Diameter Maintenance and                                J. Korhonen, Ed.
Extensions (DIME)                                            TeliaSonera
Internet-Draft                                             H. Tschofenig
Intended status: Standards Track           Siemens Networks GmbH & Co KG
Expires: August 30, 2007                               February 26, 2007


         Quality of Service Parameters for RADIUS and Diameter
               draft-korhonen-dime-qos-parameters-00.txt

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on August 30, 2007.

Copyright Notice

   Copyright (C) The IETF Trust (2007).

Abstract

   This document defines a number of Quality of Service (QoS) parameters
   that can be reused for conveying QoS information within RADIUS and
   Diameter.

   The payloads used to carry these QoS parameters are opaque for the
   AAA client and the AAA server itself and interpreted by the
   respective Resource Management Function.



Korhonen & Tschofenig    Expires August 30, 2007                [Page 1]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


Table of Contents

   1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
   2.  Terminology and Abbreviations  . . . . . . . . . . . . . . . .  3
   3.  Parameter Overview . . . . . . . . . . . . . . . . . . . . . .  3
     3.1.  Traffic Model Parameter  . . . . . . . . . . . . . . . . .  3
     3.2.  Constraints Parameters . . . . . . . . . . . . . . . . . .  3
     3.3.  Traffic Handling Directives  . . . . . . . . . . . . . . .  5
     3.4.  Traffic Classifiers  . . . . . . . . . . . . . . . . . . .  5
   4.  Parameter Encoding . . . . . . . . . . . . . . . . . . . . . .  5
     4.1.  Header . . . . . . . . . . . . . . . . . . . . . . . . . .  5
     4.2.  TMOD-1 Parameter . . . . . . . . . . . . . . . . . . . . .  5
     4.3.  TMOD-2 Parameter . . . . . . . . . . . . . . . . . . . . .  6
     4.4.  Path Latency Parameter . . . . . . . . . . . . . . . . . .  7
     4.5.  Path Jitter Parameter  . . . . . . . . . . . . . . . . . .  7
     4.6.  Path PLR Parameter . . . . . . . . . . . . . . . . . . . .  8
     4.7.  Path PER Parameter . . . . . . . . . . . . . . . . . . . .  8
     4.8.  Slack Term> Parameter  . . . . . . . . . . . . . . . . . .  9
     4.9.  Preemption Priority amp; Defending Priority Parameters . .  9
     4.10. Admission Priority Parameter . . . . . . . . . . . . . . . 10
     4.11. RPH Priority Parameter . . . . . . . . . . . . . . . . . . 10
     4.12. Excess Treatment Parameter . . . . . . . . . . . . . . . . 12
     4.13. PHB Class Parameter  . . . . . . . . . . . . . . . . . . . 13
     4.14. DSTE Class Type Parameter  . . . . . . . . . . . . . . . . 14
     4.15. Y.1541 QoS Class Parameter . . . . . . . . . . . . . . . . 14
   5.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 16
   6.  Security Considerations  . . . . . . . . . . . . . . . . . . . 16
   7.  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 16
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 16
     8.1.  Normative References . . . . . . . . . . . . . . . . . . . 16
     8.2.  Informative References . . . . . . . . . . . . . . . . . . 17
   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 17
   Intellectual Property and Copyright Statements . . . . . . . . . . 19


















Korhonen & Tschofenig    Expires August 30, 2007                [Page 2]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


1.  Introduction

   This document defines a number of Quality of Service (QoS) parameters
   that can be reused for conveying QoS information within RADIUS and
   Diameter.

   The payloads used to carry these QoS parameters are opaque for the
   AAA client and the AAA server itself and interpreted by the
   respective Resource Management Function.


2.  Terminology and Abbreviations

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC2119 [RFC2119].


3.  Parameter Overview

3.1.  Traffic Model Parameter

   The Traffic Model (TMOD) parameter is a container consisting of four
   sub-parameters:
   o  rate (r)
   o  bucket size (b)
   o  peak rate (p)
   o  minimum policed unit (m)

   All four sub-parameters MUST be included in the TMOD parameter.  The
   TMOD parameter is a mathematically complete way to describe the
   traffic source.  If, for example, TMOD is set to specify bandwidth
   only, then set r = peak rate = p, b = large, m = large.  As another
   example if TMOD is set for TCP traffic, then set r = average rate, b
   = large, p = large.

3.2.  Constraints Parameters

   <Path Latency>, <Path Jitter>, <Path PLR>, and <Path PER> are QoS
   parameters describing the desired path latency, path jitter and path
   bit error rate respectively.

   The <Path Latency> parameter refers to the accumulated latency of the
   packet forwarding process associated with each QoS aware node along
   the path, where the latency is defined to be the mean packet delay
   added by each such node.  This delay results from speed-of-light
   propagation delay, from packet processing limitations, or both.  The
   mean delay reflects the variable queuing delay that may be present.



Korhonen & Tschofenig    Expires August 30, 2007                [Page 3]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


   The purpose of this parameter is to provide a minimum path latency
   for use with services which provide estimates or bounds on additional
   path delay [RFC2212].

   The procedures for collecting path latency information are outside
   the scope of this document.

   The <Path Jitter> parameter refers to the accumulated jitter of the
   packet forwarding process associated with each QoS aware node along
   the path, where the jitter is defined to be the nominal jitter added
   by each such node.  IP packet jitter, or delay variation, is defined
   in Section 3.4 of RFC3393 [RFC3393], (Type-P-One-way-ipdv), and where
   the selection function includes the packet with minimum delay such
   that the distribution is equivalent to 2-point delay variation in
   [Y.1540].  The suggested evaluation interval is 1 minute.  This
   jitter results from packet processing limitations, and includes any
   variable queuing delay which may be present.  The purpose of this
   parameter is to provide a nominal path jitter for use with services
   that provide estimates or bounds on additional path delay [RFC2212].

   The procedures for collecting path jitter information are outside the
   scope of this document.

   The <Path PLR> parameter refers to the accumulated packet loss rate
   (PLR) of the packet forwarding process associated with each QoS aware
   node along the path where the PLR is defined to be the PLR added by
   each such node.

   The <Path PER> parameter refers to the accumulated packet error rate
   (PER) of the packet forwarding process associated with each QoS aware
   node, where the PER is defined to be the PER added by each such node.

   The <Slack Term> parameter refers to the difference between desired
   delay and delay obtained by using bandwidth reservation, and which is
   used to reduce the resource reservation for a flow [RFC2212].

   The <Preemption Priority> parameter refers to the priority of the new
   flow compared with the <Defending Priority> of previously admitted
   flows.  Once a flow is admitted, the preemption priority becomes
   irrelevant.  The <Defending Priority> parameter is used to compare
   with the preemption priority of new flows.  For any specific flow,
   its preemption priority MUST always be less than or equal to the
   defending priority. <Admission Priority> and <RPH Priority> provide
   an essential way to differentiate flows for emergency services, ETS,
   E911, etc., and assign them a higher admission priority than normal
   priority flows and best-effort priority flows.





Korhonen & Tschofenig    Expires August 30, 2007                [Page 4]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


3.3.  Traffic Handling Directives

   The <Excess Treatment> parameter describes how a QoS aware node will
   process excess traffic, that is, out-of-profile traffic.  Excess
   traffic MAY be dropped, shaped and/or remarked.

3.4.  Traffic Classifiers

   Resource reservations might refer to a packet processing with a
   particular DiffServ per-hop behavior (PHB) [RFC2475] or to a
   particular QoS class, e.g., Y.1541 QoS class or DiffServ-aware MPLS
   traffic engineering (DSTE) class type [RFC3564], [RFC4124].


4.  Parameter Encoding

4.1.  Header

   Each QoS parameter is encoded in TLV format using a similar parameter
   header:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|     Parameter ID      |r|r|r|r|         Length        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      M Flag: When set indicates the subsequent parameter MUST be
              interpreted. Otherwise the parameter can be ignored if not
              understood.

      The r bits are reserved.

      Parameter ID: Assigned to each parameter (see below)

4.2.  TMOD-1 Parameter

   <TMOD-1> = <r> <b> <p> <m> [RFC2210] , [RFC2215]

   The above notation means that the 4 <TMOD-1> sub-parameters must be
   carried in the <TMOD-1> parameter.  The coding for the <TMOD-1>
   parameter is as follows:








Korhonen & Tschofenig    Expires August 30, 2007                [Page 5]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           1           |r|r|r|r|          4            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  TMOD Rate-1 [r] (32-bit IEEE floating point number)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  TMOD Size-1 [b] (32-bit IEEE floating point number)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Peak Data Rate-1 [p] (32-bit IEEE floating point number)     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Minimum Policed Unit-1 [m] (32-bit unsigned integer)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The <TMOD> parameters are represented by three floating point numbers
   in single-precision IEEE floating point format followed by one 32-bit
   integer in network byte order.  The first floating point value is the
   rate (r), the second floating point value is the bucket size (b), the
   third floating point is the peak rate (p), and the first unsigned
   integer is the minimum policed unit (m).

   When r, b, and p terms are represented as IEEE floating point values,
   the sign bit MUST be zero (all values MUST be non-negative).
   Exponents less than 127 (i.e., 0) are prohibited.  Exponents greater
   than 162 (i.e., positive 35) are discouraged, except for specifying a
   peak rate of infinity.  Infinity is represented with an exponent of
   all ones (255) and a sign bit and mantissa of all zeroes.

4.3.  TMOD-2 Parameter

   A description of the semantic of the parameter values can be found in
   [RFC2215].  The <TMOD-2> parameter may be needed in a DiffServ
   environment.  The coding for the <TMOD-2> parameter is as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           2           |r|r|r|r|          4            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  TMOD Rate-2 [r] (32-bit IEEE floating point number)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  TMOD Size-2 [b] (32-bit IEEE floating point number)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Peak Data Rate-2 [p] (32-bit IEEE floating point number)     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Minimum Policed Unit-2 [m] (32-bit unsigned integer)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Korhonen & Tschofenig    Expires August 30, 2007                [Page 6]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


   When r, b, and p terms are represented as IEEE floating point values,
   the sign bit MUST be zero (all values MUST be non-negative).

   Exponents less than 127 (i.e., 0) are prohibited.  Exponents greater
   than 162 (i.e., positive 35) are discouraged, except for specifying a
   peak rate of infinity.  Infinity is represented with an exponent of
   all ones (255) and a sign bit and mantissa of all zeroes.

4.4.  Path Latency Parameter

   A description of the semantic of the parameter values can be found in
   [RFC2210],[RFC2215].  The coding for the <Path Latency> parameter is
   as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           3           |r|r|r|r|          1            |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |                Path Latency (32-bit integer)                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Path Latency is a single 32-bit integer in network byte order.
   The composition rule for the <Path Latency> parameter is summation
   with a clamp of (2**32 - 1) on the maximum value.  The latencies are
   average values reported in units of one microsecond.  A system with
   resolution less than one microsecond MUST set unused digits to zero.
   The total latency added across all QoS aware nodes along the path can
   range as high as (2**32)-2.

4.5.  Path Jitter Parameter

   The coding for the <Path Jitter> parameter is as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           4           |r|r|r|r|          4            |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |          Path Jitter STAT1(variance) (32-bit integer)         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Path Jitter STAT2(99.9%-ile) (32-bit integer)        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Path Jitter STAT3(minimum Latency) (32-bit integer)     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Path Jitter STAT4(Reserved)        (32-bit integer)     |



Korhonen & Tschofenig    Expires August 30, 2007                [Page 7]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Path Jitter is a set of four 32-bit integers in network byte
   order.  The Path Jitter parameter is the combination of four
   statistics describing the Jitter distribution with a clamp of (2**32
   - 1) on the maximum of each value.  The jitter STATs are reported in
   units of one microsecond.

4.6.  Path PLR Parameter

   The coding for the <Path PLR> parameter is as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           5           |r|r|r|r|          1            |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |             Path Packet Loss Ratio (32-bit floating point)    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Path PLR is a single 32-bit single precision IEEE floating point
   number in network byte order.  The PLRs are reported in units of
   10^-11.  A system with resolution less than one microsecond MUST set
   unused digits to zero.  The total PLR added across all QoS aware
   nodes can range as high as 10^-1.

4.7.  Path PER Parameter

   The coding for the <Path PLR> parameter is as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           6           |r|r|r|r|          1            |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
      |             Path Packet Error Ratio (32-bit floating point)   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Path PER is a single 32-bit single precision IEEE floating point
   number in network byte order.  The PERs are reported in units of
   10^-11.  A system with resolution less than one microsecond MUST set
   unused digits to zero.  The total PER added across all QoS aware
   nodes can range as high as 10^-1.






Korhonen & Tschofenig    Expires August 30, 2007                [Page 8]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


4.8.  Slack Term> Parameter

   A description of the semantic of the parameter values can be found in
   [RFC2212], [RFC2215].  The coding for the <Path PLR> parameter is as
   follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           7           |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Slack Term [S]  (32-bit integer)                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The Slack Term parameter S is nonnegative and is measured in
   microseconds.  S is represented as a 32-bit integer.  Its value can
   range from 0 to (2**32)-1 microseconds.

4.9.  Preemption Priority amp; Defending Priority Parameters

   A description of the semantic of the parameter values can be found in
   [RFC3181].

   The coding for the <Preemption Priority> & <Defending Priority> sub-
   parameters is as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           8           |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Preemption Priority        |      Defending Priority       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Preemption Priority: The priority of the new flow compared with the
   defending priority of previously admitted flows.  Higher values
   represent higher priority.

   Defending Priority: Once a flow is admitted, the preemption priority
   becomes irrelevant.  Instead, its defending priority is used to
   compare with the preemption priority of new flows.

   As specified in [RFC3181], <Preemption Priority> & <Defending
   Priority> are 16-bit integer values.





Korhonen & Tschofenig    Expires August 30, 2007                [Page 9]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


4.10.  Admission Priority Parameter

   A description of the semantic of the parameter values can be found in
   [Y.1571].  The coding for the <Admission Priority> parameter is as
   follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           9           |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Admis.Priority|                  (Reserved)                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   High priority flows, normal priority flows, and best-effort priority
   flows can have access to resources depending on their admission
   priority value as follows:


      Admission Priority:

      0 - best-effort priority flow
      1 - normal priority flow
      2 - high priority flow
      255 - not used

   A reservation without an <Admission Priority> parameter (i.e., set to
   255) MUST be treated as a reservation with an <Admission Priority> =
   1.

4.11.  RPH Priority Parameter

   A description of the semantic of the parameter values can be found in
   [RFC4412].  The coding for the <RPH Priority> parameter is as
   follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           10          |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         RPH Namespace         | RPH Priority  |   (Reserved)  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   [RFC4412] defines a resource priority header (RPH) with parameters
   "RPH Namespace" and "RPH Priority" combination, and if populated is



Korhonen & Tschofenig    Expires August 30, 2007               [Page 10]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


   applicable only to flows with high admission priority, as follows:


       RPH Namespace:

      0 - dsn
      1 - drsn
      2 - q735
      3 - ets
      4 - wps
      255 - not used

   Each namespace has a finite list of relative priority-values.  Each
   is listed here in the order of lowest priority to highest priority.


      RPH Priority:

      4 - q735.4
      3 - q735.3
      2 - q735.2
      1 - q735.1
      0 - q735.0

      4 - ets.4
      3 - ets.3
      2 - ets.2
      1 - ets.1
      0 - ets.0

      4 - wps.4
      3 - wps.3
      2 - wps.2
      1 - wps.1
      0 - wps.0

   For the 4 priority parameters, the following cases are permissible
   (procedures specified in references):


     1 parameter: <Admission Priority> [Y.1571]
     2 parameters: <Admission Priority>, <RPH Priority> [RFC4412]
     2 parameters: <Preemption Priority>, <Defending Priority> [RFC3181]
     3 parameters: <Preemption Priority>, <Defending Priority>,
                   <Admission Priority> [3GPP-1, 3GPP-2, 3GPP-3]
     4 parameters:  <Preemption Priority>, <Defending Priority>,
                   <Admission Priority>, <RPH Priority> [3GPP-1, 3GPP-2,
                   3GPP-3]



Korhonen & Tschofenig    Expires August 30, 2007               [Page 11]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


   It is permissible to have <Admission Priority> without <RPH
   Priority>, but not permissible to have <RPH Priority> without
   <Admission Priority> (alternatively <RPH Priority> is ignored in
   instances without <Admission Priority>).

4.12.  Excess Treatment Parameter

   The coding for the <Excess Treatment> parameter is as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           11          |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Excess Trtmnt | Remark Value  |         Reserved              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Excess Treatment: Indicates how the QoS aware node should process
   out-of-profile traffic, that is, traffic not covered by the <Traffic>
   parameter.  Allowed values are as follows:


      0: drop
      1: shape
      2: remark
      3: no metering or policing is permitted

   The default excess treatment in case that none is specified is that
   there are no guarantees to excess traffic, i.e., a QoS aware node can
   do what it finds suitable.

   When excess treatment is set to 'drop', all marked traffic MUST be
   dropped by a QoS aware node.

   When excess treatment is set to 'shape', it is expected that the QoS
   Desired object carries a TMOD parameter.  Excess traffic is to be
   shaped to this TMOD.  When the shaping causes unbounded queue growth
   at the shaper traffic can be dropped.

   When excess treatment is set to 'remark', the excess treatment
   parameter MUST carry the remark value.  For example, packets may be
   remarked to drop remarked to pertain to a particular QoS class.  In
   the latter case, remarking relates to a DiffServ-type model, where
   packets arrive marked as belonging to a certain QoS class, and when
   they are identified as excess, they should then be remarked to a
   different QoS Class.




Korhonen & Tschofenig    Expires August 30, 2007               [Page 12]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


   If 'no metering or policing is permitted' is signaled, the QoS aware
   node should accept the excess treatment parameter set by the sender
   with special care so that excess traffic should not cause a problem.
   To request the Null Meter [RFC3290] is especially strong, and should
   be used with caution.

4.13.  PHB Class Parameter

   A description of the semantic of the parameter values can be found in
   [RFC3140].  The coding for the <PHB Class> parameter is as follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           12          |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | DSCP      |0 0 0 0 0 0 0 0 0 0|            (Reserved)         |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

   As prescribed in [RFC3140], the encoding for a single PHB is the
   recommended DSCP value for that PHB, left-justified in the 16 bit
   field, with bits 6 through 15 set to zero.

   The encoding for a set of PHBs is the numerically smallest of the set
   of encodings for the various PHBs in the set, with bit 14 set to 1.
   (Thus for the AF1x PHBs, the encoding is that of the AF11 PHB, with
   bit 14 set to 1.)


       0                   1
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | DSCP      |0 0 0 0 0 0 0 0 X 0|
      +---+---+---+---+---+---+---+---+

   PHBs not defined by standards action, i.e., experimental or local use
   PHBs as allowed by [RFC2474].  In this case an arbitrary 12 bit PHB
   identification code, assigned by the IANA, is placed left-justified
   in the 16 bit field.  Bit 15 is set to 1, and bit 14 is zero for a
   single PHB or 1 for a set of PHBs.  Bits 12 and 13 are zero.


       0                   1
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      PHD ID CODE      |0 0 X 0|
      +---+---+---+---+---+---+---+---+



Korhonen & Tschofenig    Expires August 30, 2007               [Page 13]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


   Bits 12 and 13 are reserved either for expansion of the PHB
   identification code, or for other use, at some point in the future.

   In both cases, when a single PHBID is used to identify a set of PHBs
   (i.e., bit 14 is set to 1), that set of PHBs MUST constitute a PHB
   Scheduling Class (i.e., use of PHBs from the set MUST NOT cause
   intra-microflow traffic reordering when different PHBs from the set
   are applied to traffic in the same microflow).  The set of AF1x PHBs
   [RFC2597] is an example of a PHB Scheduling Class.  Sets of PHBs that
   do not constitute a PHB Scheduling Class can be identified by using
   more than one PHBID.

   The registries needed to use [RFC3140] already exist.  Hence, no new
   registry needs to be created for this purpose.

4.14.  DSTE Class Type Parameter

   A description of the semantic of the parameter values can be found in
   [RFC4124].  The coding for the <DSTE Class Type> parameter is as
   follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           13          |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |DSTE Cls. Type |                (Reserved)                     |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

   DSTE Class Type: Indicates the DSTE class type.  Values currently
   allowed are 0, 1, 2, 3, 4, 5, 6, 7.  A value of 255 (all 1's) means
   that the <DSTE Class Type> parameter is not used.

4.15.  Y.1541 QoS Class Parameter

   A description of the semantic of the parameter values can be found in
   [Y.1541].  The coding for the <Y.1541 QoS Class> parameter is as
   follows:


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |M|r|r|r|           14          |r|r|r|r|          1            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Y.1541 QoS Cls.|                (Reserved)                     |
      +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+



Korhonen & Tschofenig    Expires August 30, 2007               [Page 14]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


   Y.1541 QoS Class: Indicates the Y.1541 QoS Class.  Values currently
   allowed are 0, 1, 2, 3, 4, 5, 6, 7.  A value of 255 (all 1's) means
   that the <Y.1541 QoS Class> parameter is not used.

   Class 0:

      Mean delay <= 100 ms, delay variation <= 50 ms, loss ratio <=
      10^-3.  Real-time, highly interactive applications, sensitive to
      jitter.  Application examples include VoIP, Video Teleconference.
   Class 1:

      Mean delay <= 400 ms, delay variation <= 50 ms, loss ratio <=
      10^-3.  Real-time, interactive applications, sensitive to jitter.
      Application examples include VoIP, Video Teleconference.
   Class 2:

      Mean delay <= 100 ms, delay variation unspecified, loss ratio <=
      10^-3.  Highly interactive transaction data.  Application examples
      include signaling.
   Class 3:

      Mean delay <= 400 ms, delay variation unspecified, loss ratio <=
      10^-3.  Interactive transaction data.  Application examples
      include signaling.
   Class 4:

      Mean delay <= 1 sec, delay variation unspecified, loss ratio <=
      10^-3.  Low Loss Only applications.  Application examples include
      short transactions, bulk data, video streaming.
   Class 5:

      Mean delay unspecified, delay variation unspecified, loss ratio
      unspecified.  Unspecified applications.  Application examples
      include traditional applications of default IP networks.
   Class 6:

      Mean delay <= 100 ms, delay variation <= 50 ms, loss ratio <=
      10^-5.  Applications that are highly sensitive to loss, such as
      television transport, high-capacity TCP transfers, and TDM circuit
      emulation.
   Class 7:

      Mean delay <= 400 ms, delay variation <= 50 ms, loss ratio <=
      10^-5.  Applications that are highly sensitive to loss, such as
      television transport, high-capacity TCP transfers, and TDM circuit
      emulation.





Korhonen & Tschofenig    Expires August 30, 2007               [Page 15]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


5.  IANA Considerations

   This document reuses the namespace created in [I-D.ietf-nsis-qspec].

   No actions are required by IANA.


6.  Security Considerations

   This document does not raise any security concerns as it only defines
   QoS parameters.


7.  Acknowledgements

   The authors would like to thank the NSIS QSPEC draft authors, the
   NSIS working group chairs (John Loughney and Martin Stiemerling) and
   the former and the current Transport Area Directors for their help.


8.  References

8.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2210]  Wroclawski, J., "The Use of RSVP with IETF Integrated
              Services", RFC 2210, September 1997.

   [RFC2212]  Shenker, S., Partridge, C., and R. Guerin, "Specification
              of Guaranteed Quality of Service", RFC 2212,
              September 1997.

   [RFC2215]  Shenker, S. and J. Wroclawski, "General Characterization
              Parameters for Integrated Service Network Elements",
              RFC 2215, September 1997.

   [RFC2474]  Nichols, K., Blake, S., Baker, F., and D. Black,
              "Definition of the Differentiated Services Field (DS
              Field) in the IPv4 and IPv6 Headers", RFC 2474,
              December 1998.

   [RFC2475]  Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
              and W. Weiss, "An Architecture for Differentiated
              Services", RFC 2475, December 1998.

   [RFC2597]  Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,



Korhonen & Tschofenig    Expires August 30, 2007               [Page 16]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


              "Assured Forwarding PHB Group", RFC 2597, June 1999.

   [RFC3140]  Black, D., Brim, S., Carpenter, B., and F. Le Faucheur,
              "Per Hop Behavior Identification Codes", RFC 3140,
              June 2001.

   [RFC3181]  Herzog, S., "Signaled Preemption Priority Policy Element",
              RFC 3181, October 2001.

   [RFC3290]  Bernet, Y., Blake, S., Grossman, D., and A. Smith, "An
              Informal Management Model for Diffserv Routers", RFC 3290,
              May 2002.

   [RFC3393]  Demichelis, C. and P. Chimento, "IP Packet Delay Variation
              Metric for IP Performance Metrics (IPPM)", RFC 3393,
              November 2002.

   [RFC3564]  Le Faucheur, F. and W. Lai, "Requirements for Support of
              Differentiated Services-aware MPLS Traffic Engineering",
              RFC 3564, July 2003.

   [RFC4124]  Le Faucheur, F., "Protocol Extensions for Support of
              Diffserv-aware MPLS Traffic Engineering", RFC 4124,
              June 2005.

   [RFC4412]  Schulzrinne, H. and J. Polk, "Communications Resource
              Priority for the Session Initiation Protocol (SIP)",
              RFC 4412, February 2006.

   [Y.1541]   "Network Performance Objectives for IP-Based Services",  ,
              2006.

8.2.  Informative References

   [I-D.ietf-nsis-qspec]
              Ash, J., "QoS NSLP QSPEC Template",
              draft-ietf-nsis-qspec-15 (work in progress),
              February 2007.

   [Y.1540]   "Internet Protocol Data Communication Service - IP Packet
              Transfer and Availability Performance Parameters",  ,
              December 2002.









Korhonen & Tschofenig    Expires August 30, 2007               [Page 17]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


Authors' Addresses

   Jouni Korhonen (editor)
   TeliaSonera
   Teollisuuskatu 13
   Sonera  FIN-00051
   Finland

   Email: jouni.korhonen@teliasonera.com


   Hannes Tschofenig
   Siemens Networks GmbH & Co KG
   Otto-Hahn-Ring 6
   Munich, Bavaria  81739
   Germany

   Email: Hannes.Tschofenig@siemens.com
   URI:   http://www.tschofenig.com
































Korhonen & Tschofenig    Expires August 30, 2007               [Page 18]


Internet-Draft   QoS Parameters for RADIUS and Diameter    February 2007


Full Copyright Statement

   Copyright (C) The IETF Trust (2007).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
   THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
   THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.


Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.


Acknowledgment

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).





Korhonen & Tschofenig    Expires August 30, 2007               [Page 19]