L2VPN Working Group                           Dave Allan, Jeff Tantsura
Internet Draft                                                 Ericsson
Intended status: Standards Track                              Don Fedyk
Expires: April 2015                                                  HP
                                                            Ali Sajassi
                                                                  Cisco

                                                           October 2014


            Shortest Path Bridging, MAC mode Support over EVPN
                       draft-ietf-l2vpn-spbm-evpn-02


Abstract


   This document describes how Ethernet Shortest Path Bridging MAC mode
   (802.1aq) can be combined with EVPN in a way that interworks with
   PBB-PEs as described in the PBB-EVPN solution. This is achieved via
   operational isolation of each Ethernet network subtending an EVPN
   core while supporting full interworking between the different
   variations of Ethernet networks.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance
   with the provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet
   Engineering Task Force (IETF), its areas, and its working
   groups.  Note that other groups may also distribute working
   documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other
   documents at any time.  It is inappropriate to use Internet-
   Drafts as reference material or to cite them other than as "work
   in progress".

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on October 2014.

Copyright and License Notice



Allan et al.,             Expires April 2015                   [Page 1]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document. Please review these documents
   carefully, as they describe your rights and restrictions with
   respect to this document. Code Components extracted from this
   document must include Simplified BSD License text as described
   in Section 4.e of the Trust Legal Provisions and are provided
   without warranty as described in the Simplified BSD License.

Table of Contents

   1. Introduction...................................................3
   1.1. Authors......................................................3
   1.2. Requirements Language........................................3
   2. Conventions used in this document..............................3
   2.1. Terminology..................................................3
   3. Changes since previous version.................................4
   4. Solution Overview..............................................4
   5. Elements of Procedure..........................................5
   5.1. PE Configuration.............................................5
   5.2. DF Election..................................................6
   5.3. Control plane interworking ISIS-SPB to EVPN..................6
   5.4. Control plane interworking EVPN to ISIS-SPB..................7
   5.5. Data plane Interworking 802.1aq SPBM island or PBB-PE to
   EVPN..............................................................8
   5.6. Data plane Interworking EVPN to 802.1aq SPBM island..........8
   5.7. Data plane interworking EVPN to 802.1ah PBB-PE...............8
   5.8. Multicast Support............................................8
   6. Other Aspects..................................................8
   6.1. Flow Ordering................................................8
   6.2. Transit......................................................8
   7. Acknowledgements...............................................9
   8. Security Considerations........................................9
   9. IANA Considerations............................................9
   10. References....................................................9
   10.1. Normative References........................................9
   10.2. Informative References......................................9
   11. Authors' Addresses...........................................10







Allan et al.,             Expires April 2015                   [Page 2]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


1. Introduction

   This document describes how Ethernet Shortest Path Bridging MAC mode
   (802.1aq) along with PBB-PEs and PBBNs (802.1ah) can be supported by
   EVPN such that each island is operationally isolated while providing
   full L2 connectivity between them. Each island can use its own
   control plane instance and multi-pathing design, be it multiple ECT
   sets, or multiple spanning trees.

   The intention is to permit both past, current and emerging future
   versions of Ethernet to be seamlessly integrated to permit large
   scale, geographically diverse numbers of Ethernet end systems to be
   fully supported with EVPN as the unifying agent.

1.1. Authors

   David Allan, Jeff Tantsura, Don Fedyk, Ali Sajassi

1.2. Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC2119 [RFC2119].

2. Conventions used in this document

2.1. Terminology

      BEB: Backbone Edge Bridge
      B-MAC: Backbone MAC Address
      B-VID: Backbone VLAN ID
      CE: Customer Edge
      DF: Designated Forwarder
      ESI: Ethernet Segment Identifier
      EVPN: Ethernet VPN
      IB-BEB: A BEB that has both an I-component (customer layer VLAN
      aware bridge) and a B-component (backbone layer VLAN aware
      bridge)
      ISIS-SPB: IS-IS as extended for SPB
      I-SID: I-Component Service ID
      NLRI: Network Layer Reachability Information
      PBBN: Provider Backbone Bridged Network

Allan et al.,             Expires April 2015                   [Page 3]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


      PBB-PE: Co located 802.1ah BEB and EVPN PE
      PE: provider edge
      SPB: Shortest path bridging
      SPBM: Shortest path bridging MAC mode
      SPBM-PE: Co-located 802.1aq SPBM<->EVPN interworking function and
      EVPN PE

3. Changes since previous version

  1) References corrected/updated.

  2) Reference to draft-allan-mldp-evpn removed.

4. Solution Overview

The EVPN solution for 802.1aq SPBM incorporates control plane
interworking in the PE to map ISIS-SPB [RFC6329] information elements
into the EVPN NLRI information and vice versa. This requires each PE to
act both as an EVPN BGP speaker and as an ISIS-SPB edge node. Associated
with this are procedures for configuring the forwarding operations of
the PE such that an arbitrary number of EVPN subtending SPBM islands may
be interconnected without any topological or multipathing dependencies.
This model also permits PBB-PEs as defined in 0to be seamlessly
communicate with the SPB islands.

                         +--------------+
                         |              |
                         |              |
      +-----+     +----+ |              | +----+   +---+
      |     |-----|SPBM| |              | |PBB |---|CE2|
      |SPBM |     |PE1 | |   IP/MPLS    | |PE1 |   +---+
+---+ |NTWK1|     +----+ |   Network    | +----+
|CE1|-|     |            |              |
+---+ |     |     +----+ |              |
      |     |-----|SPBM| |              | +----+   +-----+
      +-----+     |PE2 | |              | |SPBM|   |SPBM | +---+
                  +----+ |              | |PE3 |---|NTWK2|-|CE3|
                         +--------------+ +----+   +-----+ +---+


Allan et al.,             Expires April 2015                   [Page 4]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


            Figure 1: PBB and SPBM EVPN Network

Each EVPN is identified by a route target. The route target identifies
the set of SPBM islands and PBB-PEs that are allowed to communicate.
Each SPBM island is administered to have an associated Ethernet Segment
ID (ESI) associated with it. This manifests itself as a set of Ethernet
segments, where each ESI is unique within the route target.
BGP acts as a common repository of the I-SID attachment points for the
set of subtending PEs/SPBM islands. This is in the form of B-MAC
address/I-SID/Tx-Rx-attribute tuples. BGP filters leaking I-SID
information into each SPBM island on the basis of locally registered
interest. If an SPBM island has no BEBs registering interest in an I-
SID, information about that I-SID from other SPBM islands, PBB-PEs or
PBBNs will not be leaked into the local ISIS-SPB routing system.
For each B-VID in an SPBM island, a single SPBM-PE is elected the
designated forwarder for the B-VID. An SPBM-PE may be a DF for more than
one B-VID. This is described further in section 5.2. The SPBM-PE
originates IS-IS advertisements as if it were an IB-BEB that proxies for
the other SPBM islands and PBB PEs in the EVPN defined by the route
target, but the PE typically will not actually host any I-components.
An SPBM-PE that is a DF for a B-VID strips the B-VID tag information
from frames relayed towards the EVPN. The DF also inserts the
appropriate B-VID tag information into frames relayed towards the SPBM
island on the basis of the local I-SID/B-VID bindings advertised in
ISIS-SPB.

5. Elements of Procedure

5.1. PE Configuration

   At SPBM island commissioning a PE is configured with:

   1) The route target for the service instance. Where a route target
      is defined as identifying the set of SPBM islands, PBBNs and PBB-
      PEs to be interconnected by the EVPN.

   2) The unique ESI for the SPBM island. Mechanisms for deriving a
      unique ESI for the SPBM island are for further study.

   And the following is configured as part of commissioning an ISIS-SPB
   node:




Allan et al.,             Expires April 2015                   [Page 5]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


   1) A Shortest Path Source ID (SPSourceID) used for algorithmic
      construction of multicast DA addresses. Note this is required for
      SPBM BEBs independent of the EVPN operation.

   2) The set of VLANs (identified by B-VIDs) used in the SPBM island
      and multi-pathing algorithm IDs to use. The set of B-VIDs and
      multi-pathing algorithms used may be different in different
      domains and the B-VID itself is removed for frames carried over
      the IP/MPLS network.

   A type-1 Route Distinguisher for the node can be auto-derived. This
   will be described in a future version of the document.

5.2. DF Election

   PEs self appoint in the role of DF for a B-VID for a given SPBM
   island. The procedure used is as per section 8.5 of [EVPN]
   "Designated Forwarder election".
   A PE that assumes the role of DF for a given DF is responsible for
   originating specific information into BGP from ISIS-SPB and vice
   versa. A PE that ceases to perform the role of DF for a given B-VID
   is responsible for withdrawing the associated information from BGP
   and ISIS-SPB respectively. The actual information exchanged is
   outlined in the following sections.

5.3. Control plane interworking ISIS-SPB to EVPN

   When a PE receives an SPBM service identifier and unicast address
   sub-TLV as part of an ISIS-SPB MT capability TLV it checks if it is
   the DF for the B-VID in the sub-TLV.

   If it is the DF, and there is new or changed information then a MAC
   advertisement route NLRI is created for each new I-SID in the sub-
   TLV.

   - the Route Distinguisher is set to that of the PE.

   - the ESI is that of the SPBM island.

   - the Ethernet tag ID contains the I-SID (including the Tx/Rx
     attributes). The encoding of I-SID information is as per figure 2.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1


Allan et al.,             Expires April 2015                   [Page 6]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |T|R| Reserved  |                 I-SID                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 2: I-SID encoding in the Ethernet tag-ID field

   - the MAC address is copied from the sub-TLV

   - an locally assigned MPLS label

   Similarly in the scenario where a PE became elected DF for a B-VID in
   an operating network, the IS-IS database would be processed in order
   to construct the NLRI information associated with the new role of the
   PE.

   If the BGP database has NLRI information for the I-SID, and this is
   the first instance of registration of interest in the I-SID from the
   SPB island, the NLRI information with that tag is processed to
   construct an updated set of SPBM service identifier and unicast
   address sub-TLVs to be advertised by the PE.

   The ISIS-SPB information is also used to keep current a local table
   indexed by I-SID to indicate the associated B-VID for processing of
   frames received from EVPN. When an I-SID is associated with more than
   one B-VID, only one entry is allowed in the table. Rules for
   preventing this are out of scope of this memo.

5.4. Control plane interworking EVPN to ISIS-SPB

   When a PE receives a BGP NLRI that is new information, it checks if
   it is the elected DF to communicate this information into ISIS-SPB by
   checking if the I-SID in the Ethernet Tag ID locally maps to the B-
   VID it is an elected DF for. Note that if no BEBs in the SPB island
   have advertised any interest in the I-SID, it will not be associated
   with any B-VID locally, and therefore not of interest. If the I-SID
   is of local interest to the SPBM island and the PE is the DF for the
   B-VID that that I-SID is locally mapped to, a SPBM service identifier
   and unicast address sub-TLV is constructed/updated for advertisement
   into ISIS-SPB.

   The NLRI information advertised into ISIS-SPB is also used to locally
   populate a forwarding table indexed by B-MAC+I-SID that points to the
   label stack to impose on the SPBM frame. The bottom label being that
   offered in the NLRI.



Allan et al.,             Expires April 2015                   [Page 7]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


5.5. Data plane Interworking 802.1aq SPBM island or PBB-PE to EVPN

   When an PE receives a frame from the SPBM island in a B-VID for which
   it is a DF, it looks up the B-MAC/I-SID information to determine the
   label stack to be added to the frame for forwarding in the EVPN. The
   PE strips the B-VID information from the frame, adds the label
   information to the frame and forwards the resulting MPLS packet.

5.6. Data plane Interworking EVPN to 802.1aq SPBM island

   When a PE receives a packet from the EVPN it may infer the B-VID to
   overwrite in the SPBM frame from the I-SID or by other means (such as
   via the bottom label in the MPLS stack).

   If the frame has a local multicast DA, it overwrites the SPsourceID
   in the frame with the local SPsourceID.

5.7. Data plane interworking EVPN to 802.1ah PBB-PE

   A PBB-PE actually has no subtending PBBN nor concept of B-VID so no
   frame processing is required.

   A PBB-PE is required to accept SPBM encoded multicast DAs as if they
   were 802.1ah encoded multicast DAs. The only information of interest
   being that it is a multicast frame, and the I-SID encoded in the
   lower 24 bits.

5.8. Multicast Support

   Not addressed by this memo.

6. Other Aspects

6.1. Flow Ordering

   When per I-SID multicast is implemented via PE replication, a stable
   network will preserve frame ordering between known unicast and
   broadcast/unknown/multicast traffic (e.g. race conditions will not
   exist). This cannot be guaranteed when multicast is used in the EVPN.

6.2. Transit

   Any PE that does not need to participate in the tandem calculations
   at the B-MAC layer may use the IS-IS overload bit to exclude SPBM
   tandem paths and behave as pure interworking platform.




Allan et al.,             Expires April 2015                   [Page 8]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


7. Acknowledgements

   The authors would like to thank Peter Ashwood-Smith, Martin Julien
   and Janos Farkas for their detailed review of this draft.

8. Security Considerations

   For a future version of this document.

9. IANA Considerations

   For a future version of this document.

10. References

10.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
          Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC6329] Fedyk et.al. "IS-IS Extensions Supporting IEEE 802.1aq
          Shortest Path Bridging", IETF RFC 6329, April 2012

[EVPN]    Aggarwal et.al. "BGP MPLS Based Ethernet VPN", IETF work
          in progress, draft-ietf-l2vpn-evpn-11, October 2014

10.2. Informative References

[802.1aq]
                 802.1aq(2012) IEEE Standard for Local and Metropolitan
           Area Networks: Bridges and Virtual Bridged Local Area
           Networks - Amendment 9: Shortest Path Bridging

[PBB-EVPN]  Sajassi et.al. "PBB E-VPN", IETF work in progress,
            draft-ietf-l2vpn-pbb-evpn-08, October 2014

[802.1Q]
                 802.1Q (2011) IEEE Standard for Local and metropolitan
           area networks--Media Access Control (MAC) Bridges and
           Virtual Bridged Local Area Networks











Allan et al.,             Expires April 2015                   [Page 9]


Internet-Draft      draft-ietf-l2vpn-spbm-evpn-02          October 2014


11. Authors' Addresses

   Dave Allan (editor)
   Ericsson
   300 Holger Way
   San Jose, CA  95134
   USA
   Email: david.i.allan@ericsson.com

   Jeff Tantsura
   Ericsson
   300 Holger Way
   San Jose, CA 95134
   Email: jeff.tantsura@ericsson.com

   Don Fedyk
   Hewlett-Packard
   153 Tayor Street
   Littleton, MA, 01460
   don.fedyk@hp.com

   Ali Sajassi
   Cisco
   170 West Tasman Drive
   San Jose, CA  95134, US
   Email: sajassi@cisco.com























Allan et al.,             Expires April 2015                  [Page 10]