%26oauth_signature_method%3DHMAC-SH
   A1%26oauth_timestamp%3D137131201%26oauth_token%3Dkkk9d7dh3k39sjv7

4.  Examples

   These examples illustrate exchanges between IMAP and SMTP clients and
   servers.  All IMAP examples use SASL-IR [RFC4959] and send payload in
   the initial client response.  The Bearer Token examples assume
   encrypted transport, if the underlying connection is not already TLS
   then STARTTLS MUST be used as TLS is required in the Bearer Token
   specification.

   Note to implementers: The SASL OAuth method names are case
   insensitive.  One example uses "Bearer" but that could as easily be
   "bearer", "BEARER", or "BeArEr".




Mills, et al.             Expires July 24, 2015                [Page 11]


Internet-Draft                 SASL OAuth                   January 2015


4.1.  Successful Bearer Token Exchange

   This example shows a successful OAuth 2.0 bearer token exchange in
   IMAP.  Note that line breaks are inserted for readability.  The
   underlying TLS establishment is not shown but is required for using
   Bearer Tokens per that specification.

   S: * OK IMAP4rev1 Server Ready
   C: t0 CAPABILITY
   S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR
   S: t0 OK Completed
   C: t1 AUTH OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2
         VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9QmVhcmVyIHZGOWRmdDRxb
         VRjMk52YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQEB
   S: t1 OK SASL authentication succeeded

   As required by IMAP [RFC3501], the payloads are base64-encoded.  The
   decoded initial client response (with %x01 represented as ^A and long
   lines wrapped for readability) is:

   n,a=user@example.com,^Ahost=server.example.com^Aport=143^A
   auth=Bearer vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg==^A^A

   The same credential used in an SMTP exchange is shown below.  Note
   that line breaks are inserted for readability, and that the SMTP
   protocol terminates lines with CR and LF characters (ASCII values
   0x0D and 0x0A), these are not displayed explicitly in the example.
   Again this example assumes that TLS is already established per the
   Bearer Token specification requirements.

   [connection begins]
   S: 220 mx.example.com ESMTP 12sm2095603fks.9
   C: EHLO sender.example.com
   S: 250-mx.example.com at your service,[172.31.135.47]
   S: 250-SIZE 35651584
   S: 250-8BITMIME
   S: 250-AUTH LOGIN PLAIN OAUTHBEARER
   S: 250-ENHANCEDSTATUSCODES
   S: 250-STARTTLS
   S: 250 PIPELINING
   [Negotiate TLS...]
   C: t1 AUTH OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c
         2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9QmVhcmVyIHZGOWRmdDR
         xbVRjMk52YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQEB
   S: 235 Authentication successful.
   [connection continues...]





Mills, et al.             Expires July 24, 2015                [Page 12]


Internet-Draft                 SASL OAuth                   January 2015


4.2.  Successful OAuth 1.0a Token Exchange

   This IMAP example shows a successful OAuth 1.0a token exchange.  Note
   that line breaks are inserted for readability.  This example assumes
   that TLS is already established.  Signature computation is discussed
   in Section 3.3.

   S: * OK IMAP4rev1 Server Ready
   C: t0 CAPABILITY
   S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER OAUTH10A SASL-IR
   S: t0 OK Completed
   C: t1 AUTH OAUTH10A bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9ZXhhb
         XBsZS5jb20BcG9ydD0xNDMBYXV0aD1PQXV0aCByZWFsbT0iRXhhbXBsZSIsb2F1
         dGhfY29uc3VtZXJfa2V5PSI5ZGpkajgyaDQ4ZGpzOWQyIixvYXV0aF90b2tlbj0
         ia2trOWQ3ZGgzazM5c2p2NyIsb2F1dGhfc2lnbmF0dXJlX21ldGhvZD0iSE1BQy
         1TSEExIixvYXV0aF90aW1lc3RhbXA9IjEzNzEzMTIwMSIsb2F1dGhfbm9uY2U9I
         jdkOGYzZTRhIixvYXV0aF9zaWduYXR1cmU9IlRtOTBJR0VnY21WaGJDQnphV2R1
         WVhSMWNtVSUzRCIBAQ==
   S: t1 OK SASL authentication succeeded

   As required by IMAP [RFC3501], the payloads are base64-encoded.  The
   decoded initial client response (with %x01 represented as ^A and
   lines wrapped for readability) is:

   n,a=user@example.com,^A
   host=example.com^A
   port=143^A
   auth=OAuth realm="Example",
              oauth_consumer_key="9djdj82h48djs9d2",
              oauth_token="kkk9d7dh3k39sjv7",
              oauth_signature_method="HMAC-SHA1",
              oauth_timestamp="137131201",
              oauth_nonce="7d8f3e4a",
              oauth_signature="SSdtIGEgbGl0dGxlIHRlYSBwb3Qu"^A^A

4.3.  Failed Exchange

   This IMAP example shows a failed exchange because of the empty
   Authorization header, which is how a client can query for the needed
   scope.  Note that line breaks are inserted for readability.











Mills, et al.             Expires July 24, 2015                [Page 13]


Internet-Draft                 SASL OAuth                   January 2015


   S: * OK IMAP4rev1 Server Ready
   C: t0 CAPABILITY
   S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR
   S: t0 OK Completed
   C: t1 AUTH OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAW
         hvc3Q9c2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9AQE=
   S: + eyJzdGF0dXMiOiJpbnZhbGlkX3Rva2VuIiwic2NvcGUiOiJleGFtcGxl
        X3Njb3BlIiwib3BlbmlkLWNvbmZpZ3VyYXRpb24iOiJodHRwczovL2V4
        YW1wbGUuY29tLy53ZWxsLWtub3duL29wZW5pZC1jb25maWd1cmF0aW9u
        In0=
   C: AQ==
   S: t1 NO SASL authentication failed

   The decoded initial client response is:

   n,a=user@example.com,^Ahost=server.example.com^A
   port=143^Aauth=^A^A

   The decoded server error response is:

{
"status":"invalid_token",
"scope":"example_scope",
"openid-configuration":"https://example.com/.well-known/openid-configuration"
}

   The client responds with the required dummy response, "AQ==" is the
   base64 encoding of the ASCII value 0x01.  The same exchange using the
   IMAP specific method of cancelling an AUTHENTICATE command sends "*"
   and is shown below.

   S: * OK IMAP4rev1 Server Ready
   C: t0 CAPABILITY
   S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR IMAP4rev1
   S: t0 OK Completed
   C: t1 AUTH OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAW
         hvc3Q9c2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9AQE=
   S: + eyJzdGF0dXMiOiJpbnZhbGlkX3Rva2VuIiwic2NvcGUiOiJleGFtcGxl
        X3Njb3BlIiwib3BlbmlkLWNvbmZpZ3VyYXRpb24iOiJodHRwczovL2V4
        YW1wbGUuY29tLy53ZWxsLWtub3duL29wZW5pZC1jb25maWd1cmF0aW9u
        In0=
   C: *
   S: t1 NO SASL authentication failed








Mills, et al.             Expires July 24, 2015                [Page 14]


Internet-Draft                 SASL OAuth                   January 2015


4.4.  SMTP Example of a Failed Negotiation

   This example shows an authorization failure in an SMTP exchange.
   Note that line breaks are inserted for readability, and that the SMTP
   protocol terminates lines with CR and LF characters (ASCII values
   0x0D and 0x0A), these are not displayed explicitly in the example.
   TLS negotiation is not shown but as noted above it is required for
   the use of Bearer Tokens.

[connection begins]
S: 220 mx.example.com ESMTP 12sm2095603fks.9
C: EHLO sender.example.com
S: 250-mx.example.com at your service,[172.31.135.47]
S: 250-SIZE 35651584
S: 250-8BITMIME
S: 250-AUTH LOGIN PLAIN OAUTHBEARER
S: 250-ENHANCEDSTATUSCODES
S: 250 PIPELINING
C: AUTH OAUTHBEARER bix1c2VyPXNvbWV1c2VyQGV4YW1wbGUuY29tLAFhdXRoPUJlYXJl
       ciB2RjlkZnQ0cW1UYzJOdmIzUmxja0JoZEhSaGRtbHpkR0V1WTI5dENnPT0BAQ==
S: 334 eyJzdGF0dXMiOiI0MDEiLCJzY2hlbWVzIjoiYmVhcmVyIG1hYyIsInNjb3BlIjoia
       HR0cHM6Ly9tYWlsLmdvb2dsZS5jb20vIn0K
C: AQ==
S: 535-5.7.1 Username and Password not accepted. Learn more at
S: 535 5.7.1 http://support.example.com/mail/oauth
[connection continues...]

   The server returned an error message in the 334 SASL message, the
   client responds with the required dummy response, and the server
   finalizes the negotiation.

5.  Security Considerations

   OAuth 1.0a and OAuth 2 allows for a variety of deployment scenarios,
   and the security properties of these profiles vary.  As shown in
   Figure 1 this specification is aimed to be integrated into a larger
   OAuth deployment.  Application developers therefore need to
   understand the needs of their security requirements based on a threat
   assessment before selecting a specific SASL OAuth mechanism.  For
   OAuth 2.0 a detailed security document [RFC6819] provides guidance to
   select those OAuth 2.0 components that help to mitigate threats for a
   given deployment.  For OAuth 1.0a Section 4 of RFC 5849 [RFC5849]
   provides guidance specific to OAuth 1.0.

   This document specifies two SASL Mechanisms for OAuth and each comes
   with different security properties.





Mills, et al.             Expires July 24, 2015                [Page 15]


Internet-Draft                 SASL OAuth                   January 2015


   OAUTHBEARER:  This mechanism borrows from OAuth 2.0 bearer tokens
      [RFC6750].  It relies on the application using TLS to protect the
      OAuth 2.0 Bearer Token exchange; without TLS usage at the
      application layer this method is completely insecure.
      Consequently, TLS MUST be provided by the application when
      choosing this authentication mechanism.

   OAUTH10A:  This mechanism re-uses OAuth 1.0a MAC tokens (using the
      HMAC-SHA1 keyed message digest), as described in Section 3.4.2 of
      [RFC5849].  To compute the keyed message digest in the same way
      was in RFC 5839 this specification conveys additional parameters
      between the client and the server.  This SASL mechanism only
      supports client authentication.  If server-side authentication is
      desireable then it must be provided by the application underneath
      the SASL layer.  The use of TLS is strongly RECOMMENDED.

   Additionally, the following aspects are worth pointing out:

   An access token is not equivalent to the user's long term password.

      Care has to be taken when these OAuth credentials are used for
      actions like changing passwords (as it is possible with some
      protocols, e.g., XMPP [RFC6120]).  The resource server should
      ensure that actions taken in the authenticated channel are
      appropriate to the strength of the presented credential.

   Lifetime of the appliation sessions.

      It is possible that SASL will be authenticating a connection and
      the life of that connection may outlast the life of the access
      token used to establish it.  This is a common problem in
      application protocols where connections are long-lived, and not a
      problem with this mechanism per se.  Resource servers may
      unilaterally disconnect clients in accordance with the application
      protocol.

   Access tokens have a lifetime.

      Reducing the lifetime of an access token provides security
      benefits and OAuth 2.0 introduces refresh tokens to obtain new
      access token on the fly without any need for a human interaction.
      Additionally, a previously obtained access token might be revoked
      or rendered invalid at any time.  The client MAY request a new
      access token for each connection to a resource server, but it
      SHOULD cache and re-use valid credentials.






Mills, et al.             Expires July 24, 2015                [Page 16]


Internet-Draft                 SASL OAuth                   January 2015


6.  Internationalization Considerations

   The identifer asserted by the OAuth authorization server about the
   resource owner inside the access token may be displayed to a human.
   For example, when SASL is used in the context of IMAP the client may
   assert the resource owner's email address to the IMAP server for
   usage in an email-based application.  The identifier may therefore
   contain internationalized characters and an application needs to
   ensure that the mapping between the identifier provided by OAuth is
   suitable for use with the application layer protocol SASL is
   incorporated into.

   At the time of writing the standardization of the various claims in
   the access token (in JSON format) is still ongoing, see
   [I-D.ietf-oauth-json-web-token].  Once completed it will provide a
   standardized format for exchanging identity information between the
   authorization server and the resource server.

7.  IANA Considerations

7.1.  SASL Registration

   The IANA is requested to register the following SASL profile:

      SASL mechanism profile: OAUTHBEARER

      Security Considerations: See this document

      Published Specification: See this document

      For further information: Contact the authors of this document.

      Owner/Change controller: the IETF

      Note: None

   The IANA is requested to register the following SASL profile:

      SASL mechanism profile: OAUTH10A

      Security Considerations: See this document

      Published Specification: See this document

      For further information: Contact the authors of this document.

      Owner/Change controller: the IETF




Mills, et al.             Expires July 24, 2015                [Page 17]


Internet-Draft                 SASL OAuth                   January 2015


      Note: None

8.  References

8.1.  Normative References

   [OpenID.Core]
              Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
              C. Mortimore, "OpenID Connect Core 1.0", February 2014.

   [OpenID.Discovery]
              Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
              Connect Discovery 1.0", July 2011.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2244]  Newman, C. and J. Myers, "ACAP -- Application
              Configuration Access Protocol", RFC 2244, November 1997.

   [RFC3174]  Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
              (SHA1)", RFC 3174, September 2001.

   [RFC4422]  Melnikov, A. and K. Zeilenga, "Simple Authentication and
              Security Layer (SASL)", RFC 4422, June 2006.

   [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
              Encodings", RFC 4648, October 2006.

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

   [RFC5801]  Josefsson, S. and N. Williams, "Using Generic Security
              Service Application Program Interface (GSS-API) Mechanisms
              in Simple Authentication and Security Layer (SASL): The
              GS2 Mechanism Family", RFC 5801, July 2010.

   [RFC5849]  Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
              April 2010.

   [RFC6749]  Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
              6749, October 2012.

   [RFC6750]  Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
              Framework: Bearer Token Usage", RFC 6750, October 2012.



Mills, et al.             Expires July 24, 2015                [Page 18]


Internet-Draft                 SASL OAuth                   January 2015


   [RFC7159]  Bray, T., "The JavaScript Object Notation (JSON) Data
              Interchange Format", RFC 7159, March 2014.

8.2.  Informative References

   [I-D.ietf-oauth-dyn-reg]
              Richer, J., Jones, M., Bradley, J., Machulak, M., and P.
              Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
              draft-ietf-oauth-dyn-reg-22 (work in progress), January
              2015.

   [I-D.ietf-oauth-json-web-token]
              Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
              (JWT)", draft-ietf-oauth-json-web-token-32 (work in
              progress), December 2014.

   [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

   [RFC3501]  Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
              4rev1", RFC 3501, March 2003.

   [RFC4959]  Siemborski, R. and A. Gulbrandsen, "IMAP Extension for
              Simple Authentication and Security Layer (SASL) Initial
              Client Response", RFC 4959, September 2007.

   [RFC5321]  Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
              October 2008.

   [RFC6120]  Saint-Andre, P., "Extensible Messaging and Presence
              Protocol (XMPP): Core", RFC 6120, March 2011.

   [RFC6819]  Lodderstedt, T., McGloin, M., and P. Hunt, "OAuth 2.0
              Threat Model and Security Considerations", RFC 6819,
              January 2013.

   [RFC7033]  Jones, P., Salgueiro, G., Jones, M., and J. Smarr,
              "WebFinger", RFC 7033, September 2013.

Appendix A.  Acknowlegements

   The authors would like to thank the members of the Kitten working
   group, and in addition and specifically: Simon Josefson, Torsten
   Lodderstadt, Ryan Troll, Alexey Melnikov, Jeffrey Hutzelman, Nico
   Williams, Matt Miller, and Benjamin Kaduk.





Mills, et al.             Expires July 24, 2015                [Page 19]


Internet-Draft                 SASL OAuth                   January 2015


   This document was produced under the chairmanship of Alexey Melnikov,
   Tom Yu, Shawn Emery, Josh Howlett, Sam Hartman.  The supervising area
   director was Stephen Farrell.

Appendix B.  Document History

   [[ to be removed by RFC editor before publication as an RFC ]]

   -19

   o  Last call feedback agaiun.

   o  Clarified usage of TLS in examples and fixed them some more.
      Adding reference to RFC4422 and cancellation token and an example
      for that.

   -18

   o  Last call feedback round #5.  Fixed -17 change log.

   o  Corrected "issue" to "iss", other minor changes.

   -17

   o  Last call feedback again (WGLC #4).  eradicated comma splicing.
      Removed extra server message in example 4.3.

   o  Added recommendations for discovery and dynamic client
      registration support.

   -16

   o  Last call feedback again.  Primarily editorial changes.  Corrected
      examples.

   -15

   o  Last call feedack on the GS2 stuff being ripped out completely.

   o  Removed the "user" parameter and put stuff back into the
      gs2-header.  Call out that the authzid goes in the gs2-header with
      some prose about when it might be required.  Very comparable to
      -10.

   o  Added an OAuth 1.0A example explicitly.

   -14




Mills, et al.             Expires July 24, 2015                [Page 20]


Internet-Draft                 SASL OAuth                   January 2015


   o  Last call feedack on RFC citations needed, small editorial.

   o  Added the "user" parameter back, which was pulled when we started
      down the GS2 path.  Same language as -03.

   o  Defined a stub GS2 header to make sure that when the GS2 bride is
      defined for this that nothing will break when it actually starts
      to get populated.

   -13

   o  Changed affiliation.

   -12

   o  Removed -PLUS components from the specification.

   -11

   o  Removed GSS-API components from the specification.

   o  Updated security consideration section.

   -10

   o  Clarifications throughout the document in response to the feedback
      from Jeffrey Hutzelman.

   -09

   o  Incorporated review by Alexey and Hannes.

   o  Clarified the three OAuth SASL mechanisms.

   o  Updated references

   o  Extended acknowledgements

   -08

   o  Fixed the channel binding examples for p=$cbtype

   o  More tuning of the authcid language and edited and renamed 3.2.1.

   -07

   o  Struck the MUST langiage from authzid.




Mills, et al.             Expires July 24, 2015                [Page 21]


Internet-Draft                 SASL OAuth                   January 2015


   o

   -06

   o  Removed the user field.  Fixed the examples again.

   o  Added canonicalization language.

   o

   -05

   o  Fixed the GS2 header language again.

   o  Separated out different OAuth schemes into different SASL
      mechanisms.  Took out the scheme in the error return.  Tuned up
      the IANA registrations.

   o  Added the user field back into the SASL message.

   o  Fixed the examples (again).

   o

   -04

   o  Changed user field to be carried in the gs2-header, and made gs2
      header explicit in all cases.

   o  Converted MAC examples to OAuth 1.0a.  Moved MAC to an informative
      reference.

   o  Changed to sending an empty client response (single control-A) as
      the second message of a failed sequence.

   o  Fixed channel binding prose to refer to the normative specs and
      removed the hashing of large channel binding data, which brought
      mroe problems than it solved.

   o  Added a SMTP examples for Bearer use case.

   -03

   o  Added user field into examples and fixed egregious errors there as
      well.

   o  Added text reminding developers that Authorization scheme names
      are case insensitive.



Mills, et al.             Expires July 24, 2015                [Page 22]


Internet-Draft                 SASL OAuth                   January 2015


   -02

   o  Added the user data element back in.

   o  Minor editorial changes.

   -01

   o  Ripping out discovery.  Changed to refer to I-D.jones-appsawg-
      webfinger instead of WF and SWD older drafts.

   o  Replacing HTTP as the message format and adjusted all examples.

   -00

   o  Renamed draft into proper IETF naming format now that it's
      adopted.

   o  Minor fixes.

Authors' Addresses

   William Mills
   Microsoft

   Email: wimills@microsoft.com


   Tim Showalter

   Email: tjs@psaux.com


   Hannes Tschofenig
   ARM Ltd.
   110 Fulbourn Rd
   Cambridge  CB1 9NJ
   Great Britain

   Email: Hannes.tschofenig@gmx.net
   URI:   http://www.tschofenig.priv.at










Mills, et al.             Expires July 24, 2015                [Page 23]