mpls N. Nainar
Internet-Draft C. Pignataro
Intended status: Standards Track M. Sankaranarayanan
Expires: 1 August 2022 Cisco Systems, Inc.
W. Zheng
Huawei
28 January 2022
YANG Data Model for MPLS LSP Ping
draft-nainar-mpls-lsp-ping-yang-02
Abstract
This document describes the YANG data model for Multi-Protocol Label
Switching (MPLS) LSP Ping. The model is based on YANG 1.1 as defined
in RFC 7950 and conforms to the Network Management Datastore
Architecture (NMDA) as described in RFC 8342.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 1 August 2022.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
Nainar, et al. Expires 1 August 2022 [Page 1]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Requirements notation . . . . . . . . . . . . . . . . . . 3
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 3
2. Design of Data Model . . . . . . . . . . . . . . . . . . . . 3
2.1. Scope of Model . . . . . . . . . . . . . . . . . . . . . 3
2.2. Module Hierarchy Organization . . . . . . . . . . . . . . 3
2.3. Optional Capabilities . . . . . . . . . . . . . . . . . . 4
2.4. RPC Operations . . . . . . . . . . . . . . . . . . . . . 4
2.5. Configuration and Notifications . . . . . . . . . . . . . 5
2.6. Augment Method . . . . . . . . . . . . . . . . . . . . . 5
2.7. The Complete Tree . . . . . . . . . . . . . . . . . . . . 5
3. LSP Ping YANG Module . . . . . . . . . . . . . . . . . . . . 10
4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 34
5. Security Considerations . . . . . . . . . . . . . . . . . . . 34
6. Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . 35
7. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 35
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.1. Normative References . . . . . . . . . . . . . . . . . . 35
8.2. Informative References . . . . . . . . . . . . . . . . . 36
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 37
1. Introduction
[RFC8029] describes the mechanism to detect any data-plane failures
in MPLS Label Switched Paths (LSPs). The MPLS echo request is
triggered from the head end node with different TLVs carrying control
plane information such as Target FEC Stack that are used by the
transit or the tail end node to validate the path and detect any
failures.
The Network Configuration Protocol (NETCONF) [RFC6241] is one of the
network management protocols that defines the mechanism to manage
network devices. YANG version 1 defined in [RFC6020] and version 1.1
defined in [RFC7950] is a modular data modeling language used to
represent the data structure of the configuration and operational
state of any device managed using NETCONF.
Nainar, et al. Expires 1 August 2022 [Page 2]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
This document describes the YANG data model for Multi-Protocol Label
Switching (MPLS) LSP Ping. The model is based on YANG 1.1 as defined
in [RFC7950] and conforms to the Network Management Datastore
Architecture (NMDA) as described in [RFC8342].
1.1. Requirements notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
1.2. Terminology
This document uses the terminologies defined in [RFC8029], [RFC7950],
and so the readers are expected to be familiar with the
terminologies.
1.3. Tree Diagrams
This document uses the graphical representation of the data models
defined in [RFC8340].
2. Design of Data Model
2.1. Scope of Model
[RFC8029] describes the mechanism to detect any data-plane failures
in MPLS Label Switched Paths (LSPs). [RFC6425] extends the mechanism
further to P2MP MPLS LSPs. [RFC8287] extends the mechanism for
Segment Routing with MPLS data plane.
The goal of this document is to produce a data model that provides a
common user interface to the MPLS LSP Ping and allows the user to
either configure and schedule the testing or to activate on-demand.
2.2. Module Hierarchy Organization
The modules is currently defined in a way that can be used to
instruct the echo parameters information that the initiator node must
include in the payload and in the probe header. The modules is
defined to use RPC operations to execute LSP Ping and LSP Path
tracing with multipath awareness and retrieve the result information.
Nainar, et al. Expires 1 August 2022 [Page 3]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
The future version of the module will be updated to include ways to
configure the testing parameters and schedule the testing on any node
for continuous monitoring and use notification to receive any change
in the monitoring status.
2.3. Optional Capabilities
This module includes the option to configure the MPLS OAM feature
that is required in some vendor software to enable the capability.
This is not a mandatory feature and so the module is compatible with
nodes that does not require any such configuration. The structure of
the configuration is as shown below:
module: ietf-mpls-lsp-ping
augment /rt:routing/mpls:mpls:
+--rw mpls-oam {mpls-oam}?
+--rw enable? boolean
2.4. RPC Operations
This module defines 3 different RPC operations as below:
* Continuity Check
* Single Path Discovery
* Multi Path Discovery
RPC "continuity-check" triggers LSP Ping from the initiator node to
validate the path for any specific FEC defined in the Target FEC
Stack and retrieve the response from the responder node as RPC
output. The probe count object is used to control the number of
probes sent. For each probe sent, a response is expected to be
retrieved. The global-flags object can be used to control the FEC
validation as defined in Section 6.2.3 of [RFC8029]..
RPC "single-path-discovery" triggers the LSP trace from the Initiator
node to trace the path for any specific FEC defined in the Target FEC
Stack and retrieve the response from each transit hops as RPC output.
While the input parameters are similar to RPC continuity-check, this
RPC will instruct the initiator node to send probes by sequentially
incrementing the TTL of the probe.
RPC "multi-path-discovery" is similar to "single-path-discovery" with
an additional ddmap-hash as an input parameter and retrieve the
response from each equal cost multipath (ECMP) transit hops as RPC
output.
Nainar, et al. Expires 1 August 2022 [Page 4]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
2.5. Configuration and Notifications
To be Updated.
2.6. Augment Method
To be Updated.
2.7. The Complete Tree
Following is a complete tree representation of LSP Ping YANG module.
module: ietf-mpls-lsp-ping
augment /rt:routing/mpls:mpls:
+--rw mpls-oam {mpls-oam}?
+--rw enable? boolean
rpcs:
+---x continuity-check
| +---w input
| | +---w echo-header-parameters
| | | +---w source-address? ip-address
| | | +---w destination-address? ip-loopback-address
| | | +---w traffic-class? mpls-traffic-class
| | | +---w mpls-entropy-label? mpls-entropy-label
| | | +---w header-mpls-ttl? uint8
| | | +---w mpls-exp-label? boolean
| | +---w echo-payload-parameters
| | | +---w reply-tos-tlv? boolean
| | | +---w reply-tos-value
| | | | +---w reply-tos-value? uint8
| | | +---w probe-size? uint32
| | | +---w probe-sweep
| | | | +---w min-probe-sweep? uint16
| | | | +---w max-probe-sweep? uint16
| | | +---w target-fec-stack-type
| | | | +---w target-fec-stack-type identityref
| | | | +---w (target-fec-stack-value)?
| | | | +--:(ldp-ip-prefix)
| | | | | +---w ldp-ip-prefix? inet:ip-prefix
| | | | +--:(rsvp)
| | | | | +---w tunnel-id? uint32
| | | | +--:(vpn-ip-prefix)
| | | | | +---w vrf-id? uint32
| | | | | +---w vpn-ip-prefix? inet:ip-prefix
| | | | +--:(pw)
Nainar, et al. Expires 1 August 2022 [Page 5]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
| | | | | +---w pw-id? uint32
| | | | | +---w remote-pe-addr? inet:ip-address
| | | | +--:(bgp-label-prefix)
| | | | | +---w bgp-label-prefix? inet:ip-prefix
| | | | +--:(generic-ip-prefix)
| | | | | +---w generic-ip-prefix? inet:ip-prefix
| | | | +--:(igp-ip-prefix)
| | | | +---w protocol? identityref
| | | | +---w igp-ip-prefix? inet:ip-prefix
| | | +---w target-fec-type target-fec-type
| | | +---w reply-mode? reply-mode
| | | +---w return-ttl-tlv? boolean
| | | +---w return-ttl-value
| | | | +---w return-ttl-value? uint8
| | | +---w global-flags
| | | +---w v-flag? boolean
| | | +---w t-flag? boolean
| | | +---w r-flag? boolean
| | +---w echo-scheduling-parameters
| | +---w probe-interval
| | | +---w min-probe-interval? identityref
| | | +---w max-probe-interval? identityref
| | +---w probe-count? uint32
| | +---w probe-timeout? identityref
| | +---w output-info
| | +---w output-intf* [interface]
| | | +---w interface if:interface-ref
| | +---w nexthop? inet:ip-address
| +--ro output
| +--ro response-list* [response-index]
| +--ro response-index uint32
| +--ro response-header-parameters
| | +--ro resp-source-address ip-address
| | +--ro resp-destination-address ip-address
| | +--ro resp-traffic-class uint8
| +--ro response-payload-parameters
| +--ro reply-mode reply-mode
| +--ro return-code return-code
| +--ro return-sub-code uint8
| +--ro seq-number uint32
| +--ro timestamp-sent yang:date-and-time
| +--ro timestamp-received yang:date-and-time
| +--ro target-fec-type target-fec-type
+---x single-path-discovery
| +---w input
| | +---w echo-header-parameters
| | | +---w source-address? ip-address
| | | +---w destination-address? ip-loopback-address
Nainar, et al. Expires 1 August 2022 [Page 6]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
| | | +---w traffic-class? mpls-traffic-class
| | | +---w mpls-entropy-label? mpls-entropy-label
| | | +---w header-mpls-ttl? uint8
| | | +---w mpls-exp-label? boolean
| | +---w echo-payload-parameters
| | | +---w reply-tos-tlv? boolean
| | | +---w reply-tos-value
| | | | +---w reply-tos-value? uint8
| | | +---w probe-size? uint32
| | | +---w probe-sweep
| | | | +---w min-probe-sweep? uint16
| | | | +---w max-probe-sweep? uint16
| | | +---w target-fec-stack-type
| | | | +---w target-fec-stack-type identityref
| | | | +---w (target-fec-stack-value)?
| | | | +--:(ldp-ip-prefix)
| | | | | +---w ldp-ip-prefix? inet:ip-prefix
| | | | +--:(rsvp)
| | | | | +---w tunnel-id? uint32
| | | | +--:(vpn-ip-prefix)
| | | | | +---w vrf-id? uint32
| | | | | +---w vpn-ip-prefix? inet:ip-prefix
| | | | +--:(pw)
| | | | | +---w pw-id? uint32
| | | | | +---w remote-pe-addr? inet:ip-address
| | | | +--:(bgp-label-prefix)
| | | | | +---w bgp-label-prefix? inet:ip-prefix
| | | | +--:(generic-ip-prefix)
| | | | | +---w generic-ip-prefix? inet:ip-prefix
| | | | +--:(igp-ip-prefix)
| | | | +---w protocol? identityref
| | | | +---w igp-ip-prefix? inet:ip-prefix
| | | +---w target-fec-type target-fec-type
| | | +---w reply-mode? reply-mode
| | | +---w return-ttl-tlv? boolean
| | | +---w return-ttl-value
| | | | +---w return-ttl-value? uint8
| | | +---w global-flags
| | | +---w v-flag? boolean
| | | +---w t-flag? boolean
| | | +---w r-flag? boolean
| | +---w echo-scheduling-parameters
| | +---w probe-interval
| | | +---w min-probe-interval? identityref
| | | +---w max-probe-interval? identityref
| | +---w probe-count? uint32
| | +---w probe-timeout? identityref
| | +---w output-info
Nainar, et al. Expires 1 August 2022 [Page 7]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
| | +---w output-intf* [interface]
| | | +---w interface if:interface-ref
| | +---w nexthop? inet:ip-address
| +--ro output
| +--ro response-list* [response-index]
| +--ro response-index uint32
| +--ro response-header-parameters
| | +--ro resp-source-address ip-address
| | +--ro resp-destination-address ip-address
| | +--ro resp-traffic-class uint8
| +--ro response-payload-parameters
| | +--ro reply-mode reply-mode
| | +--ro return-code return-code
| | +--ro return-sub-code uint8
| | +--ro seq-number uint32
| | +--ro timestamp-sent yang:date-and-time
| | +--ro timestamp-received yang:date-and-time
| | +--ro target-fec-type target-fec-type
| +--ro response-payload-optional-parameters
| +--ro ddmap
| +--ro ddmap-mtu? int16
| +--ro ddmap-downstream-address? ip-address
| +--ro ddmap-downstream-intf-index? int32
| +--ro ddmap-return-code? return-code
| +--ro ddmap-return-subcode? int16
| +--ro ddmap-label-stack* [label]
| +--ro label rt-types:mpls-label
| +--ro protocol? ddmap-protocol
+---x multi-path-discovery
+---w input
| +---w echo-header-parameters
| | +---w source-address? ip-address
| | +---w destination-address? ip-loopback-address
| | +---w traffic-class? mpls-traffic-class
| | +---w mpls-entropy-label? mpls-entropy-label
| | +---w header-mpls-ttl? uint8
| | +---w mpls-exp-label? boolean
| +---w echo-payload-parameters
| | +---w reply-tos-tlv? boolean
| | +---w reply-tos-value
| | | +---w reply-tos-value? uint8
| | +---w probe-size? uint32
| | +---w probe-sweep
| | | +---w min-probe-sweep? uint16
| | | +---w max-probe-sweep? uint16
| | +---w target-fec-stack-type
| | | +---w target-fec-stack-type identityref
| | | +---w (target-fec-stack-value)?
Nainar, et al. Expires 1 August 2022 [Page 8]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
| | | +--:(ldp-ip-prefix)
| | | | +---w ldp-ip-prefix? inet:ip-prefix
| | | +--:(rsvp)
| | | | +---w tunnel-id? uint32
| | | +--:(vpn-ip-prefix)
| | | | +---w vrf-id? uint32
| | | | +---w vpn-ip-prefix? inet:ip-prefix
| | | +--:(pw)
| | | | +---w pw-id? uint32
| | | | +---w remote-pe-addr? inet:ip-address
| | | +--:(bgp-label-prefix)
| | | | +---w bgp-label-prefix? inet:ip-prefix
| | | +--:(generic-ip-prefix)
| | | | +---w generic-ip-prefix? inet:ip-prefix
| | | +--:(igp-ip-prefix)
| | | +---w protocol? identityref
| | | +---w igp-ip-prefix? inet:ip-prefix
| | +---w target-fec-type target-fec-type
| | +---w reply-mode? reply-mode
| | +---w return-ttl-tlv? boolean
| | +---w return-ttl-value
| | | +---w return-ttl-value? uint8
| | +---w global-flags
| | +---w v-flag? boolean
| | +---w t-flag? boolean
| | +---w r-flag? boolean
| +---w echo-scheduling-parameters
| | +---w probe-interval
| | | +---w min-probe-interval? identityref
| | | +---w max-probe-interval? identityref
| | +---w probe-count? uint32
| | +---w probe-timeout? identityref
| | +---w output-info
| | +---w output-intf* [interface]
| | | +---w interface if:interface-ref
| | +---w nexthop? inet:ip-address
| +---w ddmap-hash
| +---w ddmap-hash? multipath-hashtype
+--ro output
+--ro response-list* [response-index]
+--ro response-index uint32
+--ro response-header-parameters
| +--ro resp-source-address ip-address
| +--ro resp-destination-address ip-address
| +--ro resp-traffic-class uint8
+--ro response-payload-parameters
| +--ro reply-mode reply-mode
| +--ro return-code return-code
Nainar, et al. Expires 1 August 2022 [Page 9]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
| +--ro return-sub-code uint8
| +--ro seq-number uint32
| +--ro timestamp-sent yang:date-and-time
| +--ro timestamp-received yang:date-and-time
| +--ro target-fec-type target-fec-type
+--ro response-payload-optional-parameters
+--ro ddmap
+--ro ddmap-mtu? int16
+--ro ddmap-downstream-address? ip-address
+--ro ddmap-downstream-intf-index? int32
+--ro ddmap-return-code? return-code
+--ro ddmap-return-subcode? int16
+--ro ddmap-label-stack* [label]
+--ro label rt-types:mpls-label
+--ro protocol? ddmap-protocol
3. LSP Ping YANG Module
<CODE BEGIN> file "ietf-mpls-lsp-ping@2020-06-09.yang"
module ietf-mpls-lsp-ping-rev1d {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-mpls-lsp-ping-rev1d";
prefix "lsp-ping";
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Types.";
}
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Types.";
}
import ietf-interfaces {
prefix if;
reference
"RFC 8343: YANG Interface Management";
}
import ietf-lime-time-types {
prefix lime;
}
Nainar, et al. Expires 1 August 2022 [Page 10]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
import ietf-routing {
prefix rt;
reference
"RFC 8022: YANG Routing Management";
}
import ietf-mpls {
prefix mpls;
reference
"to be updated";
}
import ietf-routing-types {
prefix rt-types;
reference
"RFC 8294: Common YANG Data Types for the Routing Area.";
}
organization
"IETF MPLS Working Group";
contact
"WG Web: <http://tools.ietf.org/wg/mpls/>
WG List: <mailto:mpls@ietf.org>
Editor: Nagendra Kumar Nainar
<mailto:naikumar@cisco.com>
Editor: Carlos Pignataro
<mailto:cpignata@cisco.com>";
description
"This YANG module defines the configuration of MPLS LSP Ping.
Copyright (c) 2018 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
for full legal notices.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
Nainar, et al. Expires 1 August 2022 [Page 11]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
'MAY', and 'OPTIONAL' in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.
This version of this YANG module is part of RFC XXXX;
see the RFC itself for full legal notices.";
revision 2020-06-09 {
description
"Initial revision.";
reference
"To be Updated";
}
feature mpls-oam {
description
"MPLS OAM feature.";
}
typedef ipv4-loopback-address {
type inet:ipv4-address {
pattern '127.*';
}
description
"This type represents an IPv4 Loopback address,
which is in the range of 127.0.0.0 to 127.255.255.255.";
reference
"RFC 1212: Requirements for Internet Hosts
-- Communication Layers.";
}
typedef ipv6-loopback-address {
type inet:ipv6-address {
pattern 'to-be-updated';
}
description
"This type represents an IPv6 Loopback address,
which is ::1/128";
reference
"RFC 4291: IP Version 6 Addressing Architecture.";
}
typedef ip-loopback-address {
type union {
type ipv4-loopback-address;
type ipv6-loopback-address;
}
description
Nainar, et al. Expires 1 August 2022 [Page 12]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
"This type represents a version-neutral IP Loopback
address.";
}
typedef ip-address {
type union {
type inet:ipv4-address;
type inet:ipv6-address;
}
description
"Version neutral IP Address";
}
typedef mpls-traffic-class {
type uint8 {
range 0..7;
}
description
"MPLS Traffic Class (EXP) value within range 0 to 7.";
}
typedef mpls-entropy-label {
type rt-types:mpls-label-general-use;
description
"This type represents the Entropy Label,
which is outside the reserved range.";
reference
"RFC 6790: The Use of Entropy Labels in MPLS Forwarding";
}
typedef multipath-hashtype {
type enumeration {
enum mp-empty {
value "0";
description
"No Multipath";
}
enum mp-ip-addr {
value "2";
description
"IP Address based Multipath
Information Encoding";
}
enum mp-ip-range {
value "4";
description
"IP Address range based Multipath
Nainar, et al. Expires 1 August 2022 [Page 13]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
Information Encoding";
}
enum mp-ip-bitmask {
value "8";
description
"Bit masked IP Address set for Multipath
Information Encoding";
}
enum mp-label-bitmask {
value "9";
description
"Bit masked Label set for Multipath
Information Encoding";
}
}
description
"This type represents the multipath Data type to be used in
the DDMAP for Multipath tracing.";
reference
"RFC 8029: Section 3.4.1.1.";
}
typedef reply-mode {
type enumeration {
enum do-not-reply {
value "1";
description
"Do not Reply";
reference
"RFC8029: Section 3";
}
enum reply-udp {
value "2";
description
"Reply via an IPv4/IPv6 UDP packet";
reference
"RFC8029: Section 3";
}
enum reply-udp-ra {
value "3";
description
"Reply via an IPv4/IPv6 UDP packet with
Router Alert";
reference
"RFC8029: Section 3";
}
enum reply-app-cc {
value "4";
Nainar, et al. Expires 1 August 2022 [Page 14]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
description
"Reply via application-level control
channel";
reference
"RFC8029: Section 3";
}
enum reply-via-path {
value "5";
description
"Reply via Specified Path";
reference
"RFC7110: Section 4.1";
}
}
description
"This type defines the Reply mode";
}
typedef return-code {
type enumeration {
enum no-return {
value "0";
description
"No Return Code";
reference
"RFC 8029: Section 3.1";
}
enum malformed-echo {
value "1";
description
"Malformed Echo Request Received";
reference
"RFC 8029: Section 3.1";
}
enum unknown-tlvs {
value "2";
description
"One or more of the TLVs was not
understood";
reference
"RFC 8029: Section 3.1";
}
enum egress-reply {
value "3";
description
"Replying router is an egress for the
FEC at stack-depth <RSC>";
reference
Nainar, et al. Expires 1 August 2022 [Page 15]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
"RFC 8029: Section 3.1";
}
enum egress-nomap {
value "4";
description
"Replying router has no mapping for the
FEC at stack-depth <RSC>";
reference
"RFC 8029: Section 3.1";
}
enum dd-mismatch {
value "5";
description
"Downstream Mapping Mismatch";
reference
"RFC 8029: Section 3.1";
}
enum unknown-upstream {
value "6";
description
"Upstream Interface Index Unknown";
reference
"RFC 8029: Section 3.1";
}
enum reserved {
value "7";
description
"Reserved";
reference
"RFC 8029: Section 3.1";
}
enum label-switched {
value "8";
description
"Label switched at stack-depth <RSC>";
reference
"RFC 8029: Section 3.1";
}
enum label-switched-no-mpls {
value "9";
description
"Label switched but no MPLS forwarding
at stack-depth <RSC>";
reference
"RFC 8029: Section 3.1";
}
enum FEC-map-mismatch {
value "10";
Nainar, et al. Expires 1 August 2022 [Page 16]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
description
"Mapping for this FEC is not the given
label at stack-depth <RSC>";
reference
"RFC 8029: Section 3.1";
}
enum no-label {
value "11";
description
"No label entry at stack-depth <RSC>";
reference
"RFC 8029: Section 3.1";
}
enum protocol-mismatch {
value "12";
description
"Protocol not associated with interface
at FEC stack-depth <RSC>";
reference
"RFC 8029: Section 3.1";
}
enum premature-terminate {
value "13";
description
"Premature termination of ping due to
label stack shrinking to a single label";
reference
"RFC 8029: Section 3.1";
}
enum ddmap-return-code {
value "14";
description
"See DDMAP TLV for meaning of Return Code
and Return Subcode";
reference
"RFC 8029: Section 3.1";
}
enum label-switched-fec-change {
value "15";
description
"Label switched with FEC change";
reference
"RFC 8029: Section 3.1";
}
}
description
"This defines the Return codes received in the
Echo Response.";
Nainar, et al. Expires 1 August 2022 [Page 17]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
reference
"RFC 8029: Section 3.1";
}
typedef ddmap-protocol {
type enumeration {
enum unknown {
value "0";
description
"Unknown Signaling Protocol";
}
enum static {
value "1";
description
"Static Signaling Protocol";
}
enum bgp {
value "2";
description
"BGP Signaling Protocol";
}
enum ldp {
value "3";
description
"LDP Signaling Protocol";
}
enum rsvp-te {
value "4";
description
"RSVP-TE Signaling Protocol";
}
}
description
"This defines the Signaling Protocol
received in the DDMAP.";
reference
"RFC 8029: Section 3.4.1.2";
}
identity igp-proto {
description
"IGP Protocol.";
}
identity igp-any {
base igp-proto;
description
"Any IGP Protocol. The value is set to
Nainar, et al. Expires 1 August 2022 [Page 18]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
0 in the TLV.";
reference
"RFC8287: Section 9.2";
}
identity igp-ospfv2 {
base igp-proto;
description
"OSPFv2 IGP Protocol. The value is set to
1 in the TLV.";
reference
"RFC8287: Section 9.2";
}
identity igp-ospfv3 {
base igp-proto;
description
"OSPFv3 IGP Protocol. The value is set to
3 in the TLV.";
reference
"RFC8287: Section 9.2";
}
identity igp-isis {
base igp-proto;
description
"ISIS IGP Protocol. The value is set to
2 in the TLV.";
reference
"RFC8287: Section 9.2";
}
identity target-fec-type {
description
"Target FEC Stack TLV Type";
}
identity ldp-ip-prefix {
base target-fec-type;
description
"LDP IPv4/IPv6 Prefix.";
}
identity rsvp {
base target-fec-type;
description
"RSVP IPv4/IPv6 LSP.";
}
identity vpn-ip-prefix {
base target-fec-type;
Nainar, et al. Expires 1 August 2022 [Page 19]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
description
"VPN IPv4/IPv6 Prefix.";
}
identity pw {
base target-fec-type;
description
"FEC 129 pseudowire IPv4/IPv6.";
}
identity bgp-label-prefix {
base target-fec-type;
description
"BGP labeled IPv4/IPv6 Prefix.";
}
identity generic-ip-prefix {
base target-fec-type;
description
"Generic IPv4/IPv6 Prefix.";
}
identity nil-fec {
base target-fec-type;
description
"Nil FEC TLV.";
}
identity igp-ip-prefix {
base target-fec-type;
description
"IGP IPv4/IPv6 Prefix Segment ID.";
}
identity igp-adj-prefix {
base target-fec-type;
description
"IGP Adjacency Segment ID.";
}
grouping global-flags {
container global-flags {
leaf v-flag {
type boolean;
default false;
description
"Section 3 of RFC8029 - The V (Validate
FEC Stack) flag is used if the
Nainar, et al. Expires 1 August 2022 [Page 20]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
FEC stack should be validated";
}
leaf t-flag {
type boolean;
default false;
description
"Section 3 of RFC8029 - The T flag
is set if the response is expected
only if TTL expires";
}
leaf r-flag {
type boolean;
default false;
description
"Section 3 of RFC8029 - The R flag
is set if the responder should
return the reverse-path FEC information.";
}
}
}
grouping echo-header-parameters {
container echo-header-parameters {
leaf source-address {
type ip-address;
description
"Specifies the Source IP address in
the Echo Request header.";
}
leaf destination-address {
type ip-loopback-address;
description
"Specifies the Destination IP address
in the Echo Request header.";
}
leaf traffic-class {
type mpls-traffic-class;
description
"Specifies the MPLS traffic class
in the Echo Request header.";
}
leaf mpls-entropy-label {
type mpls-entropy-label;
description
"Specifies the Entropy Label to be
inserted along with the Label Stack
for the Echo Request header.";
}
Nainar, et al. Expires 1 August 2022 [Page 21]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
leaf header-mpls-ttl {
type uint8;
default 255;
description
"Specifies the TTL value for the
MPLS Label in the Echo Request header.";
}
leaf mpls-exp-label {
type boolean;
description
"This optional attribute is used to
force the insertion of MPLS Explicit
Null in the Label Stack for the Echo
Request header.";
}
}
}
grouping echo-payload-parameters {
container echo-payload-parameters {
leaf reply-tos-tlv {
type boolean;
default false;
description
"This optional attribute is used to
instruct the Initiator to include
Reply-TOS TLV.";
}//leaf reply-tos-tlv
container reply-tos-value {
when "../reply-tos-tlv = 'true'" {
description
"Reply TOS Value is set ONLY
when Reply-TOS TLV is required
in the Echo Request.";
}
leaf reply-tos-value {
type uint8 {
range "0..63";
}
description
"TOS value for the return packet.";
}//leaf ddmap-hash
}//container reply-tos-value
leaf probe-size {
type uint32 {
range 1..15000;
}
}//leaf probe-size
Nainar, et al. Expires 1 August 2022 [Page 22]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
container probe-sweep {
when "../probe-size = 'false'" {
description
"Probe sweep should be used only if a fixed
probe size is not defined.";
}
leaf min-probe-sweep {
type uint16 {
range 72..18000;
}
description
"This define the minimum size of
the probe packet.";
}
leaf max-probe-sweep {
type uint16 {
range "72..18000";
}
description
"This defines the maximum size of
the probe packet.";
}
description
"This instructs the initiator to send
a sweep of probe packets at varying size
between the minimum and maximum value
defined.";
}
container target-fec-stack-type {
leaf target-fec-stack-type {
type identityref {
base target-fec-type;
}
mandatory true;
description
"Target FEC STack to define the FEC to
be included in the Echo Request";
}
choice target-fec-stack-value {
description
"Target FEC Stack Value";
case ldp-ip-prefix {
leaf ldp-ip-prefix {
type inet:ip-prefix;
description
"LDP IPv4/IPv6 Prefix.";
}
Nainar, et al. Expires 1 August 2022 [Page 23]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
}
case rsvp {
leaf tunnel-id {
type uint32;
description
"RSVP Tunnel ID.";
}
}
case vpn-ip-prefix {
leaf vrf-id {
type uint32;
description
"VPN ID.";
}
leaf vpn-ip-prefix {
type inet:ip-prefix;
description
"VPN IP Prefix";
}
}
case pw {
leaf pw-id {
type uint32;
description
"Pseudowire ID.";
}
leaf remote-pe-addr {
type inet:ip-address;
description
"PW Remote PE Address.";
}
}
case bgp-label-prefix {
leaf bgp-label-prefix {
type inet:ip-prefix;
description
"BGP IPv4/IPv6 Prefix.";
}
}
case generic-ip-prefix {
leaf generic-ip-prefix {
type inet:ip-prefix;
description
"Generic IPv4/IPv6 Prefix.";
}
}
case igp-ip-prefix {
leaf protocol {
Nainar, et al. Expires 1 August 2022 [Page 24]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
type identityref {
base igp-proto;
}
description
"IGP Protocol ID.";
}
leaf igp-ip-prefix {
type inet:ip-prefix;
description
"IGP IPv4/IPv6 Prefix.";
}
}
}
}
leaf reply-mode {
type reply-mode;
description
"XYZ";
reference
"RFC 8029: Section 3.";
}
leaf return-ttl-tlv {
type boolean;
default "false";
description
"'Time to Live' TLV to be included
in the Echo Response.";
reference
"RFC 7394: Section 3.";
}
container return-ttl-value {
when "../return-ttl-tlv = 'true'" {
description
"When TTL TLV is included in the
Echo Request, the value mentioned
in this field should be included in
the value field of the TLV.";
}
leaf return-ttl-value {
type uint8;
description
"Return TTL value";
}//leaf return-ttl-value
}//container return-ttl-value
uses global-flags;
Nainar, et al. Expires 1 August 2022 [Page 25]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
}//container echo-payload-parameters
}//grouping echo-payload-parameters
grouping echo-scheduling-parameters {
container echo-scheduling-parameters {
container probe-interval {
leaf min-probe-interval {
type identityref {
base lime:time-unit-type;
}
default "lime:milliseconds";
description
"This defines the minimum leaf interval.";
}
leaf max-probe-interval {
type identityref {
base lime:time-unit-type;
}
default "lime:milliseconds";
description
"This defines the maximum leaf interval.";
}
description
"To be Added.";
}//container probe-interval
leaf probe-count {
type uint32;
default "5";
description
"This defines the number of probe counts.";
}
leaf probe-timeout {
type identityref {
base lime:time-unit-type;
}
default "lime:seconds";
//range "0..3600";
description
"This defines the probe timeout
interval in Seconds.";
}
container output-info {
list output-intf {
key "interface";
leaf interface {
Nainar, et al. Expires 1 August 2022 [Page 26]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
type if:interface-ref;
description
"Specifies the Egress interface to
send the probe out.";
}
description
"List of outgoing interfaces";
}
leaf nexthop {
type inet:ip-address;
description
"Specifies the next hop address to
send the probe out.";
}
}
}//container echo-scheduling-parameters
}//grouping echo-scheduling-parameters
grouping response-header-parameters {
container response-header-parameters {
leaf resp-source-address {
type ip-address;
mandatory true;
description
"Specifies the Source IP address in
the Echo Response header.";
}
leaf resp-destination-address {
type ip-address;
mandatory true;
description
"Specifies the Destination IP address in
the Echo Response header.";
}
leaf resp-traffic-class {
type uint8 {
range "0..63";
}
mandatory true;
description
"Specifies the TOS/DSCP in the Echo
Response header.";
}
}//container response-header
Nainar, et al. Expires 1 August 2022 [Page 27]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
}//grouping response-header
grouping response-payload-parameters {
container response-payload-parameters {
leaf reply-mode {
type reply-mode;
mandatory true;
description
"XYZ";
reference
"RFC 8029: Section 3.";
}
leaf return-code {
type return-code;
mandatory true;
description
"Return Code received in the Echo
Reply Payload.";
}
leaf return-sub-code {
type uint8;
mandatory true;
description
"Return Sub Code received in the Echo
Reply Payload.";
}
leaf seq-number {
type uint32;
mandatory true;
description
"Sequence Number received in the Echo
Reply Payload.";
}
leaf timestamp-sent {
type yang:date-and-time;
mandatory true;
description
"Timestamp Sent is the time of day in
64-bit NTP timestamp format
when MPLS Echo Request is sent.";
}
leaf timestamp-received {
type yang:date-and-time;
Nainar, et al. Expires 1 August 2022 [Page 28]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
mandatory true;
description
"Timestamp Received is the time of day in
64-bit NTP timestamp format
when MPLS Echo Response is sent.";
}
leaf target-fec-type {
type target-fec-type;
mandatory true;
description
"Target FEC Stack to define the FEC to be
included in the Echo Request.";
}
}//container response-payload-parameters
}//grouping response-payload-parameters
grouping response-payload-optional-parameters {
container response-payload-optional-parameters {
container ddmap {
leaf ddmap-mtu {
type int16;
description
"This is used to carry the MTU from the DDMAP
received in teh Echo Response Payload.";
}
leaf ddmap-downstream-address {
type ip-address;
description
"This is used to carry the Downstream
Address from the DDMAP received in the
Echo Response Payload.";
}
leaf ddmap-downstream-intf-index {
type int32 {
range "1..2147483647";
}
description
"This is used to carry the Downstream
Interface Address from the DDMAP
received in the Echo Response Payload.";
}
leaf ddmap-return-code {
type return-code;
Nainar, et al. Expires 1 August 2022 [Page 29]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
description
"This is used to carry the Return Code
from the DDMAP received in the Echo
Response Payload.";
}
leaf ddmap-return-subcode {
type int16;
description
"This is used to carry the Return Sub Code
from the DDMAP received in the Echo
Response Payload.";
}
list ddmap-label-stack {
key "label";
description
"This is used to carry the Label Stack
from the DDMAP received in the Echo
Response Payload.";
leaf label {
type rt-types:mpls-label;
}
leaf protocol {
type ddmap-protocol;
}
}
}//container ddmap
} //response-payload-optional-parameters
reference
"RFC 8029: Section 3.4 -- DDMAP.";
} //grouping resp-payload-optional-parameters
/* Configuration */
augment "/rt:routing/mpls:mpls" {
if-feature mpls-oam;
description
"RFC8029: MPLS OAM Feature Augmentation";
container mpls-oam {
leaf enable {
type boolean;
description
"Enable MPLS OAM";
}
}
}
Nainar, et al. Expires 1 August 2022 [Page 30]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
/* RPC */
rpc continuity-check {
description
"Triggers LSP Ping from the Initiator and return
the response.";
input {
uses echo-header-parameters {
description
"This grouping defines the parameters
to be set in the probe header.";
}
uses echo-payload-parameters {
description
"This grouping defines the parameters
to be set in the probe payload.";
}
uses echo-scheduling-parameters {
description
"This grouping defines the scheduling
parameters to be used by the initiator.";
}
}
output {
list response-list {
key "response-index";
description
"Continuity Check Response List.";
leaf response-index {
type uint32;
mandatory true;
}
uses response-header-parameters {
description
"This grouping defines the parameters
from the received echo response header.";
}
uses response-payload-parameters {
description
"This grouping defines the parameters
from the received echo response payload.";
}
}//list response-list
}//output
}//rpc continuity-check
Nainar, et al. Expires 1 August 2022 [Page 31]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
rpc single-path-discovery {
input {
uses echo-header-parameters {
description
"This grouping defines the parameters to be
set in the probe header.";
}
uses echo-payload-parameters {
description
"This grouping defines the parameters to be
set in the probe payload.";
}
uses echo-scheduling-parameters {
description
"This grouping defines the scheduling
parameters to be used by the initiator.";
}
}
output {
list response-list {
key "response-index";
description
"Continuity Check Response List.";
leaf response-index {
type uint32;
mandatory true;
}
uses response-header-parameters {
description
"This grouping defines the parameters
from the received echo response header.";
}
uses response-payload-parameters {
description
"This grouping defines the parameters
from the received echo response payload.";
}
uses response-payload-optional-parameters {
description
"This grouping defines the optional
parameters from the received Echo
Response.";
}
}//list response-list
}//output
Nainar, et al. Expires 1 August 2022 [Page 32]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
}//rpc single-path-discovery
rpc multi-path-discovery {
input {
uses echo-header-parameters {
description
"This grouping defines the parameters to be
set in the probe header.";
}
uses echo-payload-parameters {
description
"This grouping defines the parameters to be
set in the probe payload.";
}
uses echo-scheduling-parameters {
description
"This grouping defines the scheduling
parameters to be used by the initiator.";
}
container ddmap-hash {
leaf ddmap-hash {
type multipath-hashtype;
description
"Hashkey type for the DDMAP";
}//leaf ddmap-hash
}
}
output {
list response-list {
key "response-index";
description
"Continuity Check Response List.";
leaf response-index {
type uint32;
mandatory true;
}
uses response-header-parameters {
description
"This grouping defines the parameters
from the received echo response header.";
}
uses response-payload-parameters {
description
"This grouping defines the parameters
from the received echo response payload.";
}
Nainar, et al. Expires 1 August 2022 [Page 33]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
uses response-payload-optional-parameters {
description
"This grouping defines the optional
parameters from the received Echo
Response.";
}
}//list response-list
}//output
}//rpc multi-path-discovery
}
<CODE ENDS>
4. IANA Considerations
To be Updated.
5. Security Considerations
The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
The NETCONF Configuration Access Control Model (NACM) [RFC8341]
[RFC8341] provides the means to restrict access for particular
NETCONF or RESTCONF users to a preconfigured subset of all available
NETCONF or RESTCONF protocol operations and content.
This module defines RPC operations that may be considered sensitive
or vulnerable in some network environments. It is therefore
important to control the access to these operations. These are the
operations and their sensitivity/vulnerability:
* Continuity Check: Generates OAM probe for continuity check and
retrieve the resulting data from the Initiator node.
* Single Path Discovery: Generates OAM probe for single path tracing
and retrieve the resulting data from various transit nodes.
* Multi Path Discovery: Generates OAM probe for equal cost multipath
tracing and retrieve the resulting data from various transit
nodes.
Nainar, et al. Expires 1 August 2022 [Page 34]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
These operations are used to retrieve the data from the device that
needs to execute the OAM command. Unauthorized source access to some
sensitive information in the above data may be used for network
reconnaissance or lead to denial-of-service attacks on both the local
device and the network.
6. Acknowledgement
Some part of the YANG model was inspired by the previous model
developed by Lianshu Zheng, Guangying Zheng, Greg Mirsky, Reshad
Rahman, Faisal Iqbal and the authors would like to acknowledge them.
The authors also would like to thank Loa Andersson for his help with
forming this team and help organizing the work.
7. Contributors
The following are key contributors to this document:
Reshad Rahman, Cisco Systems, Inc.
Zafar Ali, Cisco Systems, Inc.
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
Nainar, et al. Expires 1 August 2022 [Page 35]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8029] Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N.,
Aldrin, S., and M. Chen, "Detecting Multiprotocol Label
Switched (MPLS) Data-Plane Failures", RFC 8029,
DOI 10.17487/RFC8029, March 2017,
<https://www.rfc-editor.org/info/rfc8029>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8287] Kumar, N., Ed., Pignataro, C., Ed., Swallow, G., Akiya,
N., Kini, S., and M. Chen, "Label Switched Path (LSP)
Ping/Traceroute for Segment Routing (SR) IGP-Prefix and
IGP-Adjacency Segment Identifiers (SIDs) with MPLS Data
Planes", RFC 8287, DOI 10.17487/RFC8287, December 2017,
<https://www.rfc-editor.org/info/rfc8287>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
8.2. Informative References
Nainar, et al. Expires 1 August 2022 [Page 36]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
[RFC6425] Saxena, S., Ed., Swallow, G., Ali, Z., Farrel, A.,
Yasukawa, S., and T. Nadeau, "Detecting Data-Plane
Failures in Point-to-Multipoint MPLS - Extensions to LSP
Ping", RFC 6425, DOI 10.17487/RFC6425, November 2011,
<https://www.rfc-editor.org/info/rfc6425>.
[RFC8532] Kumar, D., Wang, Z., Wu, Q., Ed., Rahman, R., and S.
Raghavan, "Generic YANG Data Model for the Management of
Operations, Administration, and Maintenance (OAM)
Protocols That Use Connectionless Communications",
RFC 8532, DOI 10.17487/RFC8532, April 2019,
<https://www.rfc-editor.org/info/rfc8532>.
[RFC8533] Kumar, D., Wang, M., Wu, Q., Ed., Rahman, R., and S.
Raghavan, "A YANG Data Model for Retrieval Methods for the
Management of Operations, Administration, and Maintenance
(OAM) Protocols That Use Connectionless Communications",
RFC 8533, DOI 10.17487/RFC8533, April 2019,
<https://www.rfc-editor.org/info/rfc8533>.
Authors' Addresses
Nagendra Kumar Nainar
Cisco Systems, Inc.
7200 Kit Creek Road
Research Triangle Park, NC 27709
United States of America
Email: naikumar@cisco.com
Carlos Pignataro
Cisco Systems, Inc.
7200 Kit Creek Road
Research Triangle Park, NC 27709-4987
United States of America
Email: cpignata@cisco.com
Madhan Sankaranarayanan
Cisco Systems, Inc.
Manjanam Sansel, Kurunji Nagar
Chinnamanur 625515
Tamil Nadu
India
Email: madsanka@cisco.com
Nainar, et al. Expires 1 August 2022 [Page 37]
Internet-Draft YANG Data Model for MPLS LSP Ping January 2022
Walker Zheng
Huawei
101 Software Avenue, Yuhua District
Nanjing
Jiangsu, 210012
China
Email: zhengguangying@huawei.com
Nainar, et al. Expires 1 August 2022 [Page 38]