Network Working Group N. Sullivan
Internet-Draft Cloudflare
Intended status: Informational C. Wood
Expires: September 6, 2018 Apple Inc.
March 05, 2018
Verifiable Oblivious Pseudorandom Functions (VOPRFs)
draft-sullivan-cfrg-voprf-00
Abstract
A Verifiable Oblivious Pseudorandom Function (VOPRF) is a two-party
protocol for computing the output of a PRF that is symmetrically
verifiable. In summary, the PRF key holder learns nothing of the
input while simultaneously providing proof that its private key was
used during execution. VOPRFs are useful for computing one-time
unlinkable tokens that are verifiable by secret key holders. This
document specifies a VOPRF construction based on Elliptic Curves.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 6, 2018.
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
Sullivan & Wood Expires September 6, 2018 [Page 1]
Internet-Draft VOPRFs March 2018
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Requirements . . . . . . . . . . . . . . . . . . . . . . 3
2. Background . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Security Properties . . . . . . . . . . . . . . . . . . . . . 4
4. Elliptic Curve VOPRF Protocol . . . . . . . . . . . . . . . . 5
4.1. Algorithmic Details . . . . . . . . . . . . . . . . . . . 6
4.1.1. ECVOPRF_Blind . . . . . . . . . . . . . . . . . . . . 6
4.1.2. ECVOPRF_Sign . . . . . . . . . . . . . . . . . . . . 7
4.1.3. ECVOPRF_Unblind . . . . . . . . . . . . . . . . . . . 7
4.1.4. ECVOPRF_Finalize . . . . . . . . . . . . . . . . . . 8
5. NIZK Discrete Logarithm Equality Proof . . . . . . . . . . . 8
5.1. DLEQ_Generate . . . . . . . . . . . . . . . . . . . . . . 9
5.2. DLEQ_Verify . . . . . . . . . . . . . . . . . . . . . . . 9
5.3. Group and Hash Function Instantiations . . . . . . . . . 9
6. Security Considerations . . . . . . . . . . . . . . . . . . . 11
6.1. Timing Leaks . . . . . . . . . . . . . . . . . . . . . . 12
7. Privacy Considerations . . . . . . . . . . . . . . . . . . . 12
7.1. Key Consistency . . . . . . . . . . . . . . . . . . . . . 12
8. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 12
9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 12
10. Normative References . . . . . . . . . . . . . . . . . . . . 12
Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . 13
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16
1. Introduction
A pseudorandom function (PRF) F(k, x) is an efficiently computable
function with secret key k on input x. Roughly, F is pseudorandom if
the output y = F(k, x) is indistinguishable from uniformly sampling
any element in F's range for random choice of k. An oblivious PRF
(OPRF) is a two-party protocol between a prover P and verifier V
where P holds a PRF key k and V holds some input x. The protocol
allows both parties to cooperate in computing F(k, x) with P's secret
key k and V's input x such that: V learns F(k, x) without learning
anything about k; and P does not learn anything about x. A
Verifiable OPRF (VOPRF) is an OPRF wherein P can prove to V that F(k,
x) was computed using key k, which is bound to a trusted public key Y
= kG. Informally, this is done by presenting a non-interactive zero-
knowledge (NIZK) proof of equality between (G, Y) and (Z, M), where Z
= kM for some point M.
Sullivan & Wood Expires September 6, 2018 [Page 2]
Internet-Draft VOPRFs March 2018
VOPRFs are useful for producing tokens that are verifiable by V.
This may be needed, for example, if V wants assurance that P did not
use a unique key in its computation, i.e., if V wants key consistency
from P. This property is necessary in some applications, e.g., the
Privacy Pass protocol [PrivacyPass], wherein this VOPRF is used to
generate one-time authentic tokens to bypass CAPTCHA challenges.
This document introduces a VOPRF protocol built on Elliptic Curves,
called ECVOPRF. It describes the protocol, its security properties,
and provides preliminary test vectors for experimentation. This rest
of document is structured as follows:
o Section Section 2: Describe background, related related, and use
cases of VOPRF protocols.
o Section Section 3: Discuss security properties of VOPRFs.
o Section Section 4: Specify a VOPRF protocol based on elliptic
curves.
o Section Section 5: Specify the NIZK discrete logarithm equality
construction used for verifying protocol outputs.
1.1. Terminology
The following terms are used throughout this document.
o PRF: Pseudorandom Function.
o OPRF: Oblivious PRF.
o VOPRF: Verifiable Oblivious Pseudorandom Function.
o Verifier (V): Protocol initiator when computing F(k, x).
o Prover (P): Holder of secret key k.
o NIZK: Non-interactive zero knowledge.
o DLEQ: Discrete Logarithm Equality.
1.2. Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
Sullivan & Wood Expires September 6, 2018 [Page 3]
Internet-Draft VOPRFs March 2018
2. Background
VOPRFs are functionally related to RSA-based blind signature schemes,
e.g., [ChaumBlindSignature]. Such a scheme works as follows. Let m
be a message to be signed by a server. It is assumed to be a member
of the RSA group. Also, let N be the RSA modulus, and e and d be the
public and private keys, respectively. A prover P and verifier V
engage in the following protocol given input m.
1. V generates a random blinding element r from the RSA group, and
compute m' = m^r (mod N). Send m' to the P.
2. P uses m' to compute s' = (m')^d (mod N), and sends s' to the V.
3. V removes the blinding factor r to obtain the original signature
as s = (s')^(r^-1) (mod N).
By the properties of RSA, s is clearly a valid signature for m. OPRF
protocols are the symmetric equivalent to blind signatures in the
same way that PRFs are the symmetric equivalent traditional digital
signatures. This is discussed more in the following section.
3. Security Properties
The security properties of a VOPRF protocol with functionality y =
F(k, x) include those of a standard PRF. Specifically:
o Given value x, it is infeasible to compute y = F(k, x) without
knowledge of k.
o Output y = F(k, x) is indistinguishable from a random value in the
domain of F.
Additionally, we require the following additional properties:
o Non-malleable: Given (x, y = F(k, x)), V must not be able to
generate (x', y') where x' != x and y' = F(k, x').
o Verifiable: V must only complete execution of the protocol if it
asserts that P used its secret key k, associated with public key Y
= kG, in execution.
o Oblivious: P must learn nothing about V's input, and V must learn
nothing about P's private key.
o Unlinkable: If V reveals x to P, P cannot link x to the protocol
instance in which y = F(k, x) was computed.
Sullivan & Wood Expires September 6, 2018 [Page 4]
Internet-Draft VOPRFs March 2018
4. Elliptic Curve VOPRF Protocol
In this section we describe the ECVOPRF protocol. Let GG be a prime-
order subgroup of an elliptic curve over base field GF(p) for prime
p, with two distinct hash functions H_1 and H_2, where H_1 maps
arbitrary input onto GG and H_2 maps arbitrary input to a fixed-
length output, e.g., SHA256. All hash functions in the protocol are
assumed to be random oracles. Let L be the security parameter. Let
k be the prover's (P) secret key, and Y = kG be its corresponding
public key for some generator G taken from the group GG. Let x be
the verifier's (V) input to the VOPRF protocol. (Commonly, it is a
random L-bit string, though this is not required.) ECVOPRF begins
with V randomly blinding its input for the signer. The latter then
applies its secret key to the blinded value and returns the result.
To finish the computation, V then removes its blind and hashes the
result using H_2 to yield an output. This flow is illustrated below.
Verifier Prover
------------------------------------
r <-$ G
M = rH_1(x)
M
------->
Z = kM
D = DLEQ_Generate(Z/M == Y/G)
Z,D
<-------
b = DLEQ_Verify(M, Z, D, Y)
Output H_2(x, Zr^(-1)) if b=1, else "error"
DLEQ(Z/M == Y/G) is described in Section Section 5. Intuitively, the
DLEQ proof allows P to prove to V in NIZK that the same key k is the
exponent of both Y and M. In other words, computing the discrete
logarithm of Y and Z (with respect to G and M, respectively) results
in the same value. The committed value Y should be public before the
protocol is initiated.
The actual PRF function computed is as follows:
F(k, x) = H_2(x, N) = H_2(x, kH_1(x))
Note that V finishes this computation upon receiving kH_1(x) from P.
The output from P is not the PRF value.
This protocol may be decomposed into a series of steps, as described
below:
Sullivan & Wood Expires September 6, 2018 [Page 5]
Internet-Draft VOPRFs March 2018
o ECVOPRF_Blind(x): Compute and return a blind, r, and blinded
representation of x, denoted M.
o ECVOPRF_Sign(M): Sign input M using secret key k to produce Z,
generate a proof D of DLEQ(Z/M == Y/G), and output (Z, D).
o ECVOPRF_Unblind((Z, D), r, Y, G, M): Unblind blinded signature Z
with blind r, yielding N. Output N if D is a valid proof.
Otherwise, output an error.
o ECVOPRF_Finalize(N): Finalize N to produce PRF output F(k, x).
Protocol correctness requires that, for any key k, input x, and (r,
M) = ECVOPRF_Blind(x), it must be true that:
ECVOPRF_Finalize(x, ECVOPRF_Unblind(ECVOPRF_Sign(M), M, r)) = F(k, x)
with overwhelming probability.
4.1. Algorithmic Details
This section provides algorithms for each step in the VOPRF protocol.
1. V computes X = H_1(x) and a random element r (blinding factor)
from GF(p), and computes M = rX.
2. V sends M to P.
3. P computes Z = kM = rkX, and D = DLEQ(Z/M == Y/G).
4. P sends (Z, D) to V.
5. V verifies D using Y. If invalid, V outputs an error.
6. V unblinds Z to compute N = r^(-1)Z = kX.
7. V outputs the pair H_2(x, N).
4.1.1. ECVOPRF_Blind
Sullivan & Wood Expires September 6, 2018 [Page 6]
Internet-Draft VOPRFs March 2018
Input:
x - V's PRF input.
Output:
r - Random scalar in [1, p - 1].
M - Blinded representation of x using blind r, a point in GG.
Steps:
1. r <-$ GF(p)
2. M := rH_1(x)
5. Output (r, M)
4.1.2. ECVOPRF_Sign
Input:
M - Point in G.
Output:
Z - Scalar multiplication of k and M, point in GG.
D - DLEQ proof that log_G(Y) == log_M(Z).
Steps:
1. Z := kM
2. D = DLEQ_Generate(Y, G, M, Z)
2. Output (Z, D)
4.1.3. ECVOPRF_Unblind
Sullivan & Wood Expires September 6, 2018 [Page 7]
Internet-Draft VOPRFs March 2018
Input:
Z - Point in GG.
D - DLEQ proof that log_G(Y) == log_M(Z).
M - Blinded representation of x using blind r, a point in G.
r - Random scalar in [1, p - 1].
Output:
N - Unblinded signature, point in GG.
Steps:
1. N := (-r)Z
2. If DLEQ_Verify(G, Y, M, Z, D) output N
3. Output "error"
4.1.4. ECVOPRF_Finalize
Input:
x - PRF input string.
N - Point in GG, or "error".
Output:
y - Random element in {0,1}^L, or "error"
Steps:
1. If N == "error", output "error".
2. y := H_2(x, N)
3. Output y
5. NIZK Discrete Logarithm Equality Proof
In some cases, it may be desirable for the V to have proof that P
used its private key to compute Z from M. This is done by proving
log_G(Y) == log_M(Z). This may be used, for example, to ensure that
P uses the same private key for computing the VOPRF output and does
not attempt to "tag" individual verifiers with select keys. This
proof must not reveal the P's long-term private key to V.
Consequently, we extend the protocol in the previous section with a
(non-interactive) discrete logarithm equality (DLEQ) algorithm built
on a Chaum-Pedersen [ChaumPedersen] proof. This proof is divided
into two procedures: DLEQ_Generate and DLEQ_Verify. These are
specified below.
Sullivan & Wood Expires September 6, 2018 [Page 8]
Internet-Draft VOPRFs March 2018
5.1. DLEQ_Generate
Input:
G: Generator of group GG with prime order p.
Y: Signer public key.
M: Point in GG.
Z: Point in GG.
H_3: A hash function from GG to a bitstring of length L modeled as a random oracle.
Output:
D: DLEQ proof (c, s).
Steps:
1. r <-$ GF(p)
2. A = rG and B = rM.
2. c = H_3(G,Y,M,Z,A,B)
3. s = (r - ck) (mod p)
4. Output D = (c, s)
5.2. DLEQ_Verify
Input:
G: Generator of group GG with prime order p.
Y: Signer public key.
M: Point in GG.
Z: Point in GG.
D: DLEQ proof (c, s).
Output:
True if log_G(Y) == log_M(Z), False otherwise.
Steps:
1. A' = (sG + cY)
2. B' = (sM + cZ)
3. c' = H_3(G,E,M,Z,A',B')
4. Output c == c'
5.3. Group and Hash Function Instantiations
This section specifies supported VOPRF group and hash function
instantiations.
Sullivan & Wood Expires September 6, 2018 [Page 9]
Internet-Draft VOPRFs March 2018
EC-VOPRF-P256-SHA256:
o G: P-256
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA256
o H_3: SHA256
EC-VOPRF-P256-SHA512:
o G: P-256
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA512
o H_3: SHA512
EC-VOPRF-P384-SHA256:
o G: P-384
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA256
o H_3: SHA256
EC-VOPRF-P384-SHA512:
o G: P-384
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA512
o H_3: SHA512
EC-VOPRF-CURVE25519-SHA256:
o G: Curve25519 [RFC7748]
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA256
Sullivan & Wood Expires September 6, 2018 [Page 10]
Internet-Draft VOPRFs March 2018
o H_3: SHA256
EC-VOPRF-CURVE25519-SHA512:
o G: Curve25519 [RFC7748]
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA512
o H_3: SHA512
EC-VOPRF-CURVE448-SHA256:
o G: Curve448 [RFC7748]
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA256
o H_3: SHA256
EC-VOPRF-CURVE448-SHA512:
o G: Curve448 [RFC7748]
o H_1: ((TODO: choose from [I-D.draft-sullivan-cfrg-hash-to-curve]
o H_2: SHA512
o H_3: SHA512
6. Security Considerations
Security of the protocol depends on P's secrecy of k. Best practices
recommend P regularly rotate k so as to keep its window of compromise
small. Moreover, it each key should be generated from a source of
safe, cryptographic randomness.
Another critical aspect of this protocol is reliance on
[I-D.draft-sullivan-cfrg-hash-to-curve] for mapping arbitrary input
to points on a curve. Security requires this mapping be pre-image
and collision resistant.
Sullivan & Wood Expires September 6, 2018 [Page 11]
Internet-Draft VOPRFs March 2018
6.1. Timing Leaks
To ensure no information is leaked during protocol execution, all
operations that use secret data MUST be constant time. Operations
that SHOULD be constant time include: H_1() (hashing arbitrary
strings to curves) and DLEQ_Generate().
[I-D.draft-sullivan-cfrg-hash-to-curve] describes various algorithms
for constant-time implementations of H_1.
7. Privacy Considerations
7.1. Key Consistency
DLEQ proofs are essential to the protocol to allow V to check that
P's designated private key was used in the computation. A side
effect of this property is that it prevents P from using unique key
for select verifiers as a way of "tagging" them. If all verifiers
expect use of a certain private key, e.g., by locating P's public key
key published from a trusted registry, then P cannot present unique
keys to an individual verifier.
8. Acknowledgments
This document resulted from the work of the Privacy Pass team
[PrivacyPass].
9. Contributors
Alex Davidson contributed to earlier versions of this document.
10. Normative References
[ChaumBlindSignature]
"Blind Signatures for Untraceable Payments", n.d.,
<http://sceweb.sce.uhcl.edu/yang/teaching/
csci5234WebSecurityFall2011/Chaum-blind-signatures.PDF>.
[ChaumPedersen]
"Wallet Databases with Observers", n.d.,
<https://chaum.com/publications/Wallet_Databases.pdf>.
[I-D.draft-sullivan-cfrg-hash-to-curve]
"Hashing to Elliptic Curves", n.d.,
<draft-sullivan-cfrg-hash-to-curve/">https://datatracker.ietf.org/doc/
draft-sullivan-cfrg-hash-to-curve/">I-D.draft-sullivan-cfrg-hash-to-curve/>.
Sullivan & Wood Expires September 6, 2018 [Page 12]
Internet-Draft VOPRFs March 2018
[PrivacyPass]
"Privacy Pass", n.d.,
<https://github.com/privacypass/challenge-bypass-server>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", RFC 7748, DOI 10.17487/RFC7748, January
2016, <https://www.rfc-editor.org/info/rfc7748>.
[RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032,
DOI 10.17487/RFC8032, January 2017,
<https://www.rfc-editor.org/info/rfc8032>.
Appendix A. Test Vectors
This section includes test vectors for the primary VOPRF protocol,
excluding DLEQ output.
((TODO: add DLEQ vectors))
P-224
X: 0403cd8bc2f2f3c4c647e063627ca9c9ac246e3e3ec74ab76d32d3e999c522d60ff7aa1c8b0e4 \
X: 0403cd8bc2f2f3c4c647e063627ca9c9ac246e3e3ec74ab76d32d3e999c522d60ff7aa1c8b0e4
r: c4cf3c0b3a334f805d3ce3c3b4d007fbbdaf078a42a8cbdc833e54a9
M: 046b2b8482c36e65f87528415e210cff8561c1c8e07600a159893973365617ee2c1c33eb0662d \
M: 046b2b8482c36e65f87528415e210cff8561c1c8e07600a159893973365617ee2c1c33eb0662d
k: a364119e1c932a534a8d440fef2169a0e4c458d702eca56746655845
Z: 04ed11656b4981e39242b170025bf8d5314bef75006e6c4c9afcdb9a85e21fb5fcf9055eb95d3 \
Z: 04ed11656b4981e39242b170025bf8d5314bef75006e6c4c9afcdb9a85e21fb5fcf9055eb95d3
Y: 04fd80db5301a54ee2cbc688d47cbcae9eb84f5d246e3da3e2b03e9be228ed6c57a936b6b5faf \
Y: 04fd80db5301a54ee2cbc688d47cbcae9eb84f5d246e3da3e2b03e9be228ed6c57a936b6b5faf
P-224
X: 0429e41b7e1a58e178afc522d0fb4a6d17ae883e6fd439931cf1e81456ab7ed6445dbe0a231be \
X: 0429e41b7e1a58e178afc522d0fb4a6d17ae883e6fd439931cf1e81456ab7ed6445dbe0a231be
r: 86a27e1bd51ac91eae32089015bf903fe21da8d79725edcc4dc30566
M: 04d8c8ffaa92b21aa1cc6056710bd445371e8afebd9ef0530c68cd0d09536423f78382e4f6b20 \
M: 04d8c8ffaa92b21aa1cc6056710bd445371e8afebd9ef0530c68cd0d09536423f78382e4f6b20
k: ab449c896261dc3bd1f20d87272e6c8184a2252a439f0b3140078c3d
Z: 048ac9722189b596ffe5cb986332e89008361e68f77f12a931543f63eaa01fabf6f63d5d4b3b6 \
Z: 048ac9722189b596ffe5cb986332e89008361e68f77f12a931543f63eaa01fabf6f63d5d4b3b6
Y: 046e83dff2c9b6f9e88f1091f355ad6fa637bdbd829072411ea2d74a5bf3501ccf3bcc2789d48 \
Y: 046e83dff2c9b6f9e88f1091f355ad6fa637bdbd829072411ea2d74a5bf3501ccf3bcc2789d48
Sullivan & Wood Expires September 6, 2018 [Page 13]
Internet-Draft VOPRFs March 2018
P-256
X: 041b0e84c521f8dcd530d59a692d4ffa1ca05b8ba7ce22a884a511f93919ac121cc91dd588228 \
X: 041b0e84c521f8dcd530d59a692d4ffa1ca05b8ba7ce22a884a511f93919ac121cc91dd588228
r: a3ec1dc3303a316fc06565ace0a8910da65cf498ea3884c4349b6c4fc9a2f99a
M: 04794c5a54236782088594ccdb1975e93b05ff742674cc400cb101f55c0f37e877c5ada0d72fb \
M: 04794c5a54236782088594ccdb1975e93b05ff742674cc400cb101f55c0f37e877c5ada0d72fb
k: 9c103b889808a8f4cb6d76ea8b634416a286be7fa4a14e94f1478ada7f172ec3
Z: 0484cfda0fdcba7693672fe5e78f4c429c096ece730789e8d00ec1f7be33a6515f186dcf7aa38 \
Z: 0484cfda0fdcba7693672fe5e78f4c429c096ece730789e8d00ec1f7be33a6515f186dcf7aa38
Y: 044ff2e31de9fda542c2c63314e2bce5ce2d5ccb8332dbe1115ff5740e5e60bb867994e196ead \
Y: 044ff2e31de9fda542c2c63314e2bce5ce2d5ccb8332dbe1115ff5740e5e60bb867994e196ead
P-256
X: 043ea9d81b99ac0db002ad2823f7cab28af18f83419cce6800f3d786cc00b6fd030858d073916 \
X: 043ea9d81b99ac0db002ad2823f7cab28af18f83419cce6800f3d786cc00b6fd030858d073916
r: ed7294b42792760825645b635e9d92ef5a3baa70879dd59fdb1802d4a44271b2
M: 04ec894e496d0297756a17365f866d9449e6ebc51852ab1ffa57bc29c843ef003b116f5ef1f60 \
M: 04ec894e496d0297756a17365f866d9449e6ebc51852ab1ffa57bc29c843ef003b116f5ef1f60
k: a324338a7254415dbedcd1855abd2503b4e5268124358d014dac4fc2c722cd67
Z: 04a477c5fefd9bc6bcd8e893a1b0c6dc73b0bd23ebe952dcad810de73b8a99f5e1e216a833b32 \
Z: 04a477c5fefd9bc6bcd8e893a1b0c6dc73b0bd23ebe952dcad810de73b8a99f5e1e216a833b32
Y: 04ffe55e2a95a21e1605c1ed11ac6bea93f00fa15a6b27e90adad470ad27f0e0fe5b8607b4689 \
Y: 04ffe55e2a95a21e1605c1ed11ac6bea93f00fa15a6b27e90adad470ad27f0e0fe5b8607b4689
P-384
X: 04c0b51e5dcd6a309c77bb5720bf9850279e8142b6127952595ab9092578de810a13795bceff3 \
d358f0480a61469f17ad62ebaecd0f817c1e9c7d41d536ab410e7a2b5d7a7905d1bef5499b654b0e \
d358f0480a61469f17ad62ebaecd0f817c1e9c7d41d536ab410e7a2b5d7a7905d1bef5499b654b0e
r: 889b5e4812d683c4df735971240741ff869ccf77e10c2e97bef67d6fe6b8350abe59ec8fe2bfa \
r: 889b5e4812d683c4df735971240741ff869ccf77e10c2e97bef67d6fe6b8350abe59ec8fe2bfa
M: 044e2d86fa6e53ebba7f2a9b661a2de884a8ccc68e29b68586d517eb66e8b4b7dac334c6e769d \
485d672fac3a0311877572254754e318077aec3631208c6b503c5cdfe57716e1232da64cebe46f0d \
485d672fac3a0311877572254754e318077aec3631208c6b503c5cdfe57716e1232da64cebe46f0d
k: b8c854a33c8c564d0598b1ac179546acdccad671265cff1ea5a329279272e8d21c94b7e5b6bea \
k: b8c854a33c8c564d0598b1ac179546acdccad671265cff1ea5a329279272e8d21c94b7e5b6bea
Z: 047bf23eef00e83e6cb6fb9ade5e5995cf81abb8dc73a570ff4cb7be48f21281edfed9bf76cc2 \
88b35d2df615ff711ed2a1fb85cd0b22812438665cdd300039685b3f593f4b574f9e8b294982c2a2 \
88b35d2df615ff711ed2a1fb85cd0b22812438665cdd300039685b3f593f4b574f9e8b294982c2a2
Y: 04ab4886ecf7e489a0be8529ff4b537941c95ba4ce570db537dcfad5cabc064c43f1b0a1d1b89 \
101facd93f2f9a8b5f28431489be4664f446af8a51cc7c4221f633adb4f8f2f2a073dfd83ddf8d77 \
101facd93f2f9a8b5f28431489be4664f446af8a51cc7c4221f633adb4f8f2f2a073dfd83ddf8d77
P-384
X: 047511a846277a2009f37b3583f14c8ea3af17e3a146e0e737fdc1260b6d4a18ff01f21ec3bbc \
e39e1cade76d455feadc1bb16f65cd54042e1bc5aba1dee2434f59d00698a963b902148750240f8f \
e39e1cade76d455feadc1bb16f65cd54042e1bc5aba1dee2434f59d00698a963b902148750240f8f
r: e514ef9b3ea87eafdb78da48e642daa79f036ac00228997ab8da6ac198fb888cd2fec84d52010 \
r: e514ef9b3ea87eafdb78da48e642daa79f036ac00228997ab8da6ac198fb888cd2fec84d52010
Sullivan & Wood Expires September 6, 2018 [Page 14]
Internet-Draft VOPRFs March 2018
M: 04fd9b68973b0fcefcf4458b4faa1c3815bdad8975b7fb0bfc4c1db7e3f169fb3a26ddabe1b25 \
c4a23cf8a2faeb12c18f06f2227e87ede6039f55a61ef0c89ca3c582e2864fe130ea0c709f92519d \
c4a23cf8a2faeb12c18f06f2227e87ede6039f55a61ef0c89ca3c582e2864fe130ea0c709f92519d
k: bcc73da3b2adace9c4f4c32eeadef57436c97f8d395614e78aa91523e1e5d7f551ebb55e87da2 \
k: bcc73da3b2adace9c4f4c32eeadef57436c97f8d395614e78aa91523e1e5d7f551ebb55e87da2
Z: 042d885d2945cde40e490dd8497975eaeb54e4e10c5986a9688c9de915b16cf43572fd155e159 \
9e2233a75056a72b54d30092e30bb2edc70e0d90da934c27362e0e6303bafae12f13bf3d5be322e6 \
9e2233a75056a72b54d30092e30bb2edc70e0d90da934c27362e0e6303bafae12f13bf3d5be322e6
Y: 044833fba4973c1c6eae6745850866ebbb23783ea0d4d8b867e2c93acb2f01fd3d36d9cb5c491 \
ff9440c8c8e325db326bf88ddf0ba6008158a67999e18cd378d701d1f8a6a7b088dc261c85b6a78b \
ff9440c8c8e325db326bf88ddf0ba6008158a67999e18cd378d701d1f8a6a7b088dc261c85b6a78b
P-521
X: 040039d290b20c604b5c59cb85dfacd90cbf9f5e275ee8c38a8ff80df0872e8e1dd214a9ec3b2 \
2c8d75bf634739afdc09acc342542abacf35bf2a6488d084825c5d96003be29e201e75c1b78667f5 \
a64cc7207722796b225b49edaaf457fcafff4f644252ebe8057291d317f30109f1526aacbfff2308 \
a64cc7207722796b225b49edaaf457fcafff4f644252ebe8057291d317f30109f1526aacbfff2308
r: 010606612666705556ac3c28dde30f134e930b0c31bfc9715f0812e0b99f0212dc427e344cb97 \
r: 010606612666705556ac3c28dde30f134e930b0c31bfc9715f0812e0b99f0212dc427e344cb97
M: 040065366112a0598e4e5997e79e42f287f7202e5d956bef29890e963169d9eaab8d21501283c \
47dd37aca1710c8b5f456b1c044c8582ba6feef3edc997fecef7d4f40180ceb9bbbe3ab1907ea2d1 \
21ec00156848e04e323744d86444111fc09a21ca316df2cae925a0bb079d0faa2474ec8d5a96e6fa \
21ec00156848e04e323744d86444111fc09a21ca316df2cae925a0bb079d0faa2474ec8d5a96e6fa
k: 01297d92cfe6895269aa5406f2ba6cbfffbba66a11ab0db34655213624fa238c50e27177aea5d \
k: 01297d92cfe6895269aa5406f2ba6cbfffbba66a11ab0db34655213624fa238c50e27177aea5d
Z: 040151d2dc5290ebd47065680dcb4db350c4d81346680c5589f94acfb1e28418585e7f2cbfa11 \
5945d9f7b98157ea8c2ab190c6a47b939502c2f793b77ceff671f5e60086fdd1ebf960f29bf5d590 \
f8f7511d248df22d964637e2286adab4654991d338691f4673a006ff116e61afe65c914b27c3ef4c \
f8f7511d248df22d964637e2286adab4654991d338691f4673a006ff116e61afe65c914b27c3ef4c
Y: 04009534bd720bd4ebe703968a8496eec352711a81b7fe594a72ef318c2ce582b41880262a1c6 \
05079231de91e71b1301d1be4e9618e96081ccfd4f6cab92f52b860e01beec2c58cb01713e941035 \
adbe882ab4f3eaa31e27a96d210d35f6161b1487dd28d8da4a11a915182752b1450a89aad2a013c2 \
adbe882ab4f3eaa31e27a96d210d35f6161b1487dd28d8da4a11a915182752b1450a89aad2a013c2
P-521
X: 04012ea416842dfad169a9eb860b0af2af3c0140e1918ccd043650d83ad261633f20c5ca02c1b \
ffb857ab72814cf46cfc16ac9ba79887044709f72480358c4b990e46010a62336bb57b87b494b064 \
4d2b6a385f3d5b5da29e22cae33c624f561513a5e8e6669b4e99704c56157dde83994a3c0800a64b \
4d2b6a385f3d5b5da29e22cae33c624f561513a5e8e6669b4e99704c56157dde83994a3c0800a64b
r: 019d02efd97add5facc5defbb63fd74daaacda04ae7321abec0da1551b4cc980b8ce6855a28a1 \
r: 019d02efd97add5facc5defbb63fd74daaacda04ae7321abec0da1551b4cc980b8ce6855a28a1
M: 040066e3d0b5b9758c9288a725ce6724fdc3bd797a8222f07233897a5916dc167531ebc6a4710 \
cbb240684c9a02eb82214b009d636f24abb8e409e78ff1f02a1dbfb90069056693e96acd760887f9 \
6c9b1f487441b7142fb13a67deb7332194ff454b3aac89f9cf02c338dae69a700bd26844881e6106 \
6c9b1f487441b7142fb13a67deb7332194ff454b3aac89f9cf02c338dae69a700bd26844881e6106
k: 018eeea896de104bf1e772155836f6ceddab0b4c2e3e4c33ba08a6fd6db0291cfb15faff0b3c7 \
k: 018eeea896de104bf1e772155836f6ceddab0b4c2e3e4c33ba08a6fd6db0291cfb15faff0b3c7
Z: 04016825ea754324d5761ada130a1b87b03b5e2a6b0f403343925c67df39bbf85bc782909124d \
Sullivan & Wood Expires September 6, 2018 [Page 15]
Internet-Draft VOPRFs March 2018
d297a1edfb049efa7ce61c626c0ad99d8cf462abcce1ee1967d8a355011e2c5a7ce621fc822a7d95 \
bf7359d938ee4a5c3431e7dd270b7fb6e95fda29cf460d89454763bb0db9b8b705503170a9ac1c7a \
bf7359d938ee4a5c3431e7dd270b7fb6e95fda29cf460d89454763bb0db9b8b705503170a9ac1c7a
Y: 04006b0413e2686c4bb62340706de7723471080093422f02dd125c3e72f3507b9200d11481468 \
74bbaa5b6108b834c892eeebab4e21f3707ee20c303ebc1e34fcd3c701f2171131ee7c5f07c1ccad \
240183d777181259761741343959d476bbc2591a1af0a516e6403a6b81423234746d7a2e8c2ce60a \
240183d777181259761741343959d476bbc2591a1af0a516e6403a6b81423234746d7a2e8c2ce60a
Authors' Addresses
Nick Sullivan
Cloudflare
101 Townsend St
San Francisco
United States of America
Email: nick@cloudflare.com
Christopher A. Wood
Apple Inc.
One Apple Park Way
Cupertino, California 95014
United States of America
Email: cawood@apple.com
Sullivan & Wood Expires September 6, 2018 [Page 16]