Network Working Group                                           J. Lee
    Internet Draft                                                  J. Lee
    Intended status: Informational                                  J. Kim
    Expires: March 12, 2010                                        D. Kwon
                                                                    C. Kim
                                                                      NSRI
                                                         September 8, 2009
    
    
                  A Description of the ARIA Encryption Algorithm
                              draft-nsri-aria-02.txt
    
    
    Status of this Memo
    
       This Internet-Draft is submitted to IETF in full conformance with the
       provisions of BCP 78 and BCP 79.
    
       Internet-Drafts are working documents of the Internet Engineering
       Task Force (IETF), its areas, and its working groups.  Note that
       other groups may also distribute working documents as Internet-Drafts.
    
       Internet-Drafts are draft documents valid for a maximum of six months
       and may be updated, replaced, or obsoleted by other documents at any
       time.  It is inappropriate to use Internet-Drafts as reference
       material or to cite them other than as "work in progress."
    
       The list of current Internet-Drafts can be accessed at
       http://www.ietf.org/ietf/1id-abstracts.txt
    
       The list of Internet-Draft Shadow Directories can be accessed at
       http://www.ietf.org/shadow.html
    
       This Internet-Draft will expire on March 12, 2010.
    
    Copyright Notice
    
       Copyright (c) 2009 IETF Trust and the persons identified as the
       document authors. All rights reserved.
    
       This document is subject to BCP 78 and the IETF Trust's Legal
       Provisions Relating to IETF Documents in effect on the date of
       publication of this document (http://trustee.ietf.org/license-info).
       Please review these documents carefully, as they describe your rights
       and restrictions with respect to this document.
    
    Abstract
    
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 1]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       This document describes the ARIA encryption algorithm. ARIA is a 128-
       bit block cipher with 128-, 192-, and 256-bit keys. The algorithm
       consists of key scheduling part and data randomizing part.
    
    1. Introduction
    
    1.1. ARIA Overview
    
       ARIA is a general-purpose block cipher algorithm developed by Korean
       cryptographers in 2003. It is an iterated block cipher with 128-,
       192-, and 256-bit keys and encrypts 128-bit blocks in 12, 14, and 16
       rounds, depending on the key size. It is secure and suitable for most
       software and hardware implementations on 32-bit and 8-bit processors.
       It was established as a Korean standard block cipher algorithm in
       2004 [ARIAKS] and has been widely used in Korea, especially for
       government-to-public services. It was included in PKCS #11 in 2007
       [ARIAPKCS].
    
    2. Algorithm Description
    
        The algorithm consists of key scheduling part and data randomizing
        part.
    
    2.1. Notations
    
       The following notations are used in this document to describe the
       algorithm.
    
       ^   bitwise XOR operation.
       <<< left circular rotation.
       >>> right circular rotation.
       ||  concatenation of bit strings.
       0x  hexadecimal representation
    
    
    2.2. Key Scheduling Part
    
       Let K denote a master key of 128, 192 or 256 bits. Given the master
       key K, we first define 128-bit values KL and KR as follows.
    
       KL || KR = K || 0 ... 0,
    
       where the number of zeros is 128, 64 or 0, depending on the size of K.
       Then, we define four 128-bit values W0, W1, W2 and W3 as the
       intermediate round values appearing in the encryption of KL || KR by
       a 3-round 256-bit Feistel cipher.
    
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 2]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       W0 = KL,
       W1 = FO(W0, CK1) ^ KR,
       W2 = FE(W1, CK2) ^ W0,
       W3 = FO(W2, CK3) ^ W1.
    
       Here, FO and FE, respectively called odd and even round functions,
       are defined in Section 2.4.1. CK1, CK2 and CK3 are 128-bit constants,
       taking one of the following values.
    
       C1 =  0x517cc1b727220a94fe13abe8fa9a6ee0
       C2 =  0x6db14acc9e21c820ff28b1d5ef5de2b0
       C3 =  0xdb92371d2126e9700324977504e8c90e
    
       These values are obtained from the first 128*3 bits of the fractional
       part of 1/PI, where PI is the circle ratio. Now the constants CK1,
       CK2, and CK3 are defined by the following table.
    
           Key size  CK1  CK2  CK3
             128     C1   C2   C3
             192     C2   C3   C1
             256     C3   C1   C2
    
       For example, if the key size is 192 bits, CK1 = C2, CK2 = C3 and CK3
       = C1.
    
       Once W0, W1, W2 and W3 are determined, we compute encryption round
       keys ek1,...,ek17 as follows.
    
       ek1  = W0 ^(W1 >>> 19),
       ek2  = W1 ^(W2 >>> 19),
       ek3  = W2 ^(W3 >>> 19),
       ek4  = (W0 >>> 19) ^ W3,
       ek5  = W0 ^ (W1 >>> 31),
       ek6  = W1 ^ (W2 >>> 31),
       ek7  = W2 ^ (W3 >>> 31),
       ek8  = (W0 >>> 31) ^ W3,
       ek9  = W0 ^ (W1 <<< 61),
       ek10 = W1 ^ (W2 <<< 61),
       ek11 = W2 ^ (W3 <<< 61),
       ek12 = (W0 <<< 61) ^ W3,
       ek13 = W0 ^ (W1 <<< 31),
       ek14 = W1 ^ (W2 <<< 31),
       ek15 = W2 ^ (W3 <<< 31),
       ek16 = (W0 <<< 31) ^ W3,
       ek17 = W0 ^ (W1 <<< 19).
    
       The number of rounds depends on the size of the master key as follows.
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 3]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
    
            Key size     Number of Rounds
             128              12
             192              14
             256              16
    
       Due to an extra key addition layer in the last round, 12-, 14-, and
       16-round algorithms require 13, 15, and 17 round keys, respectively.
    
       Decryption round keys are derived from the encryption round keys.
    
       dk1 = ek{n+1},
       dk2 = A(ek{n}),
       dk3 = A(ek{n-1}),
       ...,
       dk{n}= A(ek2),
       dk{n+1}= ek1.
    
        Here, A and n denote the diffusion layer of ARIA and the number of
        rounds, respectively. The diffusion layer A is defined in Section
        2.4.3.
    
    2.3 Data Randomizing Part
    
       The data randomizing part of the ARIA algorithm consists of the
       encryption and decryption processes. The encryption and decryption
       processes use functions FO, FE, A, SL1, and SL2. These functions are
       defined in Section 2.4.
    
    2.3.1. Encryption Process
    
    2.3.1.1. Encryption for 128-bit keys
    
       Let P be a 128-bit plaintext and K be a 128-bit master key. Let
       ek1,..., ek13 be the encryption round keys defined by K. Then the
       ciphertext C is computed by the following algorithm.
    
       P1  = FO(P  , ek1 );              // Round 1
       P2  = FE(P1 , ek2 );              // Round 2
       P3  = FO(P2 , ek3 );              // Round 3
       P4  = FE(P3 , ek4 );              // Round 4
       P5  = FO(P4 , ek5 );              // Round 5
       P6  = FE(P5 , ek6 );              // Round 6
       P7  = FO(P6 , ek7 );              // Round 7
       P8  = FE(P7 , ek8 );              // Round 8
       P9  = FO(P8 , ek9 );              // Round 9
       P10 = FE(P9 , ek10);              // Round 10
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 4]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       P11 = FO(P10, ek11);              // Round 11
       C   = SL2(P11 ^ ek12) ^ ek13;     // Round 12
    
    2.3.1.2. Encryption for 192-bit keys
    
       Let P be a 128-bit plaintext and K be a 192-bit master key. Let
       ek1,..., ek15 be the encryption round keys defined by K. Then the
       ciphertext C is computed by the following algorithm.
    
       P1  = FO(P  , ek1 );              // Round 1
       P2  = FE(P1 , ek2 );              // Round 2
       P3  = FO(P2 , ek3 );              // Round 3
       P4  = FE(P3 , ek4 );              // Round 4
       P5  = FO(P4 , ek5 );              // Round 5
       P6  = FE(P5 , ek6 );              // Round 6
       P7  = FO(P6 , ek7 );              // Round 7
       P8  = FE(P7 , ek8 );              // Round 8
       P9  = FO(P8 , ek9 );              // Round 9
       P10 = FE(P9 , ek10);              // Round 10
       P11 = FO(P10, ek11);              // Round 11
       P12 = FE(P11, ek12);              // Round 12
       P13 = FO(P12, ek13);              // Round 13
       C   = SL2(P13 ^ ek14) ^ ek15;     // Round 14
    
    2.3.1.3. Encryption for 256-bit keys
    
       Let P be a 128-bit plaintext and K be a 256-bit master key. Let
       ek1,..., ek17 be the encryption round keys defined by K. Then the
       ciphertext C is computed by the following algorithm.
    
       P1 = FO(P  , ek1 );              // Round 1
       P2 = FE(P1 , ek2 );              // Round 2
       P3 = FO(P2 , ek3 );              // Round 3
       P4 = FE(P3 , ek4 );              // Round 4
       P5 = FO(P4 , ek5 );              // Round 5
       P6 = FE(P5 , ek6 );              // Round 6
       P7 = FO(P6 , ek7 );              // Round 7
       P8 = FE(P7 , ek8 );              // Round 8
       P9 = FO(P8 , ek9 );              // Round 9
       P10= FE(P9 , ek10);              // Round 10
       P11= FO(P10, ek11);              // Round 11
       P12= FE(P11, ek12);              // Round 12
       P13= FO(P12, ek13);              // Round 13
       P14= FE(P13, ek14);              // Round 14
       P15= FO(P14, ek15);              // Round 15
       C  = SL2(P15 ^ ek16) ^ ek17;     // Round 16
    
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 5]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
    2.3.2 Decryption Process
    
       The decryption process of ARIA is the same as the encryption process
       except that encryption round keys are replaced by decryption round
       keys. For example, encryption round keys ek1,..., ek13 of the 12-
       round ARIA algorithm are replaced by decryption round keys dk1,...,
       dk13, respectively.
    
    2.4 Components of ARIA
    
    2.4.1. Round Functions
    
       There are two types of round functions for ARIA. One is called an odd
       round function, and denoted FO. It takes as input a pair (D,RK) of
       two 128-bit strings and outputs
    
       FO(D,RK) = A(SL1(D ^ RK)).
    
       The other is called an even round function, and denoted FE. It takes
       as input a pair (D,RK) of two 128-bit strings and outputs
    
       FE(D,RK) = A(SL2(D ^ RK)).
    
       Functions SL1 and SL2, called substitution layers, are described in
       Section 2.4.2. Function A, called a diffusion layer, is described in
       Section 2.4.3.
    
    2.4.2. Substitution Layers
    
       ARIA has two types of substitution layers which alternate between
       rounds. Type 1 is used in the odd rounds, and type 2 in the even
       rounds.
    
       Type 1 substitution layer SL1 is an algorithm which takes as input a
       16-byte string x0 || x1 ||...|| x15 and outputs a 16-byte string y0
       || y1 ||...|| y15 as follows.
    
       y0 = SB1(x0),  y1 = SB2(x1),  y2 = SB3(x2),  y3 = SB4(x3),
       y4 = SB1(x4),  y5 = SB2(x5),  y6 = SB3(x6),  y7 = SB4(x7),
       y8 = SB1(x8),  y9 = SB2(x9),  y10= SB3(x10), y11= SB4(x11),
       y12= SB1(x12), y13= SB2(x13), y14= SB3(x14), y15= SB4(x15).
    
       Type 2 substitution layer SL2 is an algorithm which takes as input a
       16-byte string x0 || x1 ||...|| x15 and outputs a 16-byte string y0
       || y1 ||...|| y15 as follows.
    
       y0 = SB3(x0),  y1 = SB4(x1),  y2 = SB1(x2),  y3 = SB2(x3),
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 6]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       y4 = SB3(x4),  y5 = SB4(x5),  y6 = SB1(x6),  y7 = SB2(x7),
       y8 = SB3(x8),  y9 = SB4(x9),  y10= SB1(x10), y11= SB2(x11),
       y12= SB3(x12), y13= SB4(x13), y14= SB1(x14), y15= SB2(x15).
    
       Here, SB1, SB2, SB3, and SB4 are S-boxes which take as input an 8-bit
       string and output an 8-bit string. These S-boxes are defined by the
       following look-up tables.
    
           SB1:
               0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
            00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
            10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
            20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
            30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
            40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
            50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
            60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
            70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
            80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
            90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
            a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
            b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
            c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
            d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
            e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
            f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
    
           SB2:
               0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
            00 e2 4e 54 fc 94 c2 4a cc 62 0d 6a 46 3c 4d 8b d1
            10 5e fa 64 cb b4 97 be 2b bc 77 2e 03 d3 19 59 c1
            20 1d 06 41 6b 55 f0 99 69 ea 9c 18 ae 63 df e7 bb
            30 00 73 66 fb 96 4c 85 e4 3a 09 45 aa 0f ee 10 eb
            40 2d 7f f4 29 ac cf ad 91 8d 78 c8 95 f9 2f ce cd
            50 08 7a 88 38 5c 83 2a 28 47 db b8 c7 93 a4 12 53
            60 ff 87 0e 31 36 21 58 48 01 8e 37 74 32 ca e9 b1
            70 b7 ab 0c d7 c4 56 42 26 07 98 60 d9 b6 b9 11 40
            80 ec 20 8c bd a0 c9 84 04 49 23 f1 4f 50 1f 13 dc
            90 d8 c0 9e 57 e3 c3 7b 65 3b 02 8f 3e e8 25 92 e5
            a0 15 dd fd 17 a9 bf d4 9a 7e c5 39 67 fe 76 9d 43
            b0 a7 e1 d0 f5 68 f2 1b 34 70 05 a3 8a d5 79 86 a8
            c0 30 c6 51 4b 1e a6 27 f6 35 d2 6e 24 16 82 5f da
            d0 e6 75 a2 ef 2c b2 1c 9f 5d 6f 80 0a 72 44 9b 6c
            e0 90 0b 5b 33 7d 5a 52 f3 61 a1 f7 b0 d6 3f 7c 6d
            f0 ed 14 e0 a5 3d 22 b3 f8 89 de 71 1a af ba b5 81
    
           SB3:
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 7]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
               0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
            00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
            10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
            20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
            30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
            40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
            50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
            60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
            70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
            80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
            90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
            a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
            b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
            c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
            d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
            e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
            f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
    
           SB4:
               0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
            00 30 68 99 1b 87 b9 21 78 50 39 db e1 72  9 62 3c
            10 3e 7e 5e 8e f1 a0 cc a3 2a 1d fb b6 d6 20 c4 8d
            20 81 65 f5 89 cb 9d 77 c6 57 43 56 17 d4 40 1a 4d
            30 c0 63 6c e3 b7 c8 64 6a 53 aa 38 98 0c f4 9b ed
            40 7f 22 76 af dd 3a 0b 58 67 88 06 c3 35 0d 01 8b
            50 8c c2 e6 5f 02 24 75 93 66 1e e5 e2 54 d8 10 ce
            60 7a e8 08 2c 12 97 32 ab b4 27 0a 23 df ef ca d9
            70 b8 fa dc 31 6b d1 ad 19 49 bd 51 96 ee e4 a8 41
            80 da ff cd 55 86 36 be 61 52 f8 bb 0e 82 48 69 9a
            90 e0 47 9e 5c 04 4b 34 15 79 26 a7 de 29 ae 92 d7
            a0 84 e9 d2 ba 5d f3 c5 b0 bf a4 3b 71 44 46 2b fc
            b0 eb 6f d5 f6 14 fe 7c 70 5a 7d fd 2f 18 83 16 a5
            c0 91 1f 05 95 74 a9 c1 5b 4a 85 6d 13 07 4f 4e 45
            d0 b2 0f c9 1c a6 bc ec 73 90 7b cf 59 8f a1 f9 2d
            e0 f2 b1 00 94 37 9f d0 2e 9c 6e 28 3f 80 f0 3d d3
            f0 25 8a b5 e7 42 b3 c7 ea f7 4c 11 33 03 a2 ac 60
    
       For example, SB1(0x23) = 0x26 and SB4(0xef) = 0xd3. Note that SB3 and
       SB4 are the inverse functions of SB1 and SB2, respectively, and
       accordingly SL2 is the inverse of SL1.
    
    2.4.3. Diffusion Layer
    
       Diffusion layer A is an algorithm which takes as input a 16-byte
       string x0 || x1 || ... || x15 and outputs a 16-byte string y0 || y1
       ||...|| y15 by the following equations.
    
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 8]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
             y0  = x3 ^ x4 ^ x6 ^ x8  ^ x9  ^ x13 ^ x14,
             y1  = x2 ^ x5 ^ x7 ^ x8  ^ x9  ^ x12 ^ x15,
             y2  = x1 ^ x4 ^ x6 ^ x10 ^ x11 ^ x12 ^ x15,
             y3  = x0 ^ x5 ^ x7 ^ x10 ^ x11 ^ x13 ^ x14,
             y4  = x0 ^ x2 ^ x5 ^ x8  ^ x11 ^ x14 ^ x15,
             y5  = x1 ^ x3 ^ x4 ^ x9  ^ x10 ^ x14 ^ x15,
             y6  = x0 ^ x2 ^ x7 ^ x9  ^ x10 ^ x12 ^ x13,
             y7  = x1 ^ x3 ^ x6 ^ x8  ^ x11 ^ x12 ^ x13,
             y8  = x0 ^ x1 ^ x4 ^ x7  ^ x10 ^ x13 ^ x15,
             y9  = x0 ^ x1 ^ x5 ^ x6  ^ x11 ^ x12 ^ x14,
             y10 = x2 ^ x3 ^ x5 ^ x6  ^ x8  ^ x13 ^ x15,
             y11 = x2 ^ x3 ^ x4 ^ x7  ^ x9  ^ x12 ^ x14,
             y12 = x1 ^ x2 ^ x6 ^ x7  ^ x9  ^ x11 ^ x12,
             y13 = x0 ^ x3 ^ x6 ^ x7  ^ x8  ^ x10 ^ x13,
             y14 = x0 ^ x3 ^ x4 ^ x5  ^ x9  ^ x11 ^ x14,
             y15 = x1 ^ x2 ^ x4 ^ x5  ^ x8  ^ x10 ^ x15.
    
       Note that A is an involution. That is, for any 16-byte input string x,
       x = A(A(x)) holds.
    
    3. Security Considerations
    
       ARIA is designed to be resistant to all known attacks on block
       ciphers [ARIA03]. Its security was analyzed by the COSIC group of
       K.U.Leuven in Belgium [ARIAEVAL] and no security flaw has been found.
    
    4. Informative References
    
       [ARIAEVAL] A. Biryukov et al., "Security and Performance Analysis of
                  ARIA", K.U.Leuven (2003), available at
                  http://www.cosic.esat.kuleuven.be/publications/article-
                  500.pdf
    
       [ARIA03]   D. Kwon et al., "New Block Cipher: ARIA", ICISC 2003,
                  pp. 432-445.
    
       [ARIAKS]   Korean Agency for Technology and Standards (KATS), "128
                  bit block encryption algorithm ARIA", KS X 1213:2004,
                  December 2004 (In Korean)
    
       [ARIAPKCS] RSA Laboratories, PKCS #11 v2.20 Amendment 3 Revision 1:
                  Additional PKCS #11 Mechanisms, January 2007.
    
    Appendix A. Example Data of ARIA
    
           Here are test data for ARIA in hexadecimal form.
    
    
    
    Lee, et al.            Expires March 12, 2010                 [Page 9]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       A.1. 128-bit key
    
          - Key       : 000102030405060708090a0b0c0d0e0f
          - Plaintext : 00112233445566778899aabbccddeeff
          - Ciphertext: d718fbd6ab644c739da95f3be6451778
    
          - Round key generators
             W0: 000102030405060708090a0b0c0d0e0f
             W1: 2afbea741e1746dd55c63ba1afcea0a5
             W2: 7c8578018bb127e02dfe4e78c288e33c
             W3: 6785b52b74da46bf181054082763ff6d
    
          - Encryption round keys
             e1:  d415a75c794b85c5e0d2a0b3cb793bf6
             e2:  369c65e4b11777ab713a3e1e6601b8f4
             e3:  0368d4f13d14497b6529ad7ac809e7d0
             e4:  c644552b549a263fb8d0b50906229eec
             e5:  5f9c434951f2d2ef342787b1a781794c
             e6:  afea2c0ce71db6de42a47461f4323c54
             e7:  324286db44ba4db6c44ac306f2a84b2c
             e8:  7f9fa93574d842b9101a58063771eb7b
             e9:  aab9c57731fcd213ad5677458fcfe6d4
             e10: 2f4423bb06465abada5694a19eb88459
             e11: 9f8772808f5d580d810ef8ddac13abeb
             e12: 8684946a155be77ef810744847e35fad
             e13: 0f0aa16daee61bd7dfee5a599970fb35
    
          - Intermediate round values
             P1:  7fc7f12befd0a0791de87fa96b469f52
             P2:  ac8de17e49f7c5117618993162b189e9
             P3:  c3e8d59ec2e62d5249ca2741653cb7dd
             P4:  5d4aebb165e141ff759f669e1e85cc45
             P5:  7806e469f68874c5004b5f4a046bbcfa
             P6:  110f93c9a630cdd51f97d2202413345a
             P7:  e054428ef088fef97928241cd3be499e
             P8:  5734f38ea1ca3ddd102e71f95e1d5f97
             P9:  4903325be3e500cccd52fba4354a39ae
             P10: cb8c508e2c4f87880639dc896d25ec9d
             P11: e7e0d2457ed73d23d481424095afdca0
    
       A.2 192-bit key
    
           Key       : 000102030405060708090a0b0c0d0e0f
                       1011121314151617
           Plaintext : 00112233445566778899aabbccddeeff
           Ciphertext: 26449c1805dbe7aa25a468ce263a9e79
    
    
    
    Lee, et al.            Expires March 12, 2010                [Page 10]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       A.3. 256-bit key
    
           Key       : 000102030405060708090a0b0c0d0e0f
                       101112131415161718191a1b1c1d1e1f
           Plaintext : 00112233445566778899aabbccddeeff
           Ciphertext: f92bd7c79fb72e2f2b8f80c1972d24fc
    
    Appendix B. OIDs
    
    
       AriaModesOfOperation {
       iso(1) member-body(2) korea(400) 200046(nsri) algorithm (1)
       symmetric-encryption-algorithm(1) asn1-module(0) alg-oids(0) }
    
       DEFINITIONS IMPLICIT TAGS ::=
       BEGIN
    
       OID ::= OBJECT IDENTIFIER
    
       -- Synonyms --
    
       id-algorithm OID ::=  { iso(1) member-body(2) korea(410) nsri(200046)
       algorithm(1)}
    
       id-sea OID ::= { id-algorithm symmetric-encryption-algorithm(1)}
       id-pad OID ::= { id-algorithm pad(2)}
    
       id-pad-null  RELATIVE-OID ::= {0} -- no padding algorithms identified
       id-pad-1     RELATIVE-OID ::= {1}
       -- padding method 2 of ISO/IEC 9797-1:1999
    
       -- confidentiality modes:
       -- ECB, CBC, CFB, OFB, CTR
    
       id-aria128-ecb OID ::= { id-sea aria128-ecb(1)}
       id-aria128-cbc OID ::= { id-sea aria128-cbc(2)}
       id-aria128-cfb OID ::= { id-sea aria128-cfb(3)}
       id-aria128-ofb OID ::= { id-sea aria128-ofb(4)}
       id-aria128-ctr OID ::= { id-sea aria128-ctr(5)}
    
       id-aria192-ecb OID ::= { id-sea aria192-ecb(6)}
       id-aria192-cbc OID ::= { id-sea aria192-cbc(7)}
       id-aria192-cfb OID ::= { id-sea aria192-cfb(8)}
       id-aria192-ofb OID ::= { id-sea aria192-ofb(9)}
       id-aria192-ctr OID ::= { id-sea aria192-ctr(10)}
    
       id-aria256-ecb OID ::= { id-sea aria256-ecb(11)}
    
    
    Lee, et al.            Expires March 12, 2010                [Page 11]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       id-aria256-cbc OID ::= { id-sea aria256-cbc(12)}
       id-aria256-cfb OID ::= { id-sea aria256-cfb(13)}
       id-aria256-ofb OID ::= { id-sea aria256-ofb(14)}
       id-aria256-ctr OID ::= { id-sea aria256-ctr(15)}
    
       -- authentication modes: CMAC
    
       id-aria128-cmac OID ::= { id-sea aria128-cmac(21)}
       id-aria192-cmac OID ::= { id-sea aria192-cmac(22)}
       id-aria256-cmac OID ::= { id-sea aria256-cmac(23)}
    
       -- modes for both confidentiality and authentication:
       -- OCB 2.0, GCM, CCM, Key Wrap
    
       id-aria128-ocb2 OID ::= { id-sea aria128-ocb2(31)}
       id-aria192-ocb2 OID ::= { id-sea aria192-ocb2(32)}
       id-aria256-ocb2 OID ::= { id-sea aria256-ocb2(33)}
    
       id-aria128-gcm OID ::= { id-sea aria128-gcm(34)}
       id-aria192-gcm OID ::= { id-sea aria192-gcm(35)}
       id-aria256-gcm OID ::= { id-sea aria256-gcm(36)}
    
       id-aria128-ccm OID ::= { id-sea aria128-ccm(37)}
       id-aria192-ccm OID ::= { id-sea aria192-ccm(38)}
       id-aria256-ccm OID ::= { id-sea aria256-ccm(39)}
    
       id-aria128-kw OID ::= { id-sea aria128-kw(40)}
       id-aria192-kw OID ::= { id-sea aria192-kw(41)}
       id-aria256-kw OID ::= { id-sea aria256-kw(42)}
    
    
       AriaModeOfOperation ::=
        AlgorithmIdentifier { {AriaModeOfOperationAlgorithms} }
    
       AriaModeOfOperationAlgorithms ALGORITHM ::= {
       aria128ecb  |aria128cbc  |aria128cfb  |aria128ofb  |aria128ctr  |
       aria192ecb  |aria192cbc  |aria192cfb  |aria192ofb  |aria192ctr  |
       aria256ecb  |aria256cbc  |aria256cfb  |aria256ofb  |aria256ctr  |
       aria128cmac |aria192cmac |aria256cmac |
       aria128ocb2 |aria192ocb2 |aria256ocb2 |
       aria128gcm  |aria192gcm  |aria256gcm  |
       aria128ccm  |aria192ccm  |aria256ccm  |
       aria128kw   |aria192kw   |aria256kw ,
       ... --Extensible
       }
    
       aria128ecb  ALGORITHM ::=
    
    
    Lee, et al.            Expires March 12, 2010                [Page 12]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
        { OID id-aria128-ecb PARAMS AriaEcbParameters }
       aria128cbc  ALGORITHM ::=
        { OID id-aria128-cbc PARAMS AriaCbcParameters }
       aria128cfb  ALGORITHM ::=
        { OID id-aria128-cfb PARAMS AriaCfbParameters }
       aria128ofb  ALGORITHM ::=
        { OID id-aria128-ofb PARAMS AriaOfbParameters }
       aria128ctr  ALGORITHM ::=
        { OID id-aria128-ctr PARAMS AriaCtrParameters }
    
       aria192ecb  ALGORITHM ::=
        { OID id-aria192-ecb PARAMS AriaEcbParameters }
       aria192cbc  ALGORITHM ::=
        { OID id-aria192-cbc PARAMS AriaCbcParameters }
       aria192cfb  ALGORITHM ::=
        { OID id-aria192-cfb PARAMS AriaCfbParameters }
       aria192ofb  ALGORITHM ::=
        { OID id-aria192-ofb PARAMS AriaOfbParameters }
       aria192ctr  ALGORITHM ::=
        { OID id-aria192-ctr PARAMS AriaCtrParameters }
    
       aria256ecb  ALGORITHM ::=
        { OID id-aria256-ecb PARAMS AriaEcbParameters }
       aria256cbc  ALGORITHM ::=
        { OID id-aria256-cbc PARAMS AriaCbcParameters }
       aria256cfb  ALGORITHM ::=
        { OID id-aria256-cfb PARAMS AriaCfbParameters }
       aria256ofb  ALGORITHM ::=
        { OID id-aria256-ofb PARAMS AriaOfbParameters }
       aria256ctr  ALGORITHM ::=
        { OID id-aria256-ctr PARAMS AriaCtrParameters }
    
       aria128cmac ALGORITHM ::=
        { OID id-aria128-cmac PARAMS AriaCmacParameters }
       aria192cmac ALGORITHM ::=
        { OID id-aria192-cmac PARAMS AriaCmacParameters }
       aria256cmac ALGORITHM ::=
        { OID id-aria256-cmac PARAMS AriaCmacParameters }
    
       aria128ocb2 ALGORITHM ::=
        { OID id-aria128-ocb2 PARAMS AriaOcb2Parameters }
       aria192ocb2 ALGORITHM ::=
        { OID id-aria192-ocb2 PARAMS AriaOcb2Parameters }
       aria256ocb2 ALGORITHM ::=
        { OID id-aria256-ocb2 PARAMS AriaOcb2Parameters }
    
       aria128gcm  ALGORITHM ::=
    
    
    Lee, et al.            Expires March 12, 2010                [Page 13]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
        { OID id-aria128-gcm PARAMS AriaGcmParameters }
       aria192gcm  ALGORITHM ::=
        { OID id-aria192-gcm PARAMS AriaGcmParameters }
       aria256gcm  ALGORITHM ::=
        { OID id-aria256-gcm PARAMS AriaGcmParameters }
    
       aria128ccm  ALGORITHM ::=
        { OID id-aria128-ccm PARAMS AriaCcmParameters }
       aria192ccm  ALGORITHM ::=
        { OID id-aria192-ccm PARAMS AriaCcmParameters }
       aria256ccm  ALGORITHM ::=
        { OID id-aria256-ccm PARAMS AriaCcmParameters }
    
       aria128kw   ALGORITHM ::= { OID id-aria128-kw}
       aria192kw   ALGORITHM ::= { OID id-aria192-kw}
       aria256kw   ALGORITHM ::= { OID id-aria256-kw}
       AriaPadAlgo ::= CHOICE {
           specifiedPadAlgo   RELATIVE-OID,
           generalPadAlgo     OID
       }
    
       AriaEcbParameters ::= SEQUENCE {
           padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null
       }
    
       AriaCbcParameters ::= SEQUENCE {
           m         INTEGER       DEFAULT 1,
           -- number of stored ciphertext blocks
           padAlgo   AriaPadAlgo   DEFAULT specifiedPadAlgo:id-pad-null
       }
    
       AriaCfbParameters ::= SEQUENCE {
           r         INTEGER,
           -- bit-length of feedback buffer, 128<=r<=128*1024
           k         INTEGER,
           -- bit-length of feedback variable, 1<=k<=128
           j         INTEGER,
           -- bit-length of plaintext/ciphertext block, 1<=j<=k
           padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null
       }
    
       AriaOfbParameters ::= SEQUENCE {
           j         INTEGER,
           -- bit-length of plaintext/ciphertext block, 1<=j<=128
           padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null
       }
    
    
    
    Lee, et al.            Expires March 12, 2010                [Page 14]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
       AriaCtrParameters ::= SEQUENCE {
           j         INTEGER,
           -- bit-length of plaintext/ciphertext block, 1<=j<=128
           padAlgo   AriaPadAlgo  DEFAULT specifiedPadAlgo:id-pad-null
       }
    
       AriaCmacParameters ::= INTEGER --bit-length of authentication tag
    
       AriaOcb2Parameters ::= INTEGER --bit-length of authentication tag
    
       AriaGcmParameters  ::= SEQUENCE {
           s       INTEGER,   -- bit-length of starting variable
           t       INTEGER    -- bit-legnth of authentication tag
       }
    
       AriaCcmParameters  ::= SEQUENCE {
           w      INTEGER (2|3|4|5|6|7|8),
           -- length of message length field in octets
           t      INTEGER (32|48|64|80|96|112|128)
           -- bit-length of authentication tag
       }
    
       ALGORITHM ::= CLASS {
           &id    OBJECT IDENTIFIER UNIQUE,
           &Type  OPTIONAL
       }
       WITH SYNTAX { OID &id  [PARMS &Type] }
    
       AlgorithmIdentifier { ALGORITHM:AlgoSet } ::= SEQUENCE {
           algorithm    ALGORITHM.&id( {AlgoSet} ),
           parameters ALGORITHM.&Type( {AlgoSet}{@algorithm} ) OPTIONAL
       }
    
       END
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    Lee, et al.            Expires March 12, 2010                [Page 15]


    Internet-Draft      The ARIA Encryption Algorithm       September 2009
    
    
    Authors' Addresses
    
       Jungkeun Lee
       National Security Research Institute
       P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
    
       Email: jklee@ensec.re.kr
    
       Jooyoung Lee
       National Security Research Institute
       P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
    
       Email: jlee05@ensec.re.kr
    
       Jaeheon Kim
       National Security Research Institute
       P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
    
       Email: jaeheon@ensec.re.kr
    
       Daesung Kwon
       National Security Research Institute
       P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
    
       Email: ds_kwon@ensec.re.kr
    
       Choonsoo Kim
       National Security Research Institute
       P.O.Box 1, Yuseong, Daejeon, 305-350, Korea
    
       Email: jbr@ensec.re.kr
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    Lee, et al.            Expires March 12, 2010                [Page 16]