[Search] [pdfized|bibtex] [Tracker] [WG] [Email] [Diff1] [Diff2] [Nits]

Versions: 01 rfc1783                                                    
draft-ietf-tftpexts-blksize-opt-01.txt        G. Malkin / Xylogics, Inc.
TFTP Blocksize Option                    A. Harkin / Hewlett Packard Co.
                                                            October 1994

                         TFTP Blocksize Option


   The Trivial File Transfer Protocol [1] is a simple, lock-step, file
   transfer protocol which allows a client to get or put a file onto a
   remote host.  One of its primary uses is the booting of diskless
   nodes on a Local Area Network.  TFTP is used because it is very
   simple to implement in a small node's limited ROM space.  However,
   the choice of a 512-byte blocksize is not the most efficient for use
   on a LAN whose MTU may 1500 bytes or greater.

   This document describes a TFTP option which allows the client and
   server to negotiate a blocksize more applicable to the network
   medium.  The TFTP Option Extension mechanism is described in [2].

Status of this Memo

   This document is an Internet-Draft.  Internet-Drafts are working
   documents of the Internet Engineering Task Force (IETF), its areas,
   and its working groups.  Note that other groups may also distribute
   working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   To learn the current status of any Internet-Draft, please check the
   "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
   Directories on ds.internic.net (US East Coast), nic.nordu.net
   (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific

Blocksize Option Specification

   The TFTP Read Request or Write Request packet is modified to include
   the blocksize option as follows:

Malkin & Harkin             Expires: 24Apr95                    [Page 1]

Internet Draft           TFTP Blocksize Option              October 1994

      |  opc  |filename| 0 |  mode  | 0 | blksize| 0 | #octets| 0 |

         The opcode field contains either a 1, for Read Requests, or 2,
         for Write Requests, as defined in [1].

         The name of the file to be read or written, as defined in [1].
         This is a NULL-terminated field.

         The mode of the file transfer: "netascii", "octet", or "mail",
         as defined in [1].  This is a NULL-terminated field.

         The Blocksize option, "blksize" (case in-sensitive).  This is a
         NULL-terminated field.

         The number of octets in a block, specified in ASCII.  Valid
         values range between "8" and "65464" octets, inclusive.  This
         is a NULL-terminated field.

   For example:

      |   1   | foobar | 0 | binary | 0 | blksize| 0 |  1432  | 0 |

   is a Read Request, for the file named "foobar", in binary transfer
   mode, with a block size of 1432 bytes (Ethernet MTU, less the UDP and
   IP header lengths).

   If the server is willing to accept the blocksize option, it sends an
   Option Acknowledgment (OACK) to the client.  The specified value must
   be less than or equal to the value specified by the client.  The
   client must then either use the size specified in the OACK, or send
   an ERROR packet, with error code 8, to terminate the transfer.

   The rules for determining the final packet are unchanged from [1].
   The reception of a data packet with a data length less than the
   negotiated blocksize is the final packet.  If the blocksize is
   greater than the size of the packet, the first packet is the final
   packet.  If amount of data to be transfered is an integral multiple
   of the blocksize, an extra data packet containing no data is sent to
   end the transfer.

Malkin & Harkin             Expires: 24Apr95                    [Page 2]

Internet Draft           TFTP Blocksize Option              October 1994

Proof of Concept

   Performance tests were run on the prototype implementation using a
   variety of block sizes.  The tests were run on a lightly loaded
   Ethernet, between two HP-UX 9000, in "octet" mode, on 2.25MB files.
   The average (5x) transfer times for paths with (g-time) and without
   (n-time) a intermediate gateway are graphed as follows:

        37 +      g
        35 +
        33 +
        31 +
        29 +
        27 +
           |             g              blocksize   n-time   g-time
        25 +                            ---------   ------   ------
      s    |       n                      512       23.85    37.05
      e 23 +                g            1024       16.15    25.65
      c    |                             1432       13.70    23.10
      o 21 +                             2048       10.90    16.90
      n    |                             4096        6.85     9.65
      d 19 +                             8192        4.90     6.15
      s    |
        17 +                    g
           |             n
        15 +
           |                n
        13 +
        11 +                    n
           |                           g
         9 +
         7 +                           n
           |                                  g
         5 +                                  n
         0 +------+------+--+---+------+------+---
                 512    1K  |  2K     4K     8K
                    blocksize (bytes)

Malkin & Harkin             Expires: 24Apr95                    [Page 3]

Internet Draft           TFTP Blocksize Option              October 1994

   The comparisons between transfer times (without a gateway) between
   the standard 512-byte blocksize and the negotiated blocksizes are:

      1024     2x   -32%
      1432   2.8x   -42%
      2048     4x   -54%
      4096     8x   -71%
      8192    16x   -80%

   As was anticipated, the transfer time decreases with an increase in
   blocksize.  The reason for the reduction in time is the reduction in
   the number of packets sent.  For example, by increasing the blocksize
   from 512 bytes to 1024 bytes, not only are the number of data packets
   halved, but the number of acknowledgement packets is also halved
   (along with the number of times the data transmitter must wait for an
   ACK).  A secondary effect is the efficiency gained by reducing the
   per-packet framing and processing overhead.

   Of course, if the blocksize exceeds the path MTU, IP fragmentation
   and reassembly will begin to add more overhead.  This will be more
   noticable the greater the number of gateways in the path.

Security Considerations

   Security issues are not discussed in this memo.


   [1]  Sollins, K., "The TFTP Protocol (Revision 2)", Request for
        Comments 1350 (STD 33), October 1992.

   [2]  Malkin, G., Harkin, A., "TFTP Option Extension", Internet Draft,
        draft-malkin-tftp-options-01.txt, September 1994.

Authors' Addresses

   Gary Scott Malkin
   Xylogics, Inc.
   53 Third Avenue
   Burlington, MA  01803

   Phone:  (617) 272-8140
   EMail:  gmalkin@xylogics.com

Malkin & Harkin             Expires: 24Apr95                    [Page 4]

Internet Draft           TFTP Blocksize Option              October 1994

   Art Harkin
   Internet Services Project
   Information Networks Division
   19420 Homestead Road MS 43LN
   Cupertino, CA  95014

   Phone: (408) 447-3755
   EMail: ash@cup.hp.com

Malkin & Harkin             Expires: 24Apr95                    [Page 5]