LPWAN Working Group                                             A. Pelov
Internet-Draft                                                    Acklio
Intended status: Informational                                P. Thubert
Expires: November 19, 2021                                 Cisco Systems
                                                             A. Minaburo
                                                                  Acklio
                                                            May 18, 2021


      LPWAN Static Context Header Compression (SCHC) Architecture
                    draft-ietf-lpwan-architecture-00

Abstract

   This document defines the LPWAN SCHC architecture.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 19, 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.




Pelov, et al.           Expires November 19, 2021               [Page 1]


Internet-Draft             LPWAN Architecture                   May 2021


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  LPWAN Technologies and Profiles . . . . . . . . . . . . . . .   2
   3.  The Static Context Header Compression . . . . . . . . . . . .   3
   4.  SCHC Endpoints  . . . . . . . . . . . . . . . . . . . . . . .   3
   5.  SCHC Instances  . . . . . . . . . . . . . . . . . . . . . . .   4
   6.  SCHC Data Model . . . . . . . . . . . . . . . . . . . . . . .   5
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
   8.  IANA Consideration  . . . . . . . . . . . . . . . . . . . . .   7
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .   7
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
     10.1.  Normative References . . . . . . . . . . . . . . . . . .   7
     10.2.  Informative References . . . . . . . . . . . . . . . . .   8
     10.3.  URIs . . . . . . . . . . . . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

   The IETF LPWAN WG defined the necessary operations to enable IPv6
   over selected Low-Power Wide Area Networking (LPWAN) radio
   technologies. [rfc8376] presents an overview of those technologies.

   The Static Context Header Compression (SCHC) [rfc8724] technology is
   the core product of the IETF LPWAN working group. [rfc8724] defines a
   generic framework for header compression and fragmentation, based on
   a static context that is pre-installed on the SCHC endpoints.

   This document details the constitutive elements of a SCHC-based
   solution, and how the solution can be deployed.  It provides a
   general architecture for a SCHC deployment, positioning the required
   specifications, describing the possible deployment types, and
   indicating models whereby the rules can be distributed and installed
   to enable reliable and scalable operations.

2.  LPWAN Technologies and Profiles

   Because LPWAN technologies [rfc8376] have strict yet distinct
   constraints, e.g., in terms of maximum frame size, throughput, and/or
   directionality, a SCHC instance must be profiled to adapt to the
   specific necessities of the technology to which it is applied.

   Appendix D.  "SCHC Parameters" of [rfc8724] lists the information
   that an LPWAN technology-specific document must provide to profile
   SCHC for that technology.

   As an example, [rfc9011] provides the SCHC profile for LoRaWAN
   networks.



Pelov, et al.           Expires November 19, 2021               [Page 2]


Internet-Draft             LPWAN Architecture                   May 2021


3.  The Static Context Header Compression

   SCHC [rfc8724] specifies an extreme compression capability based on a
   state that must match on the compressor and decompressor side.  This
   state comprises a set of Compression/Decompression (C/D) rules.

   The SCHC Parser analyzes incoming packets and creates a list of
   fields that it matches against the compression rules.  The rule that
   matches best is used to compress the packet, and the rule identifier
   (RuleID) is transmitted together with the compression residue to the
   decompressor.  Based on the RuleID and the residue, the decompressor
   can rebuild the original packet and forward it in its uncompressed
   form over the Internet.

   [rfc8724] also provides a Fragmentation/Reassembly (F/R) capability
   to cope with the maximum frame size of a Link, which is extremely
   constrained in the case of an LPWAN network.

   If a SCHC-compressed packet is too large to be sent in a single Link-
   Layer PDU, the SCHC fragmentation can be applied on the compressed
   packet.  The process of SCHC fragmentation is similar to that of
   compression; the fragmentation rules that are programmed for this
   device are checked to find the most appropriate one, regarding the
   SCHC packet size, the link error rate, and the reliability level
   required by the application.

   The nature of a ruleID allows to determine if it is a compression or
   fragmentation rule.

4.  SCHC Endpoints

   Section 3 of [rfc8724] depicts a typical network architecture for an
   LPWAN network, simplified from that shown in [rfc8376] and reproduced
   in Figure 1.

    ()   ()   ()       |
     ()  () () ()     / \       +---------+
   () () () () () () /   \======|    ^    |             +-----------+
    ()  ()   ()     |           | <--|--> |             |Application|
   ()  ()  ()  ()  / \==========|    v    |=============|   Server  |
     ()  ()  ()   /   \         +---------+             +-----------+
    Dev            RGWs             NGW                      App

               Figure 1: Typical LPWAN Network Architecture

   Typically, an LPWAN network topology is star-oriented, which means
   that all packets between the same source-destination pair follow the
   same path from/to a central point.  In that model, highly constrained



Pelov, et al.           Expires November 19, 2021               [Page 3]


Internet-Draft             LPWAN Architecture                   May 2021


   Devices (Dev) exchange information with LPWAN Application Servers
   (Apps) through a central Network Gateway (NGW), which can be powered
   and is typically a lot less constrained than the Devices.  Because
   devices embed built-in applications, the traffic flows to be
   compressed are known in advance and the location of the C/D and F/R
   functions (e.g., at the Dev and NGW), and the associated rules, can
   be pre provisionned in the network .

   Then again, SCHC is very generic and its applicability is not limited
   to star-oriented deployments and/or to use cases where applications
   are very static and the state can provisionned in advance.
   [I-D.thubert-intarea-schc-over-ppp] describes an alternate deployment
   where the C/D and/or F/R operations are performed between peers of
   equal capabilities over a PPP [rfc2516] connection.  SCHC over PPP
   illustrates that with SCHC, the protocols that are compressed can be
   discovered dynamically and the rules can be fetched on-demand by both
   parties from the same Uniform Resource Name (URN) [rfc8141], ensuring
   that the peers use the exact same set of rules.

       +----------+  Wi-Fi /   +----------+                ....
       |    IP    |  Ethernet  |    IP    |            ..          )
       |   Host   +-----/------+  Router  +----------(   Internet   )
       | SCHC C/D |  Serial    | SCHC C/D |            (         )
       +----------+            +----------+               ...
                   <-- SCHC -->
                     over PPP

                    Figure 2: PPP-based SCHC Deployment

5.  SCHC Instances

   The rule database contains a set of rules that are specific per
   device.  There is thus a SCHC instance per pair of endpoints.
   [rfc8724] states that a SCHC instance obtains the rules to process C/
   D and F/R before the session starts, and that rules cannot be
   modified during the session.

   [rfc8724] was defined to compress IPv6 [rfc8200] and UDP; but SCHC
   really is a generic compression and fragmentation technology.  As
   such, SCHC is agnostic to which protocol it compresses and at which
   layer it is operated.  The C/D peers may be hosted by different
   entities for different layers, and the F/R operation may also be
   performed between different parties, or different sub-layers in the
   same stack, and/or managed by different organizations.

   If a protocol or a layer requires additional capabilities, it is
   always possible to document more specifically how to use SCHC in that
   context, or to specify additional behaviours.  For instance,



Pelov, et al.           Expires November 19, 2021               [Page 4]


Internet-Draft             LPWAN Architecture                   May 2021


   [I-D.ietf-lpwan-coap-static-context-hc] extends the compression to
   CoAP [RFC7252] and OSCORE [RFC8613].

   As represented figure Figure 3, the fragmentation and the compression
   of the IP and UDP headers may be operated by a network SCHC instance
   whereas the end-to-end compression of the application payload happens
   between the device and the application.  The compression of the
   application payload may be split in two instances to deal with the
   encrypted portion of the application PDU.

         (device)            (NGW)                              (App)

         +--------+                                           +--------+
  A S    |  CoAP  |                                           |  CoAP  |
  p C    |  inner |                                           |  inner |
  p H    +--------+                                           +--------+
  . C    |  SCHC  |                                           |  SCHC  |
         |  inner |   cryptographical boundary                |  inner |
 -._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._
  A S    |  CoAP  |                                           |  CoAP  |
  p C    |  outer |                                           |  outer |
  p H    +--------+                                           +--------+
  . C    |  SCHC  |                                           |  SCHC  |
         |  outer |   layer / functional boundary             |  outer |
 -._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._
  N      .  UDP   .                                           .  UDP   .
  e      ..........     ..................                    ..........
  t      .  IPv6  .     .      IPv6      .                    .  IPv6  .
  w S    ..........     ..................                    ..........
  o C    .  SCHC  .     .  SCHC  .       .                    .        .
  r H    ..........     ..........       .                    .        .
  k C    .  LPWAN .     . LPWAN  .       .                    .        .
         ..........     ..................                    ..........
             ((((LPWAN))))             ------   Internet  ------

           Figure 3: Different SCHC instances in a global system

   This document defines a generic architecture for SCHC that can be
   used at any of these levels.  The goal of the architectural document
   is to orchestrate the different protocols and data model defined by
   the LPWAN woeking group to design an operational and interoperable
   framework for allowing IP application over contrained networks.

6.  SCHC Data Model

   A SCHC instance, summarized in the Figure 4, implies C/D and/or F/R
   present in both end and that both ends are provisionned with the same
   set of rules.



Pelov, et al.           Expires November 19, 2021               [Page 5]


Internet-Draft             LPWAN Architecture                   May 2021


          (-------)                                (-------)
          ( Rules )                                ( Rules )
          (-------)                                (-------)
           . read                                   . read
           .                                        .
          +-------+                                +-------+
      <===| R & D |<===                        <===| C & F |<===
      ===>| C & F |===>                        ===>| R & D |===>
          +-------+                                +-------+
          +-------+

                    Figure 4: Summarized SCHC elements

   To be able to provision end-points from different vendors, a common
   rule representation is needed that expresses the SCHC rules in an
   interoperable fashion.  To that effect,
   [I-D.ietf-lpwan-schc-yang-data-model] defines a rule representation
   using the YANG [1] formalism.

   [I-D.ietf-lpwan-schc-yang-data-model] defines an YANG data model to
   represent the rules.  This enables the use of several protocols for
   rule management, such as NETCONF[RFC6241], RESTCONF[RFC8040], and
   CORECONF[I-D.ietf-core-comi].  NETCONF uses SSH, RESTCONF uses HTTPS,
   and CORECONF uses CoAP(s) as their respective transport layer
   protocols.  The data is represented in XML under NETCONF, in
   JSON[RFC8259] under RESTCONF and in CBOR[RFC8949] under CORECONF.

                     create
          (-------)  read   +=======+ *
          ( rules )<------->|Rule   |<--|-------->
          (-------)  update |Manager|   NETCONF, RESTCONF or CORECONF
             . read  delete +=======+   request
             .
          +-------+
      <===| R & D |<===
      ===>| C & F |===>
          +-------+

                    Figure 5: Summerized SCHC elements

   The Rule Manager (RM) is in charge of handling data derived from the
   YANG Data Model and apply changes to the rules database Figure 5.

   The RM is a application using the Internet to exchange information,
   therefore:

   o  for the network-level SCHC, the communication does not require
      routing.  Each of the end-points having an RM and both RMs can be



Pelov, et al.           Expires November 19, 2021               [Page 6]


Internet-Draft             LPWAN Architecture                   May 2021


      viewed on the same link, therefore wellknown Link Local addresses
      can be used to identify the device and the core RM.  L2 security
      MAY be deemed as sufficient, if it provides the necessary level of
      protection.

   o  for application-level SCHC, routing is involved and global IP
      addresses SHOULD be used.  End-to-end encryption is RECOMMENDED.

   Management messages can also be carried in the negotiation protocol
   as proposed in [I-D.thubert-intarea-schc-over-ppp].  The RM traffic
   may be itself compressed by SCHC, especially if CORECONF is used,
   [I-D.ietf-lpwan-coap-static-context-hc] can be used.

7.  Security Considerations

   SCHC is sensitive to the rules that could be abused to form arbitrary
   long messages or as a form of attack against the C/D and/or F/R
   functions, say to generate a buffer overflow and either modify the
   device or crash it.  It is thus critical to ensure that the rules are
   distributed in a fashion that is protected against tempering, e.g.,
   encrypted and signed.

8.  IANA Consideration

   This document has no request to IANA

9.  Acknowledgements

   The authors would like to thank (in alphabetic order):

10.  References

10.1.  Normative References

   [rfc8724]  Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
              Zuniga, "SCHC: Generic Framework for Static Context Header
              Compression and Fragmentation", RFC 8724,
              DOI 10.17487/RFC8724, April 2020,
              <https://www.rfc-editor.org/info/rfc8724>.

   [rfc9011]  Gimenez, O., Ed. and I. Petrov, Ed., "Static Context
              Header Compression and Fragmentation (SCHC) over LoRaWAN",
              RFC 9011, DOI 10.17487/RFC9011, April 2021,
              <https://www.rfc-editor.org/info/rfc9011>.







Pelov, et al.           Expires November 19, 2021               [Page 7]


Internet-Draft             LPWAN Architecture                   May 2021


10.2.  Informative References

   [I-D.ietf-core-comi]
              Veillette, M., Stok, P., Pelov, A., Bierman, A., and I.
              Petrov, "CoAP Management Interface (CORECONF)", draft-
              ietf-core-comi-11 (work in progress), January 2021.

   [I-D.ietf-lpwan-coap-static-context-hc]
              Minaburo, A., Toutain, L., and R. Andreasen, "LPWAN Static
              Context Header Compression (SCHC) for CoAP", draft-ietf-
              lpwan-coap-static-context-hc-19 (work in progress), March
              2021.

   [I-D.ietf-lpwan-schc-yang-data-model]
              Minaburo, A. and L. Toutain, "Data Model for Static
              Context Header Compression (SCHC)", draft-ietf-lpwan-schc-
              yang-data-model-04 (work in progress), February 2021.

   [I-D.thubert-intarea-schc-over-ppp]
              Thubert, P., "SCHC over PPP", draft-thubert-intarea-schc-
              over-ppp-03 (work in progress), April 2021.

   [rfc2516]  Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D.,
              and R. Wheeler, "A Method for Transmitting PPP Over
              Ethernet (PPPoE)", RFC 2516, DOI 10.17487/RFC2516,
              February 1999, <https://www.rfc-editor.org/info/rfc2516>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [rfc8141]  Saint-Andre, P. and J. Klensin, "Uniform Resource Names
              (URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,
              <https://www.rfc-editor.org/info/rfc8141>.







Pelov, et al.           Expires November 19, 2021               [Page 8]


Internet-Draft             LPWAN Architecture                   May 2021


   [rfc8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.

   [RFC8259]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
              Interchange Format", STD 90, RFC 8259,
              DOI 10.17487/RFC8259, December 2017,
              <https://www.rfc-editor.org/info/rfc8259>.

   [rfc8376]  Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
              Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
              <https://www.rfc-editor.org/info/rfc8376>.

   [RFC8613]  Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
              "Object Security for Constrained RESTful Environments
              (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
              <https://www.rfc-editor.org/info/rfc8613>.

   [RFC8949]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", STD 94, RFC 8949,
              DOI 10.17487/RFC8949, December 2020,
              <https://www.rfc-editor.org/info/rfc8949>.

10.3.  URIs

   [1] RFC7950

Authors' Addresses

   Alexander Pelov
   Acklio
   1137A avenue des Champs Blancs
   35510 Cesson-Sevigne Cedex
   France

   Email: a@ackl.io


   Pascal Thubert
   Cisco Systems
   45 Allee des Ormes - BP1200
   06254 Mougins - Sophia Antipolis
   France

   Email: pthubert@cisco.com





Pelov, et al.           Expires November 19, 2021               [Page 9]


Internet-Draft             LPWAN Architecture                   May 2021


   Ana Minaburo
   Acklio
   1137A avenue des Champs Blancs
   35510 Cesson-Sevigne Cedex
   France

   Email: ana@ackl.io












































Pelov, et al.           Expires November 19, 2021              [Page 10]