cellar                                                    M. Niedermayer
Internet-Draft                                              July 7, 2016
Intended status: Standards Track
Expires: January 8, 2017


                            FF Video Codec 1
                    draft-niedermayer-cellar-ffv1-00

Abstract

   This document defines FFV1, a lossless intra-frame video encoding
   format.  FFV1 is designed to efficiently compress video data in a
   variety of pixel formats.  Compared to uncompressed video, FFV1
   offers storage compression, frame fixity, and self-description, which
   makes FFV1 useful as a preservation or intermediate video format.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 8, 2017.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.



Niedermayer              Expires January 8, 2017                [Page 1]


Internet-Draft                    FFV1                         July 2016


Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Notation and Conventions  . . . . . . . . . . . . . . . . . .   3
     2.1.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Conventions . . . . . . . . . . . . . . . . . . . . . . . . .   3
     3.1.  Arithmetic operators  . . . . . . . . . . . . . . . . . .   4
     3.2.  Assignment operators  . . . . . . . . . . . . . . . . . .   4
     3.3.  Comparison operators  . . . . . . . . . . . . . . . . . .   4
     3.4.  Mathematical functions  . . . . . . . . . . . . . . . . .   5
     3.5.  Order of operation precedence . . . . . . . . . . . . . .   5
     3.6.  Range . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     3.7.  Bitstream functions . . . . . . . . . . . . . . . . . . .   5
   4.  General Description . . . . . . . . . . . . . . . . . . . . .   6
     4.1.  Border  . . . . . . . . . . . . . . . . . . . . . . . . .   6
     4.2.  Median predictor  . . . . . . . . . . . . . . . . . . . .   6
     4.3.  Context . . . . . . . . . . . . . . . . . . . . . . . . .   7
     4.4.  Quantization  . . . . . . . . . . . . . . . . . . . . . .   7
     4.5.  Colorspace  . . . . . . . . . . . . . . . . . . . . . . .   7
       4.5.1.  JPEG2000-RCT  . . . . . . . . . . . . . . . . . . . .   7
     4.6.  Coding of the sample difference . . . . . . . . . . . . .   8
       4.6.1.  Range coding mode . . . . . . . . . . . . . . . . . .   8
       4.6.2.  Huffman coding mode . . . . . . . . . . . . . . . . .  11
   5.  Bitstream . . . . . . . . . . . . . . . . . . . . . . . . . .  13
     5.1.  Configuration Record  . . . . . . . . . . . . . . . . . .  14
       5.1.1.  In AVI File Format  . . . . . . . . . . . . . . . . .  15
       5.1.2.  In ISO/IEC 14496-12 (MP4 File Format) . . . . . . . .  15
       5.1.3.  In NUT File Format  . . . . . . . . . . . . . . . . .  15
     5.2.  Frame . . . . . . . . . . . . . . . . . . . . . . . . . .  15
     5.3.  Slice . . . . . . . . . . . . . . . . . . . . . . . . . .  16
     5.4.  Slice Header  . . . . . . . . . . . . . . . . . . . . . .  16
     5.5.  Slice Content . . . . . . . . . . . . . . . . . . . . . .  17
     5.6.  Line  . . . . . . . . . . . . . . . . . . . . . . . . . .  18
     5.7.  Slice Footer  . . . . . . . . . . . . . . . . . . . . . .  19
     5.8.  Parameters  . . . . . . . . . . . . . . . . . . . . . . .  19
     5.9.  Quantization Tables . . . . . . . . . . . . . . . . . . .  24
       5.9.1.  Restrictions  . . . . . . . . . . . . . . . . . . . .  25
   6.  Appendixes  . . . . . . . . . . . . . . . . . . . . . . . . .  25
     6.1.  Decoder implementation suggestions  . . . . . . . . . . .  26
       6.1.1.  Multi-threading support and independence of slices  .  26
   7.  Changelog . . . . . . . . . . . . . . . . . . . . . . . . . .  26
   8.  ToDo  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
   9.  Bibliography  . . . . . . . . . . . . . . . . . . . . . . . .  27
     9.1.  References  . . . . . . . . . . . . . . . . . . . . . . .  27
   10. Copyright . . . . . . . . . . . . . . . . . . . . . . . . . .  27
     11.1.  URIs . . . . . . . . . . . . . . . . . . . . . . . . . .  27
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  28




Niedermayer              Expires January 8, 2017                [Page 2]


Internet-Draft                    FFV1                         July 2016


1.  Introduction

   The FFV1 video codec is a simple and efficient lossless intra-frame
   only codec.

   The latest version of this document is available at
   <https://raw.github.com/FFmpeg/FFV1/master/ffv1.md>

   This document assumes familiarity with mathematical and coding
   concepts such as Range coding and YCbCr colorspaces.

2.  Notation and Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [1].

2.1.  Definitions

   ESC An ESCape symbol to indicate that the symbol to be stored is too
   large for normal storage and that an alternate storage method.

   MSB Most Significant Bit, the bit that can cause the largest change
   in magnitude of the symbol.

   RCT Reversible Color Transform, a near linear, exactly reversible
   integer transform that converts between RGB and YCbCr representations
   of a sample.

   VLC Variable Length Code.

   RGB A reference to the method of storing the value of a sample by
   using three numeric values that represent Red, Green, and Blue.

   YCbCr A reference to the method of storing the value of a sample by
   using three numeric values that represent the luminance of the sample
   (Y) and the chrominance of the sample (Cb and Cr).

   TBA To Be Announced.  Used in reference to the development of future
   iterations of the FFV1 specification.

3.  Conventions

   Note: the operators and the order of precedence are the same as used
   in the C programming language Section 9.1.






Niedermayer              Expires January 8, 2017                [Page 3]


Internet-Draft                    FFV1                         July 2016


3.1.  Arithmetic operators

   "a + b" means a plus b.

   "a - b" means a minus b.

   "-a" means negation of a.

   "a \* b" means a multiplied by b.

   "a / b" means a divided by b.

   "a & b" means bit-wise "and" of a and b.

   "a | b" means bit-wise "or" of a and b.

   "a >> b" means arithmetic right shift of two's complement integer
   representation of a by b binary digits.

   "a << b" means arithmetic left shift of two's complement integer
   representation of a by b binary digits.

3.2.  Assignment operators

   "a = b" means a is assigned b.

   "a++" is equivalent to a = a + 1.

   "a-" is equivalent to a = a - 1.

   "a += b" is equivalent to a = a + b.

   "a -= b" is equivalent to a = a - b.

3.3.  Comparison operators

   "a > b" means a is greater than b.

   "a >= b" means a is greater than or equal to b.

   "a < b" means a is less than b.

   "a <= b" means a is less than or equal b.

   "a == b" means a is equal to b.

   "a != b" means a is not equalto b.




Niedermayer              Expires January 8, 2017                [Page 4]


Internet-Draft                    FFV1                         July 2016


   "a && b" means boolean logical "and" of a and b.

   "a || b" means boolean logical "or" of a and b.

   "!a" means boolean logical "not".

   "a ? b : c" if a is true, then b, otherwise c.

3.4.  Mathematical functions

   $\lfloor a \rfloor$ the largest integer less than or equal to a

   $\lceil a \rceil$ the smallest integer greater than or equal to a

3.5.  Order of operation precedence

   When order of precedence is not indicated explicitly by use of
   parentheses, operations are evaluated in the following order (from
   top to bottom, operations of same precedence being evaluated from
   left to right).  This order of operations is based on the order of
   operations used in Standard C.

                       a++, a-
                       !a, -a
                       a * b, a / b, a % b
                       a + b, a - b
                       a << b, a >> b
                       a < b, a <= b, a > b, a >= b
                       a == b, a != b
                       a & b
                       a | b
                       a && b
                       a || b
                       a ? b : c
                       a = b, a += b, a -= b

3.6.  Range

   "a...b" means any value starting from a to b, inclusive.

3.7.  Bitstream functions

   "remaining_bits_in_bitstream( )" means the count of remaining bits
   after the current position in the bitstream.  It is computed from the
   NumBytes value multiplied by 8 minus the count of bits already read
   by the bitstream parser.





Niedermayer              Expires January 8, 2017                [Page 5]


Internet-Draft                    FFV1                         July 2016


   "byte_aligned( )" means "remaining_bits_in_bitstream( )" is a
   multiple of 8.

   \pagebreak

4.  General Description

   Each frame is split in 1 to 4 planes (Y, Cb, Cr, Alpha).  In the case
   of the normal YCbCr colorspace the Y plane is coded first followed by
   the Cb and Cr planes, if an Alpha/transparency plane exists, it is
   coded last.  In the case of the JPEG2000-RCT colorspace the lines are
   interleaved to improve caching efficiency since it is most likely
   that the RCT will immediately be converted to RGB during decoding;
   the interleaved coding order is also Y, Cb, Cr, Alpha.

   Samples within a plane are coded in raster scan order (left->right,
   top->bottom).  Each sample is predicted by the median predictor from
   samples in the same plane and the difference is stored see
   Section 4.6.

4.1.  Border

   For the purpose of the predictior and context, samples above the
   coded slice are assumed to be 0; samples to the right of the coded
   slice are identical to the closest left sample; samples to the left
   of the coded slice are identical to the top right sample (if there is
   one), otherwise 0.

                     +---+---+---+---+---+---+---+---+
                     | 0 | 0 |   | 0 | 0 | 0 |   | 0 |
                     | 0 | 0 |   | 0 | 0 | 0 |   | 0 |
                     |   |   |   |   |   |   |   |   |
                     | 0 | 0 |   | a | b | c |   | c |
                     | 0 | a |   | d |   | e |   | e |
                     | 0 | d |   | f | g | h |   | h |
                     +---+---+---+---+---+---+---+---+

4.2.  Median predictor

   median(left, top, left + top - diag)

   left, top, diag are the left, top and left-top samples

   Note, this is also used in Section 9.1.







Niedermayer              Expires January 8, 2017                [Page 6]


Internet-Draft                    FFV1                         July 2016


4.3.  Context

                            +---+----+---+----+
                            |   |    | T |    |
                            |   | tl | t | tr |
                            | L | l  | X |    |
                            +---+----+---+----+

   The quantized sample differences L-l, l-tl, tl-t, t-T, t-tr are used
   as context:

   $context=Q_{0}[l-tl]+\left|Q_{0}\right|(Q_{1}[tl-t]+\left|Q_{1}\right
   |(Q_{2}[t-tr]+\left|Q_{2}\right|(Q_{3}[L-l]+\left|Q_{3}\right|Q_{4}[T
   -t])))$

   If the context is smaller than 0 then -context is used and the
   difference between the sample and its predicted value is encoded with
   a flipped sign.

4.4.  Quantization

   There are 5 quantization tables for the 5 sample differences, both
   the number of quantization steps and their distribution are stored in
   the bitstream.  Each quantization table has exactly 256 entries, and
   the 8 least significant bits of the sample difference are used as
   index:

   $Q_{i}[a-b]=Table_{i}[(a-b)&255]$

4.5.  Colorspace

4.5.1.  JPEG2000-RCT

   $Cb=b-g$

   $Cr=r-g$

   $Y=g+(Cb+Cr)>>2$

   $g=Y-(Cb+Cr)>>2$

   $r=Cr+g$

   $b=Cb+g$

   Section 9.1





Niedermayer              Expires January 8, 2017                [Page 7]


Internet-Draft                    FFV1                         July 2016


4.6.  Coding of the sample difference

   Instead of coding the n+1 bits of the sample difference with
   Huffman-, or Range coding (or n+2 bits, in the case of RCT), only the
   n (or n+1) least significant bits are used, since this is sufficient
   to recover the original sample.  In the equation below, the term
   "bits" represents bits_per_raw_sample+1 for RCT or
   bits_per_raw_sample otherwise:

   $coder_input=\left[\left(sample_difference+2^{bits-
   1}\right)&\left(2^{bits}-1\right)\right]-2^{bits-1}$

4.6.1.  Range coding mode

   Early experimental versions of FFV1 used the CABAC Arithmetic coder
   from Section 9.1 but due to the uncertain patent/royality situation,
   as well as its slightly worse performance, CABAC was replaced by a
   Range coder based on an algorithm defined by _G.  Nigel N.  Martin_
   in 1979 Section 9.1.

4.6.1.1.  Range binary values

   To encode binary digits efficiently a Range coder is used. $C_{i}$ is
   the i-th Context. $B_{i}$ is the i-th byte of the bytestream. $b_{i}$
   is the i-th Range coded binary value, $S_{0,i}$ is the i-th initial
   state, which is 128.  The length of the bytestream encoding n binary
   symbols is $j_{n}$ bytes.

   $r_{i}=\left\lfloor \frac{R_{i}S_{i,C_{i}}}{2^{8}}\right\rfloor$

   $\begin{array}{ccccccccc} S_{i+1,C_{i}}=zero_state_{S_{i,C_{i}}} &
   \wedge & l_{i}=L_{i} & \wedge & t_{i}=R_{i}-r_{i} & \Longleftarrow &
   b_{i}=0 & \Longleftrightarrow & L_{i}



   =one_state_{S_{i,C_{i}}} & \wedge & l_{i}=L_{i}-R_{i}+r_{i} & \wedge
   & t_{i}=r_{i} & \Longleftarrow & b_{i}=1 & \Longleftrightarrow &
   L_{i}\geq R_{i}-r_{i} \end{array}$

   $\begin{array}{ccc} S_{i+1,k}=S_{i,k} & \Longleftarrow & C_{i}\neq k
   \end{array}$

   $\begin{array}{ccccccc} R_{i+1}=2^{8}t_{i} & \wedge &
   L_{i+1}=2^{8}l_{i}+B_{j_{i}} & \wedge & j_{i+1}=j_{i}+1 &
   \Longleftarrow & t_{i}<2^{8}
   R_{i+1}=t_{i} & \wedge & L_{i+1}=l_{i} & \wedge & j_{i+1}=j_{i} &
   \Longleftarrow & t_{i}\geq2^{8} \end{array}$



Niedermayer              Expires January 8, 2017                [Page 8]


Internet-Draft                    FFV1                         July 2016


   $R_{0}=65280$

   $L_{0}=2^{8}B_{0}+B_{1}$

   $j_{0}=2$

4.6.1.2.  Range non binary values

   To encode scalar integers it would be possible to encode each bit
   separately and use the past bits as context.  However that would mean
   255 contexts per 8-bit symbol which is not only a waste of memory but
   also requires more past data to reach a reasonably good estimate of
   the probabilities.  Alternatively assuming a Laplacian distribution
   and only dealing with its variance and mean (as in Huffman coding)
   would also be possible, however, for maximum flexibility and
   simplicity, the chosen method uses a single symbol to encode if a
   number is 0 and if not encodes the number using its exponent,
   mantissa and sign.  The exact contexts used are best described by the
   following code, followed by some comments.

  void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed) {
      int i;
      put_rac(c, state+0, !v);
      if (v) {
          int a= ABS(v);
          int e= log2(a);

          for (i=0; i<e; i++)
              put_rac(c, state+1+MIN(i,9), 1);  //1..10

          put_rac(c, state+1+MIN(i,9), 0);
          for (i=e-1; i>=0; i--)
              put_rac(c, state+22+MIN(i,9), (a>>i)&1); //22..31

          if (is_signed)
              put_rac(c, state+11 + MIN(e, 10), v < 0); //11..21
      }
  }

4.6.1.3.  Initial values for the context model

   At keyframes all Range coder state variables are set to their initial
   state.








Niedermayer              Expires January 8, 2017                [Page 9]


Internet-Draft                    FFV1                         July 2016


4.6.1.4.  State transition table

   $one_state_{i}=default_state_transition_{i}+state_transition_delta_{i
   }$

   $zero_state_{i}=256-one_state_{256-i}$

4.6.1.5.  default_state_transition

       0,  0,  0,  0,  0,  0,  0,  0, 20, 21, 22, 23, 24, 25, 26, 27,

      28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,

      43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,

      58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

      74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

      89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99,100,101,102,103,

     104,105,106,107,108,109,110,111,112,113,114,114,115,116,117,118,

     119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,133,

     134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,

     150,151,152,152,153,154,155,156,157,158,159,160,161,162,163,164,

     165,166,167,168,169,170,171,171,172,173,174,175,176,177,178,179,

     180,181,182,183,184,185,186,187,188,189,190,190,191,192,194,194,

     195,196,197,198,199,200,201,202,202,204,205,206,207,208,209,209,

     210,211,212,213,215,215,216,217,218,219,220,220,222,223,224,225,

     226,227,227,229,229,230,231,232,234,234,235,236,237,238,239,240,

     241,242,243,244,245,246,247,248,248,  0,  0,  0,  0,  0,  0,  0,

4.6.1.6.  alternative state transition table

   The alternative state transition table has been build using iterative
   minimization of frame sizes and generally performs better than the
   default.  To use it, the coder_type has to be set to 2 and the
   difference to the default has to be stored in the parameters.  The




Niedermayer              Expires January 8, 2017               [Page 10]


Internet-Draft                    FFV1                         July 2016


   reference implemenation of FFV1 in FFmpeg uses this table by default
   at the time of this writing when Range coding is used.

       0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,

      59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,

      40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,

      53, 74, 55, 57, 58, 58, 74, 60,101, 61, 62, 84, 66, 66, 68, 69,

      87, 82, 71, 97, 73, 73, 82, 75,111, 77, 94, 78, 87, 81, 83, 97,

      85, 83, 94, 86, 99, 89, 90, 99,111, 92, 93,134, 95, 98,105, 98,

     105,110,102,108,102,118,103,106,106,113,109,112,114,112,116,125,

     115,116,117,117,126,119,125,121,121,123,145,124,126,131,127,129,

     165,130,132,138,133,135,145,136,137,139,146,141,143,142,144,148,

     147,155,151,149,151,150,152,157,153,154,156,168,158,162,161,160,

     172,163,169,164,166,184,167,170,177,174,171,173,182,176,180,178,

     175,189,179,181,186,183,192,185,200,187,191,188,190,197,193,196,

     197,194,195,196,198,202,199,201,210,203,207,204,205,206,208,214,

     209,211,221,212,213,215,224,216,217,218,219,220,222,228,223,225,

     226,224,227,229,240,230,231,232,233,234,235,236,238,239,237,242,

     241,243,242,244,245,246,247,248,249,250,251,252,252,253,254,255,

4.6.2.  Huffman coding mode

   This coding mode uses golomb rice codes.  The VLC code is split into
   2 parts, the prefix stores the most significant bits, the suffix
   stores the k least significant bits or stores the whole number in the
   ESC case.  The end of the bitstream (of the frame) is filled with
   0-bits so that the bitstream contains a multiple of 8 bits.

4.6.2.1.  Prefix







Niedermayer              Expires January 8, 2017               [Page 11]


Internet-Draft                    FFV1                         July 2016


                        +----------------+-------+
                        | bits           | value |
                        +----------------+-------+
                        | 1              | 0     |
                        | 01             | 1     |
                        | ...            | ...   |
                        | 0000 0000 0001 | 11    |
                        | 0000 0000 0000 | ESC   |
                        +----------------+-------+

4.6.2.2.  Suffix

   +-------+-----------------------------------------------------------+
   | non   |           the k least significant bits MSB first          |
   | ESC   |                                                           |
   | ESC   |  the value - 11, in MSB first order, ESC may only be used |
   |       |          if the value cannot be coded as non ESC          |
   +-------+-----------------------------------------------------------+

4.6.2.3.  Examples

                 +-----+-------------------------+-------+
                 |  k  | bits                    | value |
                 +-----+-------------------------+-------+
                 |  0  | "1"                     |     0 |
                 |  0  | "001"                   |     2 |
                 |  2  | "1 00"                  |     0 |
                 |  2  | "1 10"                  |     2 |
                 |  2  | "01 01"                 |     5 |
                 | any | "000000000000 10000000" |   139 |
                 +-----+-------------------------+-------+

4.6.2.4.  Run mode

   Run mode is entered when the context is 0, and left as soon as a
   non-0 difference is found, the level is identical to the predicted
   one, the run and the first different level is coded.

4.6.2.5.  Run length coding

   The run value is encoded in 2 parts, the prefix part stores the more
   significant part of the run as well as adjusting the run_index which
   determines the number of bits in the less significant part of the
   run.  The 2nd part of the value stores the less significant part of
   the run as it is.  The run_index is reset for each plane and slice to
   0.





Niedermayer              Expires January 8, 2017               [Page 12]


Internet-Draft                    FFV1                         July 2016


          log2_run[41]={
           0, 0, 0, 0, 1, 1, 1, 1,
           2, 2, 2, 2, 3, 3, 3, 3,
           4, 4, 5, 5, 6, 6, 7, 7,
           8, 9,10,11,12,13,14,15,
          16,17,18,19,20,21,22,23,
          24,
          };

          if (run_count == 0 && run_mode == 1) {
              if (get_bits1()) {
                  run_count = 1 << log2_run[run_index];
                  if (x + run_count <= w)
                      run_index++;
              } else {
                  if (log2_run[run_index])
                      run_count = get_bits(log2_run[run_index]);
                  else
                      run_count = 0;
                  if (run_index)
                      run_index--;
                  run_mode = 2;
              }
          }

   The log2_run function is also used within Section 9.1.

4.6.2.6.  Level coding

   Level coding is identical to the normal difference coding with the
   exception that the 0 value is removed as it cannot occur:

                              if(diff>0) diff--;
                              encode(diff);

   Note, this is different from JPEG-LS, which doesn't use prediction in
   run mode and uses a different encoding and context model for the last
   difference On a small set of test samples the use of prediction
   slightly improved the compression rate.

5.  Bitstream










Niedermayer              Expires January 8, 2017               [Page 13]


Internet-Draft                    FFV1                         July 2016


   +--------+----------------------------------------------------------+
   | Symbol |                        Defintion                         |
   +--------+----------------------------------------------------------+
   |  u(n)  |         unsigned big endian integer using n bits         |
   |   sg   |  Golomb Rice coded signed scalar symbol coded with the   |
   |        |            method described in Section 4.6.2             |
   |   br   |    Range coded boolean (1-bit) symbol with the method    |
   |        |               described in Section 4.6.1.1               |
   |   ur   | Range coded unsigned scalar symbol coded with the method |
   |        |               described in Section 4.6.1.2               |
   |   sr   |  Range coded signed scalar symbol coded with the method  |
   |        |               described in Section 4.6.1.2               |
   +--------+----------------------------------------------------------+

   The same context which is initialized to 128 is used for all fields
   in the header.

   The following MUST be provided by external means during
   initialization of the decoder:

   "frame_pixel_width" is defined as frame width in pixels.

   "frame_pixel_height" is defined as frame height in pixels.

   Default values at the decoder initialization phase:

   "ConfigurationRecordIsPresent" is set to 0.

5.1.  Configuration Record

   In the case of a bitstream with version >= 3, a configuration record
   is stored in the underlying container, at the track header level.  It
   contains the parameters used for all frames.  The size of the
   configuration record, NumBytes, is supplied by the underlying
   container.

   "c ConfigurationRecord( NumBytes ) { ConfigurationRecordIsPresent = 1
   Parameters( ) while( remaining_bits_in_bitstream( ) > 32 )
   reserved_for_future_use // u(1) configuration_record_crc_parity //
   u(32)"`

   "reserved_for_future_use" has semantics that are reserved for future
   use.  Encoders conforming to this version of this specification
   SHALL NOT write this value.  Decoders conforming to this version of
   this specification SHALL ignore its value.

   "configuration_record_crc_parity" 32 bits that are choosen so that
   the configuration record as a whole has a crc remainder of 0.  This



Niedermayer              Expires January 8, 2017               [Page 14]


Internet-Draft                    FFV1                         July 2016


   is equivalent to storing the crc remainder in the 32-bit parity.  The
   CRC generator polynom used is the standard IEEE CRC polynom
   (0x104C11DB7) with initial value 0.

   This configuration record can be placed in any file format supporting
   configuration records, fitting as much as possible with how the file
   format uses to store configuration records.  The configuration record
   storage place and NumBytes are currently defined and supported by
   this version of this specification for the following container
   formats:

5.1.1.  In AVI File Format

   The Configuration Record extends the stream format chunk ("AVI ",
   "hdlr", "strl", "strf") with the ConfigurationRecord bistream.  See
   Section 9.1 for more information about chunks.

   "NumBytes" is defined as the size, in bytes, of the strf chunk
   indicated in the chunk header minus the size of the stream format
   structure.

5.1.2.  In ISO/IEC 14496-12 (MP4 File Format)

   The Configuration Record extends the sample description box ("moov",
   "trak", "mdia", "minf", "stbl", "stsd") with a "glbl" box which
   contains the ConfigurationRecord bitstream.  See Section 9.1 for more
   information about boxes.

   "NumBytes" is defined as the size, in bytes, of the "glbl" box
   indicated in the box header minus the size of the box header.

5.1.3.  In NUT File Format

   The codec_specific_data element (in "stream_header" packet) contains
   the ConfigurationRecord bitstream.  See Section 9.1 for more
   information about elements.

   "NumBytes" is defined as the size, in bytes, of the
   codec_specific_data element as indicated in the "length" field of
   codec_specific_data

5.2.  Frame

   A frame consists of the keyframe field, parameters (if version <=1),
   and a sequence of independent slices.

   | | |---------------------------------------------------|---:| |Frame
   ( ) { |type| |    keyframe | br| |    if( keyframe &&



Niedermayer              Expires January 8, 2017               [Page 15]


Internet-Draft                    FFV1                         July 2016


   !ConfigurationRecordIsPresent )| | |         Parameters(
   ) | | |    while ( remaining_bits_in_bitstream()
   ) | | |        Slice( ) | | |} | |

5.3.  Slice

   | | |------------------------------------------------------------|:--
   ----| |Slice( ) { | type | |    if( version >= 3
   ) | | |        SliceHeader( ) | | |    SliceContent( ) | | |    if (
   coder_type == 0 ) | | | while ( !byte_aligned() ) | | |
   padding | u(1) | |    if( version >= 3 ) | | |        SliceFooter(
   ) | | |} | |

   "padding" specifies a bit without any significance and used only for
   byte alignment.  MUST be 0.

5.4.  Slice Header

         +------------------------------------------------+------+
         |                SliceHeader( ) {                | type |
         |                    slice_x                     |   ur |
         |                    slice_y                     |   ur |
         |                slice_width - 1                 |   ur |
         |                slice_height - 1                |   ur |
         | for( i = 0; i < quant_table_index_count; i++ ) |      |
         |            quant_table_index [ i ]             |   ur |
         |               picture_structure                |   ur |
         |                    sar_num                     |   ur |
         |                    sar_den                     |   ur |
         |              if( version >= 4 ) {              |      |
         |                 reset_contexts                 |   br |
         |               slice_coding_mode                |   ur |
         |                       }                        |      |
         |                       }                        |      |
         +------------------------------------------------+------+

   "slice_x" indicates the x position on the slice raster formed by
   num_h_slices.  Inferred to be 0 if not present.

   "slice_y" indicates the y position on the slice raster formed by
   num_v_slices.  Inferred to be 0 if not present.

   "slice_width" indicates the width on the slice raster formed by
   num_h_slices.  Inferred to be 1 if not present.

   "slice_height" indicates the height on the slice raster formed by
   num_v_slices.  Inferred to be 1 if not present.




Niedermayer              Expires January 8, 2017               [Page 16]


Internet-Draft                    FFV1                         July 2016


   "quant_table_index_count" is defined as 1 + ( ( chroma_planes ||
   version <= 3 ) ? 1 : 0 ) + ( alpha_plane ? 1 : 0 ).

   "quant_table_index" indicates the index to select the quantization
   table set and the initial states for the slice.  Inferred to be 0 if
   not present.

   "picture_structure" specifies the picture structure.  Inferred to be
   0 if not present.

                    +-------+-------------------------+
                    | value |  picure structure used  |
                    +-------+-------------------------+
                    |   0   |         unknown         |
                    |   1   |     top field first     |
                    |   2   |    bottom field first   |
                    |   3   |       progressive       |
                    | Other | reserved for future use |
                    +-------+-------------------------+

   "sar_num" specifies the sample aspect ratio numerator.  Inferred to
   be 0 if not present.  MUST be 0 if sample aspect ratio is unknown.

   "sar_den" specifies the sample aspect ratio numerator.  Inferred to
   be 0 if not present.  MUST be 0 if sample aspect ratio is unknown.

   "reset_contexts" indicates if slice contexts must be reset.  Inferred
   to be 0 if not present.

   "slice_coding_mode" indicates the slice coding mode.  Inferred to be
   0 if not present.

                  +-------+----------------------------+
                  | value |     slice coding mode      |
                  +-------+----------------------------+
                  |   0   | normal Range Coding or VLC |
                  |   1   |          raw PCM           |
                  | Other |  reserved for future use   |
                  +-------+----------------------------+

5.5.  Slice Content

   | | |--------------------------------------------------------------|:
   ------| |SliceContent( ) { | type | |    if( colorspace_type == 0)
   { | | |        for( p = 0; p < primary_color_count; p++ )
   { | | |            for( y = 0; y < plane_pixel_height[ p ]; y++
   ) | | |                Line( p, y ) | | |    } else if(
   colorspace_type == 1 ) { | | |        for( y = 0; y <



Niedermayer              Expires January 8, 2017               [Page 17]


Internet-Draft                    FFV1                         July 2016


   slice_pixel_height; y++ ) | | |            for( p = 0; p <
   primary_color_count; p++ ) { | | |                Line( p, y
   ) | | |    } | | |} | |

   "primary_color_count" is defined as 1 + ( chroma_planes ? 2 : 0 ) + (
   alpha_plane ? 1 : 0 ).

   "plane_pixel_height[ p ]" is the height in pixels of plane p of the
   slice.
   plane_pixel_height[ 0 ] and plane_pixel_height[ 1 + ( chroma_planes ?
   2 : 0 ) ] value is slice_pixel_height
   if chroma_planes is set to 1, plane_pixel_height[ 1 ] and
   plane_pixel_height[ 2 ] value is $\lceil slice_pixel_height /
   v_chroma_subsample \rceil$

   "slice_pixel_height" is the height in pixels of the slice.
   Its value is $\lfloor ( slice_y + slice_height ) * slice_pixel_height
   / num_v_slices \rfloor - slice_pixel_y$

   "slice_pixel_y" is the slice vertical position in pixels.
   Its value is $\lfloor slice_y * frame_pixel_height / num_v_slices
   \rfloor$

5.6.  Line

   | | |--------------------------------------------------------------|:
   ------| |Line( p, y ) { | type | |    if( colorspace_type == 0)
   { | | |        for( x = 0; x < plane_pixel_width[ p ]; x++
   ) | | |            Pixel( p, y, x ) | | |    } else if(
   colorspace_type == 1 ) { | | |        for( x = 0; x <
   slice_pixel_width; x++ ) | | |            Pixel( p, y, x
   ) | | |    } | | |} | |

   "plane_pixel_width[ p ]" is the width in pixels of plane p of the
   slice.
   plane_pixel_width[ 0 ] and plane_pixel_width[ 1 + ( chroma_planes ? 2
   : 0 ) ] value is slice_pixel_width
   if chroma_planes is set to 1, plane_pixel_width[ 1 ] and
   plane_pixel_width[ 2 ] value is $\lceil slice_pixel_width /
   v_chroma_subsample \rceil$

   "slice_pixel_width" is the width in pixels of the slice.
   Its value is $\lfloor ( slice_x + slice_width ) * slice_pixel_width /
   num_h_slices \rfloor - slice_pixel_x$

   "slice_pixel_x" is the slice horizontal position in pixels.
   Its value is $\lfloor slice_x * frame_pixel_width / num_h_slices
   \rfloor$



Niedermayer              Expires January 8, 2017               [Page 18]


Internet-Draft                    FFV1                         July 2016


5.7.  Slice Footer

   Note: slice footer is always byte aligned.

   | | |------------------------------------------------------------|:--
   ----| |SliceFooter( ) { | type | |    slice_size | u(24) | |    if(
   ec ) { | | |        error_status | u(8) | |        slice_crc_parity |
   u(32) | |    } | | |} | |

   "slice_size" indicates the size of the slice in bytes.  Note: this
   allows finding the start of slices before previous slices have been
   fully decoded.  And allows this way parallel decoding as well as
   error resilience.

   "error_status" specifies the error status.

             +-------+--------------------------------------+
             | value |             error status             |
             +-------+--------------------------------------+
             |   0   |               no error               |
             |   1   |  slice contains a correctable error  |
             |   2   | slice contains a uncorrectable error |
             | Other |       reserved for future use        |
             +-------+--------------------------------------+

   "slice_crc_parity" 32 bits that are choosen so that the slice as a
   whole has a crc remainder of 0.  This is equivalent to storing the
   crc remainder in the 32-bit parity.  The CRC generator polynom used
   is the standard IEEE CRC polynom (0x104C11DB7) with initial value 0.

5.8.  Parameters




















Niedermayer              Expires January 8, 2017               [Page 19]


Internet-Draft                    FFV1                         July 2016


           +--------------------------------------------+------+
           |              Parameters( ) {               | type |
           |                  version                   |   ur |
           |             if( version >= 3 )             |      |
           |               micro_version                |   ur |
           |                 coder_type                 |   ur |
           |            if( coder_type > 1 )            |      |
           |         for( i = 1; i < 256; i++ )         |      |
           |        state_transition_delta[ i ]         |   sr |
           |              colorspace_type               |   ur |
           |             if( version >= 1 )             |      |
           |            bits_per_raw_sample             |   ur |
           |               chroma_planes                |   br |
           |         log2( h_chroma_subsample )         |   ur |
           |         log2( v_chroma_subsample )         |   ur |
           |                alpha_plane                 |   br |
           |            if( version >= 3 ) {            |      |
           |              num_h_slices - 1              |   ur |
           |              num_v_slices - 1              |   ur |
           |             quant_table_count              |   ur |
           |                     }                      |      |
           |  for( i = 0; i < quant_table_count; i++ )  |      |
           |           QuantizationTable( i )           |      |
           |            if( version >= 3 ) {            |      |
           | for( i = 0; i < quant_table_count; i++ ) { |      |
           |                states_coded                |   br |
           |             if( states_coded )             |      |
           | for( j = 0; j < context_count[ i ]; j++ )  |      |
           |    for( k = 0; k < CONTEXT_SIZE; k++ )     |      |
           |     initial_state_delta[ i ][ j ][ k ]     |   sr |
           |                     }                      |      |
           |                     ec                     |   ur |
           |                   intra                    |   ur |
           |                     }                      |      |
           |                     }                      |      |
           +--------------------------------------------+------+

   "version" specifies the version of the bitstream.  Each version is
   incompatible with others versions: decoders SHOULD reject a file due
   to unknown version.  Decoders SHOULD reject a file with version =< 1
   && ConfigurationRecordIsPresent == 1.  Decoders SHOULD reject a file
   with version >= 3 && ConfigurationRecordIsPresent == 0.









Niedermayer              Expires January 8, 2017               [Page 20]


Internet-Draft                    FFV1                         July 2016


                    +-------+-------------------------+
                    | value | version                 |
                    +-------+-------------------------+
                    | 0     | FFV1 version 0          |
                    | 1     | FFV1 version 1          |
                    | 2     | reserved*               |
                    | 3     | FFV1 version 3          |
                    | Other | reserved for future use |
                    +-------+-------------------------+

   * Version 2 was never enabled in the encoder thus version 2 files
   SHOULD NOT exist, and this document does not describe them to keep
   the text simpler.

   "micro_version" specifies the micro-version of the bitstream.  After
   a version is considered stable (a micro-version value is assigned to
   be the first stable variant of a specific version), each new micro-
   version after this first stable variant is compatible with the
   previous micro-version: decoders SHOULD NOT reject a file due to an
   unknown micro-version equal or above the micro-version considered as
   stable.

   Meaning of micro_version for version 3:

                    +-------+-------------------------+
                    | value |      micro_version      |
                    +-------+-------------------------+
                    | 0...3 |        reserved*        |
                    |   4   |   first stable variant  |
                    | Other | reserved for future use |
                    +-------+-------------------------+

   * were development versions which may be incompatible with the stable
   variants.

   Meaning of micro_version for version 4 (note: at the time of writting
   of this specification, version 4 is not considered stable so the
   first stable version value is to be annonced in the future):

                   +---------+-------------------------+
                   |  value  |      micro_version      |
                   +---------+-------------------------+
                   | 0...TBA |        reserved*        |
                   |   TBA   |   first stable variant  |
                   |  Other  | reserved for future use |
                   +---------+-------------------------+





Niedermayer              Expires January 8, 2017               [Page 21]


Internet-Draft                    FFV1                         July 2016


   * were development versions which may be incompatible with the stable
   variants.

   "coder_type" specifies the coder used

        +-------+-------------------------------------------------+
        | value |                    coder used                   |
        +-------+-------------------------------------------------+
        |   0   |                   Golomb Rice                   |
        |   1   | Range Coder with default state transition table |
        |   2   |  Range Coder with custom state transition table |
        | Other |             reserved for future use             |
        +-------+-------------------------------------------------+

   "state_transition_delta" specifies the Range coder custom state
   transition table.  If state_transition_delta is not present in the
   bitstream, all Range coder custom state transition table elements are
   assumed to be 0.

   "colorspace_type" specifies the color space.

                    +-------+-------------------------+
                    | value |     color space used    |
                    +-------+-------------------------+
                    |   0   |          YCbCr          |
                    |   1   |      JPEG 2000 RCT      |
                    | Other | reserved for future use |
                    +-------+-------------------------+

   "chroma_planes" indicates if chroma (color) planes are present.

                 +-------+-------------------------------+
                 | value |        color space used       |
                 +-------+-------------------------------+
                 |   0   | chroma planes are not present |
                 |   1   |   chroma planes are present   |
                 +-------+-------------------------------+

   "bits_per_raw_sample" indicates the number of bits for each luma and
   chroma sample.  Inferred to be 8 if not present.

        +-------+-------------------------------------------------+
        | value |       bits for each luma and chroma sample      |
        +-------+-------------------------------------------------+
        |   0   |                    reserved*                    |
        | Other | the actual bits for each luma and chroma sample |
        +-------+-------------------------------------------------+




Niedermayer              Expires January 8, 2017               [Page 22]


Internet-Draft                    FFV1                         July 2016


   * Encoders MUST NOT store bits_per_raw_sample = 0 Decoders SHOULD
   accept and interpret bits_per_raw_sample = 0 as 8.

   "h_chroma_subsample" indicates the subsample factor between luma and
   chroma width ($chroma_width=2^{-log2_h_chroma_subsample}luma_width$)

   "v_chroma_subsample" indicates the subsample factor between luma and
   chroma height
   ($chroma_height=2^{-log2_v_chroma_subsample}luma_height$)

   alpha_plane
      indicates if a transparency plane is present.

               +-------+-----------------------------------+
               | value |          color space used         |
               +-------+-----------------------------------+
               |   0   | transparency plane is not present |
               |   1   |   transparency plane is present   |
               +-------+-----------------------------------+

   "num_h_slices" indicates the number of horizontal elements of the
   slice raster.  Inferred to be 1 if not present.

   "num_v_slices" indicates the number of vertical elements of the slice
   raster.  Inferred to be 1 if not present.

   "quant_table_count" indicates the number of quantization table sets.
   Inferred to be 1 if not present.

   "states_coded" indicates if the respective quantization table set has
   the initial states coded.  Inferred to be 0 if not present.

   +-------+-----------------------------------------------------------+
   | value |                       initial states                      |
   +-------+-----------------------------------------------------------+
   |   0   |  initial states are not present and are assumed to be all |
   |       |                            128                            |
   |   1   |                 initial states are present                |
   +-------+-----------------------------------------------------------+

   "initial_state_delta" [ i ][ j ][ k ] indicates the initial Range
   coder state, it is encoded using k as context index and pred = j ?
   initial_states[ i ][j - 1][ k ] : 128 initial_state[ i ][ j ][ k ] =
   ( pred + initial_state_delta[ i ][ j ][ k ] ) & 255

   "ec" indicates the error detection/correction type.





Niedermayer              Expires January 8, 2017               [Page 23]


Internet-Draft                    FFV1                         July 2016


           +-------+-------------------------------------------+
           | value |      error detection/correction type      |
           +-------+-------------------------------------------+
           |   0   |       32bit CRC on the global header      |
           |   1   | 32bit CRC per slice and the global header |
           | Other |          reserved for future use          |
           +-------+-------------------------------------------+

   "intra" indicates the relationship between frames.  Inferred to be 0
   if not present.

   +-------+-----------------------------------------------------------+
   | value |                        relationship                       |
   +-------+-----------------------------------------------------------+
   |   0   |    frames are independent or dependent (key and non key   |
   |       |                          frames)                          |
   |   1   |          frames are independent (key frames only)         |
   | Other |                  reserved for future use                  |
   +-------+-----------------------------------------------------------+

5.9.  Quantization Tables

   The quantization tables are stored by storing the number of equal
   entries -1 of the first half of the table using the method described
   in Section 4.6.1.2.  The second half doesn't need to be stored as it
   is identical to the first with flipped sign.

   example:

   Table: 0 0 1 1 1 1 2 2-2-2-2-1-1-1-1 0

   Stored values: 1, 3, 1

              +---------------------------------------------+
              |           QuantizationTable( i ) {          |
              |                  scale = 1                  |
              | for( j = 0; j < MAX_CONTEXT_INPUTS; j++ ) { |
              |  QuantizationTablePerContext( i, j, scale ) |
              |     scale *= 2 * len_count[ i ][ j ] - 1    |
              |                      }                      |
              |    context_count[ i ] = ( scale + 1 ) / 2   |
              +---------------------------------------------+

   MAX_CONTEXT_INPUTS is 5.







Niedermayer              Expires January 8, 2017               [Page 24]


Internet-Draft                    FFV1                         July 2016


   +------------------------------------------------------------+------+
   |         QuantizationTablePerContext(i, j, scale) {         | type |
   |                           v = 0                            |      |
   |                  for( k = 0; k < 128; ) {                  |      |
   |                          len - 1                           |  sr  |
   |                for( a = 0; a < len; a++ ) {                |      |
   |           quant_tables[ i ][ j ][ k ] = scale* v           |      |
   |                            k++                             |      |
   |                             }                              |      |
   |                            v++                             |      |
   |                             }                              |      |
   |                for( k = 1; k < 128; k++ ) {                |      |
   | quant_tables[ i ][ j ][ 256 - k ] = -quant_tables[ i ][ j  |      |
   |                           ][ k ]                           |      |
   |                             }                              |      |
   |  quant_tables[ i ][ j ][ 128 ] = -quant_tables[ i ][ j ][  |      |
   |                           127 ]                            |      |
   |                  len_count[ i ][ j ] = v                   |      |
   |                             }                              |      |
   +------------------------------------------------------------+------+

   "quant_tables" indicates the quantification table values.

   "context_count" indicates the count of contexts.

5.9.1.  Restrictions

   To ensure that fast multithreaded decoding is possible, starting
   version 3 and if frame_pixel_width * frame_pixel_height is more than
   101376, slice_width * slice_height MUST be less or equal to
   num_h_slices * num_v_slices / 4.  Note: 101376 is the frame size in
   pixels of a 352x288 frame also known as CIF ("Common Intermediate
   Format") frame size format.

   For each frame, each position in the slice raster MUST be filled by
   one and only one slice of the frame (no missing slice position, no
   slice overlapping).

   For each Frame with keyframe value of 0, each slice MUST have the
   same value of slice_x, slice_y, slice_width, slice_height as a slice
   in the previous frame, except if reset_contexts is 1.

6.  Appendixes








Niedermayer              Expires January 8, 2017               [Page 25]


Internet-Draft                    FFV1                         July 2016


6.1.  Decoder implementation suggestions

6.1.1.  Multi-threading support and independence of slices

   The bitstream is parsable in two ways: in sequential order as
   described in this document or with the pre-analysis of the footer of
   each slice.  Each slice footer contains a slice_size field so the
   boundary of each slice is computable without having to parse the
   slice content.  That allows multi-threading as well as independence
   of slice content (a bitstream error in a slice header or slice
   content has no impact on the decoding of the other slices).

   After having checked keyframe field, a decoder SHOULD parse
   slice_size fields, from slice_size of the last slice at the end of
   the frame up to slice_size of the first slice at the beginning of the
   frame, before parsing slices, in order to have slices boundaries.  A
   decoder MAY fallback on sequential order e.g. in case of corrupted
   frame (frame size unknown, slice_size of slices not coherant...) or
   if there is no possibility of seek into the stream.

   Architecture overwiew of slices in a frame:

    +-----------------------------------------------------------------+
    | first slice header                                              |
    | first slice content                                             |
    | first slice footer                                              |
    | --------------------------------------------------------------- |
    | second slice header                                             |
    | second slice content                                            |
    | second slice footer                                             |
    | --------------------------------------------------------------- |
    | ...                                                             |
    | --------------------------------------------------------------- |
    | last slice header                                               |
    | last slice content                                              |
    | last slice footer                                               |
    +-----------------------------------------------------------------+

7.  Changelog

   See <https://github.com/FFmpeg/FFV1/commits/master>

8.  ToDo

   o  mean,k estimation for the golomb rice codes






Niedermayer              Expires January 8, 2017               [Page 26]


Internet-Draft                    FFV1                         July 2016


9.  Bibliography

9.1.  References

   RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels
   <https://www.ietf.org/rfc/rfc2119.txt>

   ISO/IEC 9899 - Programming languages - C <http://www.open-
   std.org/JTC1/SC22/WG14/www/standards>

   JPEG-LS FCD 14495 <http://www.jpeg.org/public/fcd14495p.pdf>

   H.264 Draft <http://bs.hhi.de/~wiegand/JVT-G050.pdf>

   HuffYuv <http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html>

   FFmpeg <http://ffmpeg.org>

   JPEG2000 <http://www.jpeg.org/jpeg2000/>

   Range encoding: an algorithm for removing redundancy from a digitised
   message.  Presented by G.  Nigel N.  Martin at the Video & Data
   Recording Conference, IBM UK Scientific Center held in Southampton
   July 24-27 1979.

   AVI RIFF File Format <https://msdn.microsoft.com/en-
   us/library/windows/desktop/dd318189%28v=vs.85%29.aspx>

   Information technology Coding of audio-visual objects Part 12: ISO
   base media file format
   <http://www.iso.org/iso/iso_catalogue/catalogue_tc/
   catalogue_detail.htm?csnumber=61988>

   NUT Open Container Format <http://www.ffmpeg.org/~michael/nut.txt>

10.  Copyright

   Copyright 2003-2013 Michael Niedermayer <michaelni@gmx.at> This text
   can be used under the GNU Free Documentation License or GNU General
   Public License.  See <http://www.gnu.org/licenses/fdl.txt>.

11.  References

11.1.  URIs

   [1] https://tools.ietf.org/html/rfc2119





Niedermayer              Expires January 8, 2017               [Page 27]


Internet-Draft                    FFV1                         July 2016


Author's Address

   Michael Niedermayer
















































Niedermayer              Expires January 8, 2017               [Page 28]