MPLS Working Group                       Ken-ichi Nagami (Toshiba Corp.)
INTERNET DRAFT                          Noritoshi Demizu (NAIST)
                                           Hiroshi Esaki (Univ. Tokyo)
                                        Yasuhiro Katsube (Toshiba Corp.)
                                         Paul Doolan (Ennovate Networks)
                                                              April 1999
                                                    Expires October 1999


                    VCID Notification over ATM link
                   <draft-ietf-mpls-vcid-atm-03.txt>

Status of this memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafrts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.


Abstract

   The ATM Label Switching Router (ATM-LSR) is one of the major
   applications of label switching. Because the ATM layer labels (VPI
   and VCI) associated with a VC rewritten with new value at every ATM
   switch nodes, it is not possible to use them to identify a VC in
   label mapping messages. The concept of Virtual Connection Identifier
   (VCID) is introduced to solve this problem.  VCID has the same value
   at both ends of a VC.  This document specifies the procedures for the
   communication of VCID values between neighboring ATM-LSRs that must
   occur in order to ensure this property.


1. Introduction

   Several label switching schemes have been proposed to integrate Layer
   2 and Layer 3.  The ATM Label Switching Router (ATM-LSR) is one of the
   major applications of label switching.

   In the case of ATM VCs, the VPI and VCI labels are, in the general
   case, rewritten with new values at every switch node through which

Nagami, et al.                                                  [Page 1]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

   the VC passes and cannot be used to provide end to end
   identification of a VC.

   In the context of MPLS 'stream', which are classes of packets that
   have some common characteristic that may be deduced by examination
   of the layer 3 header in the packets, are bound to layer 2 'labels'.
   We speak of stream being 'bound' to labels.  These bindings are
   conveyed between peer LSRs by means of a Label Distribution Protocol
   [LDP].

   In order to apply MPLS to ATM links, we need some way to identify ATM
   VCs in LDP mapping messages. In [VCID], an identifier called a
   Virtual Connection ID (VCID) is introduced. VCID has the same value
   at both ends of a VC.  This document specifies the procedures for
   the communication of VCID values between neighboring ATM-LSRs that
   must occur in order to ensure this property.


2. Overview of VCID Notification Procedures

2.1 VCID Notification procedures

   The ATM has several types of VCs (transparent point-to-point
   link/VP/PVC/SVC). A transparent point-to-point link is defined as one
   that has the same VPI/VCI label at both ends of a VC.  For example,
   two nodes are directly connected (i.e., without intervening ATM
   switches) or are connected through a VP with the same VPI value at
   both ends of the VP.

   There are two broad categories of VCID notification procedures;
   inband and outband. The categorization refers to the connection
   over which the messages of the VCID notification procedure are
   forwarded. In the case of the inband procedures, those messages are
   forwarded over the VC to which they refer. In contrast the out of
   band procedures transmit the messages over some other connection
   (than the VC to which they refer).

   We list below the various types of link and briefly mention the VCID
   notification procedures employed and the rational for that
   choice. The procedures themselves are discussed in detail in later
   sections.


   Transparent point-to-point link : no VCID notification
      VCID notification procedure is not necessary because the label
      (i.e., VPI/VCI) is the same at each end of the VC.

   VP : inband notification or VPID notification or no notification
    - Inband notification
      VCID notification is needed because the VPI at each end of the VC
      may not be the same. Inband VCID notification is used in this
      case.

    - VPID notification

Nagami, et al.                                                  [Page 2]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

      VCID notification is needed because the VPI at each end of the VC
      may not be the same. VPID notification is used in this case.

    - No notification
      If a node has only one VP to a neighboring node, VCID notification
      procedure is not mandatory. The VCI can be used as the VCID. This
      is because the VCI value is the same at each end of the VP.

   PVC : inband notification
      Inband VCID notification is used in this case because the labels
      at each end of the VC may not be the same.

   SVC : there are three possibilities
    - Outband notification
      If a signaling message has a field which is large enough to carry
      a VCID value (e.g., GIT [GIT]), then the VCID is carried directly
      in it.

    - Outband notification using a small-sized field
      If a signaling message has a field which is not large enough to
      carry a VCID value, this procedure is used.

    - Inband notification
      If a signaling message can not carry user information, this
      procedure is used.

      When an LSP is a point-to-multipoint VC and an ATM switch in an
      LSR is not capable of VC merge, it may cause problems in
      performance and quality of service.  When the LSR wants to add a
      new leaf to the LSP, it needs to split the active LSP temporarily
      to send an inband notification message.

2.2 VC direction

   A VC has a directionality.  The VCID procedure for a VC is always
   triggered from the upstream node of the VC, i.e., the upstream node
   notifies the downstream node of the VCID.

   If bidirectional use of a label switched VC is allowed, the label
   switched VC is said to be bidirectional.  In this case, two VCID
   procedures are taken, one for each direction.

   If bidirectional use of a label switched VC is not allowed, the label
   switched VC is said to be unidirectional.  In this case, only one
   VCID procedure is taken for the allowed direction.

   VC directionality is communicated through LDP.


3. VCID Notification Procedures

3.1 Inband Notification Procedures

3.1.1 Inband Notification for Point-to-point VC

Nagami, et al.                                                  [Page 3]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999


   VCID notification is performed by transmitting a control message
   through the VC newly established (by signalling or management) for
   use as an label switched path (LSP) [FRAME]. The procedure for VCID
   notification between two nodes A and B is detailed below.

   0. The node A establishes a VC to the destination node B. (by signalling
      or management)

   1. The node A selects a VCID value.

   2. The node A sends a VCID PROPOSE message which contains the VCID
      value and a message ID through the newly established VC to the
      node B.

   3. The node A establishes an association between the outgoing label
      (VPI/VCI) for the VC and the VCID value.

   4. The node B receives the message from the VC and establishes an
      association between the VCID in the message and the incoming
      label(VPI/VCI) for the VC. Until the node B receives the LDP
      Request message, the node B discards any packet received over the
      VC other than the VCID PROPOSE message.

   5. The node B sends an ACK message to the node A. This message
      contains the same VCID and message ID as specified in the received
      message. This message is sent through the VC for LDP.

   6. When node A receives the ACK message, it checks whether the VCID
      and the message ID in the message are the same as the registered
      ones. If they are the same, node A regards that node B has
      established the association between the VC and VCID.  Otherwise,
      the message is ignored. If the node A does not receive the ACK
      message with the expected message ID and VCID during a given
      period, the node A resends the VCID PROPOSE message to the node B.

   7. After receiving the proposer ACK message, the node A sends an LDP
      REQUEST message to the node B. It contains the message ID used for
      VCID PROPOSE.  When the node B receives the LDP REQUEST message,
      it regards that the node A has received the ACK correctly.  The
      message exchange using VCID PROPOSE, VCID ACK, and LDP REQUEST
      messages constitutes a 3-way handshake. The 3-way handshake
      mechanism is required since the transmission of VCID PROPOSE
      message is unreliable.  Once the 3-way handshake completes, the
      node B ignores all VCID PROPOSE messages received over the VC. The
      node B sends an LDP Mapping message, which contains the VCID value
      in the label TLV.

       Node A           Node B
         |                |
         |--------------->|     VCID PROPOSE
         |                |
         |<---------------|     VCID ACK
         |                |

Nagami, et al.                                                  [Page 4]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

         |--------------->|     LDP Label Request
         |                |
         |<---------------|     LDP Label Mapping


3.1.2 Inband notification for point-to-multipoint VC

   Current LDP specification does not support multicast. But the VCID
   notification procedure is defined for future use.  VCID notification
   is performed by sending a control message through the VC to be used
   as an LSP. The upstream node assigns the VCID value. The procedure by
   which it notifies the downstream node of that value is given
   below. The procedure is used when a new VC is created or a new leaf
   is added to the VC.

   First, the procedure for establishing the first VC is described.

   1. The upstream node assigns a VCID value for the VC.  When the VCID
      value is already assigned to a VC, it is used for VCID.

   2. The upstream node sends a message which contains the VCID value
      and a message ID through the VC used for an LSP.  This message is
      transferred to all leaf nodes.

   3. The upstream node establishes an association between the outgoing
      label for the VC and the VCID value.

   4. When the downstream nodes receiving the message already received
      the LDP REQUEST message for the VC, the received message is
      discarded.  Otherwise, the downstream nodes establish an
      association between the VCID in the message and the VC from which
      the message is received.

   5. The downstream nodes send an ACK message to the upstream node.

   6. After the upstream node receives the ACK messages, the upstream
      node and the downstream nodes share the VCID. The upstream node
      sends the LDP REQUEST message in order to make a 3-way handshake.


       Upstream        Downstream 1   Downstream 2
         |                |               |
         |-----------+--->|               |   VCID PROPOSE
         |           +------------------->|
         |                |               |
         |<---------------|               |
         |  VCID ACK      |               |
         |<-------------------------------|   VCID ACK


   Second, the procedure for adding a leaf to the existing
   point-to-multipoint VC is described.

   0. The upstream node adds the downstream node, using the ATM

Nagami, et al.                                                  [Page 5]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

      signaling.

   1. The VCID value which already assigned to the VC is used.

   2. The upstream node sends a message which contains the VCID value
      and a message ID through the VC used for an LSP.  This message is
      transferred to all leaf nodes.

   3. When the downstream nodes receiving the message already received
      the LDP REQUEST message for the VC, the received message is
      discarded.  Otherwise, the downstream nodes establish an
      association between the VCID in the message and the VC from which
      the message is received.

   4. After the upstream node receives the ACK messages, the upstream
      node and the downstream nodes share the VCID.  The upstream node
      sends the LDP REQUEST message in order to make a 3-way handshake.


3.2 Outband Notification using a small-sized field

   This method can be applied when a VC is established using an ATM
   signaling message and the message has a field which is not large
   enough to carry a VCID value.

   SETUP message of the ATM Forum UNI 3.1/4.0 has a 7-bit mandatory
   field for the user. This is a user specific field in the Layer 3
   protocol field in the BLLI IE (Broadband Low Layer Information
   Information Element).

   The BLLI value is used as a temporary identifier for a VC during a
   VCID notification procedure.  This mechanism is defined as "Outband
   Notification using a small-sized field" described in [VCID]. The BLLI
   value of a new VC must not be assigned to other VCs during the
   procedure to avoid identifier conflict.  When the association among
   the BLLI value, a VCID value, and the corresponding VC is
   established, the BLLI value can be reused for a new VC. VCID values
   can be assigned independently from BLLI values.

       Node A           Node B
         |                |
         |--------------->|     ATM Signaling with BLLI
         |<---------------|
         |                |
         |--------------->|     VCID PROPOSE with BLLI
         |                |
         |<---------------|     VCID ACK
         |                |
         |--------------->|     LDP Label Request
         |                |
         |<---------------|     LDP Label Mapping


   A point-to-multipoint VC can also be established using ADD_PARTY of

Nagami, et al.                                                  [Page 6]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

   the ATM Forum Signaling.  ADD_PARTY adds a new VC leaf to an existing VC
   or an existing VC tree.  In this procedure, the BLLI value of
   ADD_PARTY has to be the same value as that used to establish the
   first point-to-point VC of the tree.  The same BLLI value can be used
   in different VC trees only when these VC trees can not add a leaf at
   the same time. As a result, the BLLI value used in the signaling must
   be determined by the root node of the multicast tree.

   [note]
      BLLI value is unique at the sender node.  But BLLI value is not
      unique at the receiver node because multiple sender nodes may
      allocate the same BLLI value.  So, the receiver node must
      recognize BLLI value and the sender address.  ATM Signaling
      messages(SETUP and ADD_PARTY) carry both the BLLI and the sender
      ATM address.  The receiver node can realize which node sends the
      BLLI message.


3.2.1 Outband notification using a small-sized field for point-to-point VC

   This subsection describes procedures for establishing a VC and for
   notification of its VCID between neighboring LSRs for unicast
   traffic.  VC pool [VCPOOL] can be applied.

   The procedure employed when the upstream LSR assigns a VCID is as
   follows.

   1. An upstream LSR establishes a VC to the downstream LSR using ATM
      signaling and supplies a value in the BLLI field that it is not
      currently using for any other (incomplete) VCID notification
      transaction with this peer.

   2. The upstream LSR sends the VCID PROPOSE message through the VC for
      LDP to notify the downstream LSR of the association
      between the BLLI and VCID values.

   3. The downstream LSR establishes the association between the VC
      with the BLLI value and the VCID and sends an ACK message to the
      upstream LSR.

   4. After the upstream LSR receives the ACK message, it establishes
      the association between the VC and the VCID. The VC is ready to
      be used. At this time the BLLI value employed in this transaction
      is free for reuse.

   5. After VCID notification, the upstream node sends the LDP REQUEST
      message to the downstream node. The downstream node sends the LDP
      mapping message, which contains the VCID value in the label TLV of LDP.


3.2.2 Outband notification using a small-sized field
      for point-to-multipoint VC

   This subsection describes procedures for establishing the first VC

Nagami, et al.                                                  [Page 7]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

   for a multicast tree and for adding a new VC leaf to an existing VC
   tree including the notification of its VCID for a multicast stream
   using point-to-multipoint VCs.

   In this procedure, an upstream LSR determines both the VCID and BLLI
   value in the multicast case.  The reason that the BLLI value is
   determined by an upstream LSR is described above.

   First, the procedure for establishing the first VC is described.

   1. An upstream LSR establishes a VC by the ATM Forum Signaling between
      the downstream LSR with a unique BLLI value at this time.

   2. The upstream LSR notifies the downstream LSR of a paired BLLI
      value and VCID using a message dedicated for this purpose.

   3. The downstream LSR establishes the association between the VC with
      the BLLI value and the VCID and sends an ACK message to the
      upstream LSR.  If the VCID is used by some other VC between the
      upstream and downstream LSRs, the old VC is discarded.

   4. After the upstream LSR receives the ACK message, the VC is ready
      to be used and the BLLI value can be used for another VC.

   Second, the procedure for adding a leaf to the existing
   point-to-multipoint VC is described.

   1. The upstream LSR establishes a VC by the ATM Forum Signaling between
      its downstream LSR with the BLLI value that was used during the
      first signaling procedure.  If another VC is using the BLLI value
      at the same time, the upstream waits for the completion of the
      signaling procedure that is using this BLLI value.

   2. Go to step 2 of the procedure for the first VC.


3.3 Outband notification

   This method can be applied when a VC is established using a ATM
   signaling message and the message has a field (e.g., GIT [GIT]) which
   is large enough to carry a VCID value. Message format is described in
   [GIT]. After the VCID notification, the node A sends the LDP request
   message is sent to the node B. Then, the node B sends the LDP mapping
   message to the node A.

       Node A           Node B
         |                |
         |--------------->|   ATM signaling with VCID
         |<---------------|
         |                |
         |--------------->|     LDP Label Request
         |                |
         |<---------------|     LDP Label Mapping


Nagami, et al.                                                  [Page 8]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999


4 VPID Notification Procedure

   The approach that is used for the VCID notification procedure is also
   applicable to share the same identifier between both ends for a VP.
   VPID notification procedure is defined for this purpose.

   A distinct VPID notification procedure is performed for each
   direction of each VP.

   After the VPID notification is finished for a VP, a VCID of a VC in
   the VP is constructed with the VPID(MSB) and VCI(LSB) of the VC.  The
   VCID can be used by LDP without performing VCID notification
   procedure. The message sequence is given below.

   1. An upstream node sends the VPID PROPOSE message.
      In the case of bidirectional label switched VC, both the upstream
      and downstream nodes use VCI=33.  In the case of unidirectional
      label switched VC, the node which has larger LDP Identifier uses
      VCI=33 and the other node uses VCI=34.  Note that VCI=32, which is
      used for unlabeled packet transfer, is not used for VPID
      notification procedure so that the same encapsulation method can
      be applied for both VPID procedure and inband VCID procedure.

   2. The downstream node sends the VPID ACK message.

   3. The upstream node sends the LDP Label Request message.

   4. The downstream node sends the LDP Label Mapping message.


5 VCID Message Format
5.1 VCID Messages

   An LDP VCID message consists of the LDP [LDP] fixed header followed
   by one or more TLV. A VCID PROPOSE inband message and a VPID PROPOSE
   message are sent as a null encapsulation packet through a VC to be
   used as an LSP. There is only the label stack header before the LDP
   VCID PDU. A label value in the label stack entry [ENCAPS] for the
   VCID PROPOSE inband message and the VPID PROPOSE message are 4.
   Other messages are sent as TCP packets. This is the same as LDP.

   The VCID message type field is as follows:
        VCID Propose inband Message  = 0x0501
        VCID Propose Message         = 0x0502
        VCID ACK Message             = 0x0503
        VCID NACK Message            = 0x0504
        VPID Propose inband Message  = 0x0505
        VPID ACK Message             = 0x0506
        VPID NACK Message            = 0x0507


5.1.1 VCID Propose inband Message


Nagami, et al.                                                  [Page 9]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

   This message is sent as a null encapsulation packet with LDP header
   and label stack header through a VC to be used as an LSP. The label
   value is 4. The reserved label value is required because the
   downstream node may receive this message after receiving the LDP
   Label Request message in the case of point-to-multipoint VC. The
   downstream node must distinguish the VCID PROPOSE message from other
   messages and ignore the VCID PROPOSE message when the node already
   received the LDP Label Request message for the VC.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|VCID Inband Propose (0x0501) |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Message ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Label TLV                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Optional Parameters                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Message Id
     Four octet integer used to identify this message.

   Label TLV
     Label TLV contains VCID value. Type of label TLV is VCID(0x0203).


5.1.2 VCID Propose Message

   An LSR uses the VCID PROPOSE message for the VCID notification
   procedure of the outband notification using a small-sized field.
   This message is sent through the VC for the LDP.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|  VCID Propose (0x0502)      |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Message ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Label TLV                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Temporary ID TLV                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Optional Parameters                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Message ID
     Four octet integer used to identify this message.

   Label TLV
     Label TLV contains VCID value. Type of label TLV is VCID(0x0203).


Nagami, et al.                                                 [Page 10]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

   Temporary ID TLV
      The value carried in the user specific field in the layer 3
      protocol field in the BLLI ID in the ATM Forum UNI 3.1/4.0
      Type of label TLV is VCID temporary ID(0x0702).


5.1.3 VCID ACK Message

   An LSR send the VCID ACK message when the LSR accepts the VCID
   PROPOSE message.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|  VCID ACK     (0x0503)      |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Message ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Label TLV                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID Message ID                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Optional Parameters                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Message ID
     Four octet integer used to identify this message.

   Label TLV
      The label TLV contains the VCID value of the received VCID PROPOSE
      message. Type of label TLV is VCID(0x0203).

   VCID Message ID
     This value is the same as that of received VCID PROPOSE message.


5.1.4 VCID NACK Message

   An LSR send the VCID NACK message when the LSR does not accept the
   VCID PROPOSE message.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|  VCID NACK    (0x0504)      |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Message ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Label TLV                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID Message ID                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Optional Parameters                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Nagami, et al.                                                 [Page 11]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999


   Message ID
     Four octet integer used to identify this message.

   Label TLV
      The label TLV contains the VCID value of the received VCID PROPOSE
      message.  Type of label TLV is VCID(0x0203).

   VCID Message ID
     This value is the same as that of received VCID PROPOSE message.


5.1.5 VPID Propose inband Message

   This message is sent as a null encapsulation packet with LDP header
   and label stack header through a VC to be used as an LSP. The label
   value is 4.  The downstream node must distinguish the VPID PROPOSE
   message from other messages and ignore the VPID PROPOSE message when
   the node already received the LDP Label Request message for the VC.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|VPID Inband Propose (0x0505) |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Message ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VPID TLV                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Optional Parameters                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Message Id
     Four octet integer used to identify this message.

   VPID TLV
     VPID TLV contains VPID value. Type of label TLV is VPID(0x0703).


5.1.6 VPID ACK Message

   An LSR send the VPID ACK message when the LSR accepts the VPID
   PROPOSE message.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|  VPID ACK     (0x0506)      |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Message ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VPID TLV                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID Message ID                     |

Nagami, et al.                                                 [Page 12]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Optional Parameters                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Message ID
     Four octet integer used to identify this message.

   VPID TLV
      The VPID TLV contains the VPID value of the received VPID PROPOSE
      message.

   VCID Message ID
     This value is the same as that of received VCID PROPOSE message.


5.1.7 VPID NACK Message

   An LSR send the VPID NACK message when the LSR accepts the VPID
   PROPOSE message.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|  VPID NACK    (0x0507)      |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Message ID                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VPID TLV                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID Message ID                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Optional Parameters                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Message ID
     Four octet integer used to identify this message.

   VPID TLV
      The VPID TLV contains the VPID value of the received VPID PROPOSE
      message.

   VCID Message ID
     This value is the same as that of received VCID PROPOSE message.




5.2 Objects
5.2.1 VCID Label TLV

   An LSR uses VCID Label TLV to encode labels for use on the link which
   does not have the same data link label at both ends of a VC.

    0                   1                   2                   3

Nagami, et al.                                                 [Page 13]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|F|VCID Label   (0x0203)      |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                              VCID                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   VCID
      This is 4 byte VCID value.


5.2.2 VCID Message ID TLV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|F|VCID Message ID(0x0701)    |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       VCID Message ID                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   VCID Message ID
      This is 4 byte VCID Message ID


5.2.3 VCID Temporary ID TLV

   An LSR uses the VCID temporary ID TLV for the VCID notification
   procedure of the outband notification using a small-sized field.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|F| VCID Temporary ID (0x0702)|          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Temporary ID |
   +-+-+-+-+-+-+-+-+

   Temporary ID:
      The value carried in the user specific field in the layer 3
      protocol field in the BLLI ID in the ATM Forum UNI 3.1/4.0

5.2.4 VPID Label TLV

   An LSR uses VPID TLV for the VPID notification procedure.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |U|F|   VPID      (0x0703)      |          Length               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            VPID               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


Nagami, et al.                                                 [Page 14]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999

   VPID
      This is 2 byte VPID value.


Security Considerations

   Security issues are not discussed in this document.


Acknowledgments

   The authors would like to acknowledge the valuable technical comments
   of Yoshihiro Ohba, Shigeo Matsuzawa, Akiyoshi Mogi, Muneyoshi Suzuki,
   George Swallow and members of the LAST-WG of the WIDE Project.


References

   [VCID] N. Demizu, et al., "VCID: Virtual Connection Identifier",
      draft-demizu-mpls-vcid-01.txt, Oct. 1997

   [VCPOOL] N. Demizu, et al., "VC pool",
      draft-demizu-mpls-vcpool-00.txt, Oct. 1997

   [LDP] L. Andersson, et al., "LDP Specification",
      draft-ietf-mpls-ldp-03.txt, Jan. 1999

   [FRAME] R. Callon, et al., "A Framework for Multiprotocol Label
      Switching", draft-ietf-mpls-framework-02.txt, Nov. 1997

   [GIT] M. Suzuki, "The Assignment of the Information Field and
      Protocol Identifier in the Q.2941 Generic Identifier and Q.2957
      User-to-user Signaling for the Internet Protocol",
      draft-ietf-mpls-git-uus-02.txt, March 1999

   [ENCAPS] E. Rosen, et al., "MPLS Label Stack Encoding",
      draft-ietf-mpls-label-encaps-03.txt, Sep. 1998


Authors Information

   Ken-ichi Nagami
   Infomation & Communication Lab., Toshiba Corporation,
   3-1-1 Asahigaoka, Hino,
   Tokyo, 191-8555, Japan
   Phone: +81-42-585-3299
   Email: ken.nagami@toshiba.co.jp

   Noritoshi Demizu
   Graduate School of Information Science,
   Nara Institute of Science and Technology
   8916-5 Takayama, Ikoma, Nara 630-0101, Japan
   Phone: +81-743-72-5348
   Email: nori-d@is.aist-nara.ac.jp

Nagami, et al.                                                 [Page 15]


Internet Draft        draft-ietf-mpls-vcid-atm-03.txt         April 1999


   Hiroshi Esaki
   Computer Center, University of Tokyo,
   2-11-16 Yayoi, Bunkyo-ku,
   Tokyo, 113-8658, Japan
   Phone: +81-3-3812-1111
   Email: hiroshi@wide.ad.jp

   Yasuhiro Katsube
   Infomation & Communication Lab., Toshiba Corporation,
   3-1-1 Asahigaoka, Hino,
   Tokyo, 191-8555, Japan
   Phone: +81-42-585-3299
   Email: yasuhiro.katsube@toshiba.co.jp

   Paul Doolan
   Ennovate Networks
   330 Codman Hill Road
   Boxborough, MA
   Phone: 978-263-2002 x103
   Email: pdoolan@ennovatenetworks.com


































Nagami, et al.                                                 [Page 16]