INTERNET-DRAFT                                           R. Vida, Editor
Updates RFC 2710                                        L. Costa, Editor
                                                                    LIP6

Expires December 2003                                          June 2003


         Multicast Listener Discovery Version 2 (MLDv2) for IPv6
                       <draft-vida-mld-v2-07.txt>


Status of this Memo

   This document is an Internet-Draft and is subject to all provisions
   of Section 10 of [RFC 2026].

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups. Note that other
   groups may also distribute working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time. It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
   http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
   http://www.ietf.org/shadow.html.


Copyright Notice

   Copyright (C) The Internet Society (2002). All Rights Reserved.


Abstract

   This document specifies Version 2 of the Multicast Listener Discovery
   Protocol, MLDv2.  MLD is the protocol used by an IPv6 router to
   discover the presence of multicast listeners (i.e., nodes that wish
   to receive multicast packets) on its directly attached links, and to
   discover specifically which multicast addresses are of interest to
   those neighboring nodes.

   MLDv2 is derived from version 3 of IPv4's Internet Group Management
   Protocol, IGMPv3.  Compared to the previous version, MLDv2 adds
   support for "source filtering", i.e., the ability for a node to
   report interest in listening to packets *only* from specific source
   addresses, or from *all but* specific source addresses, sent to a
   particular multicast address.

   This document updates RFC 2710.



Vida, Costa - Editors                                           [Page 1]


INTERNET-DRAFT                    MLDv2                        June 2003


                            Table of Contents


   1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Protocol Overview . . . . . . . . . . . . . . . . . . . . . .   3
   3.  The Service Interface for Requesting IP Multicast Reception .   8
   4.  Multicast Listening State Maintained by Nodes . . . . . . . .   9
   5.  Message Formats . . . . . . . . . . . . . . . . . . . . . . .  12
   6.  Protocol Description for Multicast Address Listeners. . . . .  24
   7.  Protocol Description for Multicast Routers. . . . . . . . . .  31
   8.  Interoperation with MLDv1 . . . . . . . . . . . . . . . . . .  43
   9.  List of Timers, Counters, and their Default Values. . . . . .  46
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  50
   11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  51
   12. References. . . . . . . . . . . . . . . . . . . . . . . . . .  52
   13. Editors' Contact Information. . . . . . . . . . . . . . . . .  53
   14. Authors . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
   15. Acknowledgements. . . . . . . . . . . . . . . . . . . . . . .  54
   Appendix A. Design Rationale. . . . . . . . . . . . . . . . . . .  54
   Appendix B. Summary of Changes from MLDv1 . . . . . . . . . . . .  55
   Full Copyright Statement. . . . . . . . . . . . . . . . . . . . .  57


1.  Introduction

   The Multicast Listener Discovery Protocol (MLD) is used by IPv6
   routers to discover the presence of multicast listeners (i.e., nodes
   that wish to receive multicast packets) on their directly attached
   links, and to discover specifically which multicast addresses are of
   interest to those neighboring nodes.  Note that a multicast router
   may itself be a listener of one or more multicast addresses;  in this
   case it performs both the "multicast router part" and the "multicast
   address listener part" of the protocol, to collect the multicast
   listener information needed by its multicast routing protocol on the
   one hand, and to inform itself and other neighboring multicast
   routers of its listening state on the other hand.

   This document specifies Version 2 of MLD.  The previous version of
   MLD is specified in [RFC 2710].  In this document we will refer to it
   as MLDv1.  MLDv2 is a translation of the IGMPv3 protocol [RFC 3376]
   for IPv6 semantics.

   The MLDv2 protocol, when compared to MLDv1, adds support for "source
   filtering", i.e., the ability for a node to report interest in
   listening to packets *only* from specific source addresses, as
   required to support Source-Specific Multicast [SSM], or from *all
   but* specific source addresses, sent to a particular multicast
   address.  MLDv2 is designed to be interoperable with MLDv1.

   The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
   "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in

Vida, Costa - Editors                                           [Page 2]


INTERNET-DRAFT                    MLDv2                        June 2003


   [RFC 2119].  Due to the lack of italics, emphasis is indicated herein
   by bracketing a word or phrase in "*" characters.


2.  Protocol Overview

   This section gives a brief description of the protocol operation.
   The following sections present the protocol details.

   MLD is an asymmetric protocol;  it specifies separate behaviors for
   multicast address listeners (i.e., hosts or routers that listen to
   multicast packets) and multicast routers.  The purpose of MLD is to
   enable each multicast router to learn, for each of its directly
   attached links, which multicast addresses and which sources have
   interested listeners on that link.  The information gathered by MLD
   is provided to whichever multicast routing protocol is used by the
   router, in order to ensure that multicast packets are delivered to
   all links where there are listeners interested in such packets.

   Multicast routers only need to know that *at least one* node on an
   attached link is listening to packets for a particular multicast
   address, from a particular source;  a multicast router is not
   required to *individually* keep track of the interests of each
   neighboring node.  (Nevertheless, see Appendix A2 item 1 for
   discussion.)

   A multicast router performs the *router part* of the MLDv2 protocol
   (described in details in section 7) on each of its directly
   attached links.  If a multicast router has more than one interface
   connected to the same link, it only needs to operate the protocol on
   one of those interfaces.  The router behavior depends on whether
   there are several multicast routers on the same subnet, or not.  If
   that is the case, a querier election mechanism (described in section
   7.6.2) is used to elect a single multicast router to be in Querier
   state.  This router is called the Querier.  All multicast routers on
   the subnet listen to the messages sent by multicast address
   listeners, and maintain the same multicast listening information
   state, so that they can take over the querier role, should the
   present Querier fail.  Nevertheless, only the Querier sends
   periodical or triggered query messages on the subnet, as described in
   section 7.1.

   A multicast address listener performs the *listener part* of the
   MLDv2 protocol (described in details in section 6) on all interfaces
   on which multicast reception is supported, even if more than one of
   those interfaces are connected to the same link.


2.1.  Building Multicast Listening State on Multicast Address Listeners

   Upper-layer protocols and applications that run on a multicast
   address listener node use specific service interface calls (described

Vida, Costa - Editors                                           [Page 3]


INTERNET-DRAFT                    MLDv2                        June 2003


   in section 3) to ask the IP layer to enable or disable reception of
   packets sent to specific multicast addresses.  The node keeps
   Multicast Address Listening state for each socket on which the
   service interface calls have been invoked (section 4.1).  In
   addition to this per-socket multicast listening state, a node must
   also maintain or compute multicast listening state for each of its
   interfaces (section 4.2).  Conceptually, that state consists of a set
   of records, with each record containing an IPv6 multicast address, a
   filter mode, and a source list.  The filter mode may be either
   INCLUDE or EXCLUDE.  In INCLUDE mode, reception of packets sent to
   the specified multicast address is enabled *only* from the source
   addresses listed in the source list.  In EXCLUDE mode, reception of
   packets sent to the given multicast address is enabled from all
   source addresses *except* those listed in the source list.

   At most one record per multicast address exists for a given
   interface.  This per-interface state is derived from the per-socket
   state, but may differ from it when different sockets have differing
   filter modes and/or source lists for the same multicast address and
   interface.  After a multicast packet has been accepted from an
   interface by the IP layer, its subsequent delivery to the
   application connected to a particular socket depends on the multicast
   listening state of that socket (and possibly also on other
   conditions, such as what transport-layer port the socket is bound
   to).  Note that MLDv2 messages are not subject to source filtering
   and must always be processed by hosts and routers.


2.2. Exchanging Messages between the Querier and the Listening Nodes

   There are three types of MLDv2 query messages: General Queries,
   Multicast Address Specific Queries, and Multicast Address and Source
   Specific Queries.  The Querier periodically sends General Queries, to
   learn multicast address listener information from an attached link.
   These queries are used to build and refresh the Multicast Address
   Listener state inside all multicast routers on the link.

   Nodes respond to these queries by reporting their per-interface
   Multicast Address Listening state, through Current State Report
   messages sent to a specific multicast address all MLDv2 routers on
   the link listen to.  On the other hand, if the listening state of a
   node changes, the node immediately reports these changes through a
   State Change Report message. The State Change Report contains either
   Filter Mode Change records, Source List Change records, or records of
   both types.  A detailed description of the report messages is
   presented in section 5.2.12.

   To cover the possibility of a State Change Report being missed by one
   or more multicast routers, the report is retransmitted several times
   by the node.  The number of retransmissions depends on the so-called
   Robustness Variable.  If more changes to the same interface state
   entry occur before all the retransmissions of the State Change Report

Vida, Costa - Editors                                           [Page 4]


INTERNET-DRAFT                    MLDv2                        June 2003


   for the first change have been completed, each additional change
   triggers the immediate transmission of a new State Change Report.
   Section 6.1. shows how the content of this new report is computed.

   If a node on a link expresses, through a State Change Report, its
   desire to no longer listen to a particular multicast address (or
   source),  the Querier must query for other listeners of the multicast
   address (or source) before deleting the multicast address (or source)
   from its Multicast Address Listener state and stopping the
   corresponding traffic.  Thus, the Querier sends a Multicast Address
   Specific Query to verify whether there are nodes still listening to a
   specified multicast address or not.  Similarly, the Querier sends a
   Multicast Address and Source Specific Query to verify whether, for a
   specified multicast address, there are nodes still listening to a
   specific set of sources, or not.  Both queries are only sent in
   response to State Change Reports, never in response to Current State
   Reports.  Section 5.1.13 describes each query in more detail.

   Nodes respond to the above queries through Current State Reports, that
   contain their per-interface Multicast Address Listening state only
   for the multicast addresses (or sources) being queried.

   For protocol robustness, all the queries, except the periodical
   General Queries, are retransmitted several times within a given time
   interval.  The number of retransmissions depends on the Robustness
   Variable.  If, while scheduling new queries, there are pending
   queries to be retransmitted for the same multicast address, the new
   queries and the pending queries have to be merged.  In addition, host
   reports received for a multicast address with pending queries may
   affect the contents of those queries.  The process of building and
   maintaining the state of pending queries is presented in section
   7.6.3.

   Protocol robustness is also enhanced through the use of the S flag
   (Suppress Router-Side Processing).  As described above, when a
   Multicast Address Specific or a Multicast Address and Source Specific
   Query is sent by the Querier, a number of retransmissions of the
   query are scheduled.  In the original (first) query the S flag is
   clear.  When the Querier sends this query, it lowers the timers for
   the concerned multicast address (or source) to a given value;
   similarly, any non-querier multicast router that receives the query
   lowers its timers in the same way.  Nevertheless, while waiting for
   the next scheduled queries to be sent, the Querier may receive a
   report that updates the timers.  The scheduled queries still have to
   be sent, in order to ensure that a non-querier router keeps its state
   synchronized with the current Querier (the non-querier router might
   have missed the first query).  Nevertheless, the timers should not be
   lowered again, as a valid answer was already received.  Therefore, in
   subsequent queries the Querier sets the S flag.




Vida, Costa - Editors                                           [Page 5]


INTERNET-DRAFT                    MLDv2                        June 2003


2.2. Building Multicast Address Listener State on Multicast Routers

   Multicast routers that implement MLDv2 (whether they are in Querier
   state or not) keep state per multicast address per attached link.
   This multicast address listener state consists of a Filter Mode, a
   Filter Timer, and a Source List, with a timer associated to each
   source from the list.  The Filter Mode is used to summarize the total
   listening state of a multicast address to a minimum set, such that
   all nodes' listening states are respected.  The Filter Mode may
   change in response to the reception of particular types of report
   messages, or when certain timer conditions occur.

   A router is in INCLUDE mode for a specific multicast address on a
   given interface if all the listeners on the link interested in that
   address are in INCLUDE mode.  The router state is represented through
   the notation INCLUDE (A), where A is a list of sources, called the
   "Include List".  The Include List is the set of sources that one or
   more listeners on the link have requested to receive.  All the
   sources from the Include List will be forwarded by the router.  Any
   other source that is not in the Include List will be blocked by the
   router.

   A source can be added to the current Include List if a listener in
   INCLUDE mode sends a Current State or a State Change Report that
   includes that source.  Each source from the Include List is
   associated with a source timer that is updated whenever a listener
   in INCLUDE mode sends a report that confirms its interest in that
   specific source.  If the timer of a source from the Include List
   expires, the source is deleted from the Include List.

   Besides this "soft leave" mechanism, there is also a "fast leave"
   scheme in MLDv2;  it is also based on the use of source timers.
   When a node in INCLUDE mode expresses its desire to stop listening to
   a specific source, all the multicast routers on the link lower their
   timers for that source to a given value.  The Querier then sends a
   Multicast Address and Source Specific Query, to verify whether there
   are other listeners for that source on the link, or not.  If a report
   that includes this source is received before the timer expiration,
   all the multicast routers on the link update the source timer.  If
   not, the source is deleted from the Include List.  The handling of
   the Include List, according to the received reports, is detailed in
   Tables 7.4.1 and 7.4.2.

   A router is in EXCLUDE mode for a specific multicast address on a
   given interface if there is at least one listener in EXCLUDE mode
   for that address on the link.  When the first report is received from
   such a listener, the router sets the Filter Timer that corresponds to
   that address.  This timer is reset each time an EXCLUDE mode listener
   confirms its listening state through a Current State Report.  The
   timer is also updated when a listener, formerly in INCLUDE mode,
   announces its filter mode change through a State Change Report
   message.  If the Filter Timer expires, it means that there are no

Vida, Costa - Editors                                           [Page 6]


INTERNET-DRAFT                    MLDv2                        June 2003


   more listeners in EXCLUDE mode on the link.  In this case, the router
   switches back to INCLUDE mode for that multicast address.

   When the router is in EXCLUDE mode, the router state is represented
   by the notation EXCLUDE (X,Y), where X is called the "Requested
   List" and Y is called the "Exclude List".  All sources, except those
   from the Exclude List, will be forwarded by the router.  The
   Requested List has no effect on forwarding.  Nevertheless, the router
   has to maintain the Requested List for two reasons:

   o To keep track of sources that listeners in INCLUDE mode listen to.
     This is necessary to assure a seamless transition of the router to
     INCLUDE mode, when there is no listener in EXCLUDE mode left.  This
     transition should not interrupt the flow of traffic to listeners in
     INCLUDE mode for that multicast address.  Therefore, at the time of
     the transition, the Requested List should contain the set of
     sources that nodes in INCLUDE mode have explicitly requested.

     When the router switches to INCLUDE mode, the sources in the
     Requested List are moved to the Include List, and the Exclude List
     is deleted.  Before switching, the Requested List can contain an
     inexact guess of the sources listeners in INCLUDE mode listen to
     - might be too large or too small.  These inexactitudes are due to
     the fact that the Requested List is also used for fast blocking
     purposes, as described below.  If such a fast blocking is required,
     some sources may be deleted from the Requested List (as shown in
     Tables 7.4.1 and 7.4.2) in order to reduce router state.
     Nevertheless, in each such case the Filter Timer is updated as
     well.  Therefore, listeners in INCLUDE mode will have enough time,
     before an eventual switching, to reconfirm their interest in the
     eliminated source(s), and rebuild the Requested List accordingly.
     The protocol ensures that when a switch to INCLUDE mode occurs, the
     Requested List will be accurate.  Details about the transition of
     the router to INCLUDE mode are presented in Appendix A3.

   o To allow the fast blocking of previously unblocked sources.  If the
     router receives a report that contains such a request, the
     concerned sources are added to the Requested List.  Their timers
     are set to a given small value, and a Multicast Address and Source
     Specific Query is sent by the Querier, to check whether there are
     nodes on the link still interested in those sources, or not.  If no
     node announces its interest in receiving those specific source, the
     timers of those sources expire.  Then, the sources are moved from
     the Requested List to the Exclude List.  From then on, the sources
     will be blocked by the router.

   The handling of the EXCLUDE mode router state, according to the
   received reports, is detailed in Tables 7.4.1 and 7.4.2.

   Both the MLDv2 router and listener behaviors described in this
   document were defined to ensure backward interoperability with MLDv1
   hosts and routers. Interoperability issues are detailed in section 8.

Vida, Costa - Editors                                           [Page 7]


INTERNET-DRAFT                    MLDv2                        June 2003


3.  The Service Interface for Requesting IP Multicast Reception

   Within an IP system, there is (at least conceptually) a service
   interface used by upper-layer protocols or application programs to
   ask the IP layer to enable or disable reception of packets sent to
   specific IP multicast addresses.  In order to take full advantage of
   the capabilities of MLDv2, a node's IP service interface must support
   the following operation:

     IPv6MulticastListen ( socket, interface, IPv6 multicast address,
                           filter mode, source list )

   where:

   o "socket" is an implementation-specific parameter used to
     distinguish among different requesting entities (e.g., programs,
     processes) within the node;  the socket parameter of BSD Unix
     system calls is a specific example.

   o "interface" is a local identifier of the network interface on which
     reception of the specified multicast address is to be enabled or
     disabled.  Interfaces may be physical (e.g., an Ethernet interface)
     or virtual (e.g., the endpoint of a Frame Relay virtual circuit or
     an IP-in-IP "tunnel").  An implementation may allow a special
     "unspecified" value to be passed as the interface parameter, in
     which case the request would apply to the "primary" or "default"
     interface of the node (perhaps established by system
     configuration).  If reception of the same multicast address is
     desired on more than one interface, IPv6MulticastListen is invoked
     separately for each desired interface.

   o "IPv6 multicast address" is the multicast address to which the
     request pertains.  If reception of more than one multicast address
     on a given interface is desired, IPv6MulticastListen is invoked
     separately for each desired address.

   o "filter mode" may be either INCLUDE or EXCLUDE.  In INCLUDE mode,
     reception of packets sent to the specified multicast address is
     requested *only* from the source addresses listed in the source
     list parameter.  In EXCLUDE mode, reception of packets sent to the
     given multicast address is requested from all source addresses
     *except* those listed in the source list parameter.

   o "source list" is an unordered list of zero or more unicast
     addresses from which multicast reception is desired or not desired,
     depending on the filter mode.  An implementation MAY impose a limit
     on the size of source lists.  When an operation causes the source
     list size limit to be exceeded, the service interface SHOULD return
     an error.

   For a given combination of socket, interface, and IPv6 multicast
   address, only a single filter mode and source list can be in effect

Vida, Costa - Editors                                           [Page 8]


INTERNET-DRAFT                    MLDv2                        June 2003


   at any one time.  Nevertheless, either the filter mode or the source
   list, or both, may be changed by subsequent IPv6MulticastListen
   requests that specify the same socket, interface, and IPv6 multicast
   address.  Each subsequent request completely replaces any earlier
   request for the given socket, interface, and multicast address.

   The MLDv1 protocol did not support source filters, and had a simpler
   service interface;  it consisted of Start Listening and Stop
   Listening operations to enable and disable listening to a given
   multicast address (from *all* sources) on a given interface.  The
   equivalent operations in the new service interface are as follows:

   The Start Listening operation is equivalent to:

      IPv6MulticastListen ( socket, interface, IPv6 multicast address,
                            EXCLUDE, {} )

   and the Stop Listening operation is equivalent to:

      IPv6MulticastListen ( socket, interface, IPv6 multicast address,
                            INCLUDE, {} )

   where {} is an empty source list.

   An example of an API that provides the capabilities outlined in this
   service interface is given in [FILTER-API].


4.  Multicast Listening State Maintained by Nodes


4.1.  Socket State

   For each socket on which IPv6MulticastListen has been invoked, the
   node records the desired multicast listening state for that socket.
   That state conceptually consists of a set of records of the form:

      (interface, IPv6 multicast address, filter mode, source list)

   The socket state evolves in response to each invocation of
   IPv6MulticastListen on the socket, as follows:

   o If the requested filter mode is INCLUDE *and* the requested source
     list is empty, then the entry that corresponds to the requested
     interface and multicast address is deleted, if present.  If no
     such entry is present, the request has no effect.

   o If the requested filter mode is EXCLUDE *or* the requested source
     list is non-empty, then the entry that corresponds to the requested
     interface and multicast address, if present, is changed to
     contain the requested filter mode and source list.  If no such
     entry is present, a new entry is created, using the parameters

Vida, Costa - Editors                                           [Page 9]


INTERNET-DRAFT                    MLDv2                        June 2003


    specified in the request.


4.2.  Interface State

   In addition to the per-socket multicast listening state, a node must
   also maintain or compute multicast listening state for each of its
   interfaces.  That state conceptually consists of a set of records of
   the form:

          (IPv6 multicast address, filter mode, source list)

   At most one record per multicast address exists for a given
   interface.  This per-interface state is derived from the per-socket
   state, but may differ from it when different sockets have differing
   filter modes and/or source lists for the same multicast address and
   interface.  For example, suppose one application or process invokes
   the following operation on socket s1:

         IPv6MulticastListen ( s1, i, m, INCLUDE, {a, b, c} )

   requesting reception on interface i of packets sent to multicast
   address m, *only* if they come from the sources a, b, or c.  Suppose
   another application or process invokes the following operation on
   socket s2:

          IPv6MulticastListen ( s2, i, m, INCLUDE, {b, c, d} )

   requesting reception on the same interface i of packets sent to the
   same multicast address m, *only* if they come from sources b, c, or
   d.  In order to satisfy the reception requirements of both sockets,
   it is necessary for interface i to receive packets sent to m from any
   one of the sources a, b, c, or d.  Thus, in this example, the
   listening state of interface i for multicast address m has filter
   mode INCLUDE and source list {a, b, c, d}.

   After a multicast packet has been accepted from an interface by the
   IP layer, its subsequent delivery to the application or process
   that listens on a particular socket depends on the multicast
   listening state of that socket (and possibly also on other
   conditions, such as what transport-layer port the socket is bound
   to).  So, in the above example, if a packet arrives on interface i,
   destined to multicast address m, with source address a, it may be
   delivered on socket s1 but not on socket s2.  Note that MLDv2
   messages are not subject to source filtering and must always be
   processed by hosts and routers.

   Requiring the filtering of packets based upon a socket's multicast
   reception state is a new feature of this service interface.  The
   previous service interface described no filtering based upon
   multicast listening state;  rather, a Start Listening operation on a
   socket simply caused the node to start to listen to a multicast

Vida, Costa - Editors                                          [Page 10]


INTERNET-DRAFT                    MLDv2                        June 2003


   address on the given interface;  packets sent to that multicast
   address could be delivered to all sockets, whether they had started
   to listen or not.

   The general rules for deriving the per-interface state from the
   per-socket state are as follows:  for each distinct (interface, IPv6
   multicast address) pair that appears in any socket state, a
   per-interface record is created for that multicast address on that
   interface.  Considering all socket records that contain the same
   (interface, IPv6 multicast address) pair,

   o if *any* such record has a filter mode of EXCLUDE, then the filter
     mode of the interface record is EXCLUDE, and the source list of the
     interface record is the intersection of the source lists of all
     socket records in EXCLUDE mode, minus those source addresses that
     appear in any socket record in INCLUDE mode.  For example, if the
     socket records for multicast address m on interface i are:

            from socket s1:  ( i, m, EXCLUDE, {a, b, c, d} )
            from socket s2:  ( i, m, EXCLUDE, {b, c, d, e} )
            from socket s3:  ( i, m, INCLUDE, {d, e, f} )

     then the corresponding interface record on interface i is:

                             ( m, EXCLUDE, {b, c} )

     If a fourth socket is added, such as:

            From socket s4:  ( i, m, EXCLUDE, {} )

     then the interface record becomes:

                             ( m, EXCLUDE, {} )

   o if *all* such records have a filter mode of INCLUDE, then the
     filter mode of the interface record is INCLUDE, and the source list
     of the interface record is the union of the source lists of all the
     socket records.  For example, if the socket records for multicast
     address m on interface i are:

            from socket s1:  ( i, m, INCLUDE, {a, b, c} )
            from socket s2:  ( i, m, INCLUDE, {b, c, d} )
            from socket s3:  ( i, m, INCLUDE, {e, f} )

     then the corresponding interface record on interface i is:

                      ( m, INCLUDE, {a, b, c, d, e, f} )

   An implementation MUST NOT use an EXCLUDE interface record for a
   multicast address if all sockets for this multicast address are in
   INCLUDE state.  If system resource limits are reached when an
   interface state source list is calculated, an error MUST be returned

Vida, Costa - Editors                                          [Page 11]


INTERNET-DRAFT                    MLDv2                        June 2003


   to the application which requested the operation.

   The above rules for deriving the interface state are (re-)evaluated
   whenever an IPv6MulticastListen invocation modifies the socket state
   by adding, deleting, or modifying a per-socket state record.  Note
   that a change of socket state does not necessarily result in a change
   of interface state.


5.  Message Formats

   MLDv2 is a sub-protocol of ICMPv6, that is, MLDv2 message types are a
   subset of ICMPv6 messages, and MLDv2 messages are identified in IPv6
   packets by a preceding Next Header value of 58.  All MLDv2 messages
   described in this document MUST be sent with a link-local IPv6 Source
   Address, an IPv6 Hop Limit of 1, and an IPv6 Router Alert option
   [RFC 2711] in a Hop-by-Hop Options header.  (The Router Alert option
   is necessary to cause routers to examine MLDv2 messages sent to IPv6
   multicast addresses in which the routers themselves have no
   interest.)  MLDv2 Reports can be sent with the source address set to
   the unspecified address, if a valid link-local IPv6 source address
   has not been acquired yet for the sending interface.  (See section
   5.2.13. for details.)

   There are two MLD message types of concern to the MLDv2 protocol
   described in this document:

   o Multicast Listener Query (Type = decimal 130)

   o Version 2 Multicast Listener Report (Type = [Value to be allocated
     by the IANA]).  See section 11 for IANA considerations.

   To assure the interoperability with nodes that implement MLDv1 (see
   section 8), an implementation of MLDv2 must also support the
   following two message types:

   o Version 1 Multicast Listener Report (Type = decimal 131) [RFC 2710]

   o Version 1 Multicast Listener Done (Type = decimal 132) [RFC 2710]

   Unrecognized message types MUST be silently ignored.  Other message
   types may be used by newer versions or extensions of MLD, by
   multicast routing protocols, or for other uses.

   In this document, unless otherwise qualified, the capitalized words
   "Query" and "Report" refer to MLD Multicast Listener Queries and MLD
   Version 2 Multicast Listener Reports, respectively.


5.1.  Multicast Listener Query Message

   Multicast Listener Queries are sent by multicast routers in Querier

Vida, Costa - Editors                                          [Page 12]


INTERNET-DRAFT                    MLDv2                        June 2003


   state to query the multicast listening state of neighboring
   interfaces.  Queries have the following format:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Type = 130   |      Code     |           Checksum            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Maximum Response Code      |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   *                                                               *
   |                                                               |
   *                       Multicast Address                       *
   |                                                               |
   *                                                               *
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Resv  |S| QRV |     QQIC      |     Number of Sources (N)     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   *                                                               *
   |                                                               |
   *                       Source Address [1]                      *
   |                                                               |
   *                                                               *
   |                                                               |
   +-                                                             -+
   |                                                               |
   *                                                               *
   |                                                               |
   *                       Source Address [2]                      *
   |                                                               |
   *                                                               *
   |                                                               |
   +-                              .                              -+
   .                               .                               .
   .                               .                               .
   +-                                                             -+
   |                                                               |
   *                                                               *
   |                                                               |
   *                       Source Address [N]                      *
   |                                                               |
   *                                                               *
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


5.1.1.  Code

   Initialized to zero by the sender;  ignored by receivers.

Vida, Costa - Editors                                          [Page 13]


INTERNET-DRAFT                    MLDv2                        June 2003


5.1.2.  Checksum

   The standard ICMPv6 checksum;  it covers the entire MLDv2 message,
   plus a "pseudo-header" of IPv6 header fields [RFC 2463].  For
   computing the checksum, the Checksum field is set to zero.  When
   a packet is received, the checksum MUST be verified before
   processing it.


5.1.3.  Maximum Response Code

   The Maximum Response Code field specifies the maximum time allowed
   before sending a responding Report.  The actual time allowed, called
   the Maximum Response Delay, is represented in units of milliseconds,
   and is derived from the Maximum Response Code as follows:

   If Maximum Response Code < 32768,
      Maximum Response Delay = Maximum Response Code

   If Maximum Response Code >=32768, Maximum Response Code represents a
   floating-point value as follows:

     0 1 2 3 4 5 6 7 8 9 A B C D E F
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1| exp |          mant         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Maximum Response Delay = (mant | 0x1000) << (exp+3)

   Small values of Maximum Response Delay allow MLDv2 routers to tune
   the "leave latency" (the time between the moment the last node on a
   link ceases to listen to a specific multicast address and the moment
   the routing protocol is notified that there are no more listeners for
   that address).  Larger values, especially in the exponential range,
   allow the tuning of the burstiness of MLD traffic on a link.


5.1.4.  Reserved

   Initialized to zero by the sender;  ignored by receivers.


5.1.5.  Multicast Address

   For a General Query, the Multicast Address field is set to zero.  For
   a Multicast Address Specific Query or Multicast Address and Source
   Specific Query, it is set to the multicast address being queried (see
   section 5.1.10, below).





Vida, Costa - Editors                                          [Page 14]


INTERNET-DRAFT                    MLDv2                        June 2003


5.1.7.  S Flag (Suppress Router-Side Processing)

   When set to one, the S Flag indicates to any receiving multicast
   routers that they have to suppress the normal timer updates they
   perform upon hearing a Query.  Nevertheless, it does not suppress the
   querier election or the normal "host-side" processing of a Query that
   a router may be required to perform as a consequence of itself being
   a multicast listener.


5.1.8.  QRV (Querier's Robustness Variable)

   If non-zero, the QRV field contains the [Robustness Variable] value
   used by the Querier.  If the Querier's [Robustness Variable] exceeds
   7 (the maximum value of the QRV field), the QRV field is set to zero.

   Routers adopt the QRV value from the most recently received Query as
   their own [Robustness Variable] value, unless that most recently
   received QRV was zero, in which case they use the default [Robustness
   Variable] value specified in section 9.1, or a statically configured
   value.


5.1.9.  QQIC (Querier's Query Interval Code)

   The Querier's Query Interval Code field specifies the [Query
   Interval] used by the Querier.  The actual interval, called the
   Querier's Query Interval (QQI), is represented in units of seconds,
   and is derived from the Querier's Query Interval Code as follows:

   If QQIC < 128, QQI = QQIC

   If QQIC >= 128, QQIC represents a floating-point value as follows:

       0 1 2 3 4 5 6 7
      +-+-+-+-+-+-+-+-+
      |1| exp | mant  |
      +-+-+-+-+-+-+-+-+

   QQI = (mant | 0x10) << (exp + 3)

   Multicast routers that are not the current Querier adopt the QQI
   value from the most recently received Query as their own [Query
   Interval] value, unless that most recently received QQI was zero, in
   which case the receiving routers use the default [Query Interval]
   value specified in section 9.2.


5.1.10.  Number of Sources (N)

   The Number of Sources (N) field specifies how many source addresses
   are present in the Query.  This number is zero in a General Query or

Vida, Costa - Editors                                          [Page 15]


INTERNET-DRAFT                    MLDv2                        June 2003


   a Multicast Address Specific Query, and non-zero in a Multicast
   Address and Source Specific Query.  This number is limited by the MTU
   of the link over which the Query is transmitted.  For example, on
   an Ethernet link with an MTU of 1500 octets, the IPv6 header (40
   octets) together with the Hop-By-Hop Extension Header (8 octets) that
   includes the Router Alert option consume 48 octets;  the MLD fields
   up to the Number of Sources (N) field consume 28 octets;  thus, there
   are 1424 octets left for source addresses, which limits the number of
   source addresses to 89 (1424/16).


5.1.11.  Source Address [i]

   The Source Address [i] fields are a vector of n unicast addresses,
   where n is the value in the Number of Sources (N) field.


5.1.12.  Additional Data

   If the Payload Length field in the IPv6 header of a received Query
   indicates that there are additional octets of data present, beyond
   the fields described here, MLDv2 implementations MUST include those
   octets in the computation to verify the received MLD Checksum, but
   MUST otherwise ignore those additional octets.  When sending a Query,
   an MLDv2 implementation MUST NOT include additional octets beyond the
   fields described above.


5.1.13.  Query Variants

   There are three variants of the Query message:

   o A "General Query" is sent by the Querier to learn which multicast
     addresses have listeners on an attached link.  In a General Query,
     both the Multicast Address field and the Number of Sources (N)
     field are zero.

   o A "Multicast Address Specific Query" is sent by the Querier to
     learn if a particular multicast address has any listeners on an
     attached link.  In a Multicast Address Specific Query, the
     Multicast Address field contains the multicast address of interest,
     while the Number of Sources (N) field is set to zero.

   o A "Multicast Address and Source Specific Query" is sent by the
     Querier to learn if any of the sources from the specified list for
     the particular multicast address has any listeners on an attached
     link or not.  In a Multicast Address and Source Specific Query the
     Multicast Address field contains the multicast address of interest,
     while the Source Address [i] field(s) contain(s) the source
     address(es) of interest.



Vida, Costa - Editors                                          [Page 16]


INTERNET-DRAFT                    MLDv2                        June 2003


5.1.14.  Source Addresses for Queries

   All MLDv2 Queries MUST be sent with a valid IPv6 link-local source
   address.  If a node (router or host) receives a Query message with
   the IPv6 Source Address set to the unspecified address (::), or any
   other address that is not a valid IPv6 link-local address, it MUST
   silently discard the message and SHOULD log a warning.


5.1.15.  Destination Addresses for Queries

   In MLDv2, General Queries are sent to the link-scope all-nodes
   multicast address (FF02::1).  Multicast Address Specific and
   Multicast Address and Source Specific Queries are sent with an IP
   destination address equal to the multicast address of interest.
   *However*, a node MUST accept and process any Query whose IP
   Destination Address field contains *any* of the addresses (unicast or
   multicast) assigned to the interface on which the Query arrives.
   This might be useful, e.g., for debugging purposes.


5.2.  Version 2 Multicast Listener Report Message

   Version 2 Multicast Listener Reports are sent by IP nodes to report
   (to neighboring routers) the current multicast listening state, or
   changes in the multicast listening state, of their interfaces.
   Reports have the following format:


























Vida, Costa - Editors                                          [Page 17]


INTERNET-DRAFT                    MLDv2                        June 2003


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Type = TBA   |    Reserved   |           Checksum            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |           Reserved            |Nr of Mcast Address Records (M)|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     .                                                               .
     .                  Multicast Address Record [1]                 .
     .                                                               .
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |


     .                                                               .
     .                  Multicast Address Record [2]                 .
     .                                                               .
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                               .                               |
     .                               .                               .
     |                               .                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     .                                                               .
     .                  Multicast Address Record [M]                 .
     .                                                               .
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   where TBA = value To Be Allocated by the IANA, as specified in
   section 5.

   Each Multicast Address Record has the following internal format:
















Vida, Costa - Editors                                          [Page 18]


INTERNET-DRAFT                    MLDv2                        June 2003


     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Record Type  |  Aux Data Len |     Number of Sources (N)     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     *                                                               *
     |                                                               |
     *                       Multicast Address                       *
     |                                                               |
     *                                                               *
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     *                                                               *
     |                                                               |
     *                       Source Address [1]                      *
     |                                                               |
     *                                                               *
     |                                                               |
     +-                                                             -+
     |                                                               |
     *                                                               *
     |                                                               |
     *                       Source Address [2]                      *
     |                                                               |
     *                                                               *
     |                                                               |
     +-                                                             -+
     .                               .                               .
     .                               .                               .
     .                               .                               .
     +-                                                             -+
     |                                                               |
     *                                                               *
     |                                                               |
     *                       Source Address [N]                      *
     |                                                               |
     *                                                               *
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     .                                                               .
     .                         Auxiliary Data                        .
     .                                                               .
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


5.2.1.  Reserved

   The Reserved fields are set to zero on transmission, and ignored on
   reception.


Vida, Costa - Editors                                          [Page 19]


INTERNET-DRAFT                    MLDv2                        June 2003


5.2.2.  Checksum

   The standard ICMPv6 checksum;  it covers the entire MLDv2 message,
   plus a "pseudo-header" of IPv6 header fields [RFC 2460, RFC 2463].
   In order to compute the checksum, the Checksum field is set to zero.
   When a packet is received, the checksum MUST be verified before
   processing it.


5.2.3.  Nr of Mcast Address Records (M)

   The Nr of Mcast Address Records (M) field specifies how many
   Multicast Address Records are present in this Report.


5.2.4.  Multicast Address Record

   Each Multicast Address Record is a block of fields that contain
   information on the sender listening to a single multicast address on
   the interface from which the Report is sent.


5.2.5.  Record Type

   It specifies the type of the Multicast Address Record.  See section
   5.2.12 for a detailed description of the different possible Record
   Types.


5.2.6.  Aux Data Len

   The Aux Data Len field contains the length of the Auxiliary Data
   Field in this Multicast Address Record, in units of 32-bit words.  It
   may contain zero, to indicate the absence of any auxiliary data.


5.2.7.  Number of Sources (N)

   The Number of Sources (N) field specifies how many source addresses
   are present in this Multicast Address Record.


5.2.8.  Multicast Address

   The Multicast Address field contains the multicast address to which
   this Multicast Address Record pertains.


5.2.9.  Source Address [i]

   The Source Address [i] fields are a vector of n unicast addresses,
   where n is the value in this record's Number of Sources (N) field.

Vida, Costa - Editors                                          [Page 20]


INTERNET-DRAFT                    MLDv2                        June 2003


5.2.10.  Auxiliary Data

   The Auxiliary Data field, if present, contains additional information
   that pertain to this Multicast Address Record.  The protocol
   specified in this document, MLDv2, does not define any auxiliary
   data.  Therefore, implementations of MLDv2 MUST NOT include any
   auxiliary data (i.e., MUST set the Aux Data Len field to zero) in any
   transmitted Multicast Address Record, and MUST ignore any such data
   present in any received Multicast Address Record.  The semantics and
   the internal encoding of the Auxiliary Data field are to be defined
   by any future version or extension of MLD that uses this field.


5.2.11.  Additional Data

   If the Payload Length field in the IPv6 header of a received Report
   indicates that there are additional octets of data present, beyond
   the last Multicast Address Record, MLDv2 implementations MUST include
   those octets in the computation to verify the received MLD Checksum,
   but MUST otherwise ignore those additional octets.  When sending a
   Report, an MLDv2 implementation MUST NOT include additional octets
   beyond the last Multicast Address Record.


5.2.12.  Multicast Address Record Types

   There are a number of different types of Multicast Address Records
   that may be included in a Report message:

   o A "Current State Record" is sent by a node in response to a Query
     received on an interface.  It reports the current listening state
     of that interface, with respect to a single multicast address.
     The Record Type of a Current State Record may be one of the
     following two values:

     Value  Name and Meaning
     -----  ----------------
       1    MODE_IS_INCLUDE - indicates that the interface has a filter
            mode of INCLUDE for the specified multicast address.  The
            Source Address [i] fields in this Multicast Address Record
            contain the interface's source list for the specified
            multicast address.  A MODE_IS_INCLUDE Record is never sent
            with an empty source list.

       2    MODE_IS_EXCLUDE - indicates that the interface has a filter
            mode of EXCLUDE for the specified multicast address.  The
            Source Address [i] fields in this Multicast Address Record
            contain the interface's source list for the specified
            multicast address, if it is non-empty.

   o A "Filter Mode Change Record" is sent by a node whenever a local
     invocation of IPv6MulticastListen causes a change of the filter

Vida, Costa - Editors                                          [Page 21]


INTERNET-DRAFT                    MLDv2                        June 2003


     mode (i.e., a change from INCLUDE to EXCLUDE, or from EXCLUDE to
     INCLUDE) of the interface-level state entry for a particular
     multicast address, whether the source list changes at the same time
     or not.  The Record is included in a Report sent from the interface
     on which the change occurred.  The Record Type of a Filter Mode
     Change Record may be one of the following two values:

       3    CHANGE_TO_INCLUDE_MODE - indicates that the interface has
            changed to INCLUDE filter mode for the specified multicast
            address.  The Source Address [i] fields in this Multicast
            Address Record contain the interface's new source list for
            the specified multicast address, if it is non-empty.

       4    CHANGE_TO_EXCLUDE_MODE - indicates that the interface has
            changed to EXCLUDE filter mode for the specified multicast
            address.  The Source Address [i] fields in this Multicast
            Address Record contain the interface's new source list for
            the specified multicast address, if it is non-empty.

   o A "Source List Change Record" is sent by a node whenever a local
     invocation of IPv6MulticastListen causes a change of source list
     that is *not* coincident with a change of filter mode, of the
     interface-level state entry for a particular multicast address.
     The Record is included in a Report sent from the interface on which
     the change occurred.  The Record Type of a Source List Change
     Record may be one of the following two values:

       5    ALLOW_NEW_SOURCES - indicates that the Source Address [i]
            fields in this Multicast Address Record contain a list of
            the additional sources that the node wishes to listen to,
            for packets sent to the specified multicast address.  If
            the change was to an INCLUDE source list, these are the
            addresses that were added to the list;  if the change was to
            an EXCLUDE source list, these are the addresses that were
            deleted from the list.

       6    BLOCK_OLD_SOURCES - indicates that the Source Address [i]
            fields in this Multicast Address Record contain a list of
            the sources that the node no longer wishes to listen to,
            for packets sent to the specified multicast address.  If the
            change was to an INCLUDE source list, these are the
            addresses that were deleted from the list;  if the change
            was to an EXCLUDE source list, these are the addresses that
            were added to the list.

   If a change of source list results in both allowing new sources and
   blocking old sources, then two Multicast Address Records are sent for
   the same multicast address, one of type ALLOW_NEW_SOURCES and one of
   type BLOCK_OLD_SOURCES.

   We use the term "State Change Record" to refer to either a Filter
   Mode Change Record or a Source List Change Record.

Vida, Costa - Editors                                          [Page 22]


INTERNET-DRAFT                    MLDv2                        June 2003


   Multicast Address Records with an unrecognized Record Type value MUST
   be silently ignored, with the rest of the report being processed.

   In the rest of this document, we use the following notation to
   describe the contents of a Multicast Address Record that pertains to
   a particular multicast address:

     IS_IN ( x )  -  Type MODE_IS_INCLUDE, source addresses x
     IS_EX ( x )  -  Type MODE_IS_EXCLUDE, source addresses x
     TO_IN ( x )  -  Type CHANGE_TO_INCLUDE_MODE, source addresses x
     TO_EX ( x )  -  Type CHANGE_TO_EXCLUDE_MODE, source addresses x
     ALLOW ( x )  -  Type ALLOW_NEW_SOURCES, source addresses x
     BLOCK ( x )  -  Type BLOCK_OLD_SOURCES, source addresses x

   where x is either:

     o a capital letter (e.g., "A") to represent the set of source
       addresses,

     or

     o a set expression (e.g., "A+B"), where "A+B" means the union of
       sets A and B,  "A*B" means the intersection of sets A and B, and
       "A-B" means the removal of all elements of set B from set A.


5.2.13.  Source Addresses for Reports

   An MLDv2 Report MUST be sent with a valid IPv6 link-local source
   address, or the unspecified address (::), if the sending interface
   has not acquired a valid link-local address yet.  Sending reports
   with the unspecified address is allowed to support the use of IP
   multicast in the Neighbor Discovery Protocol [RFC 2461].  For
   stateless autoconfiguration, as defined in [RFC 2462], a node is
   required to join several IPv6 multicast groups, in order to perform
   Duplicate Address Detection (DAD).  Prior to DAD, the only address
   the reporting node has for the sending interface is a tentative one,
   which cannot be used for communication.  Thus, the unspecified
   address must be used.

   On the other hand, routers MUST silently discard a message that is
   not sent with a valid link-local address, without taking any action
   on the contents of the packet.  Thus, a Report is discarded if the
   router cannot identify the source address of the packet as belonging
   to a link connected to the interface on which the packet was
   received.  A Report sent with the unspecified address is also
   discarded by the router.  This enhances security, as unidentified
   reporting nodes cannot influence the state of the MLDv2 router(s).
   Nevertheless, the reporting node has modified its listening state
   for multicast addresses that are contained in the Multicast Address
   Records of the Report message.  From now on, it will treat packets
   sent to those multicast addresses according to this new listening

Vida, Costa - Editors                                          [Page 23]


INTERNET-DRAFT                    MLDv2                        June 2003


   state.  Once a valid link-local address is available, a node SHOULD
   generate new MLDv2 Report messages for all multicast addresses joined
   on the interface.


5.2.14.  Destination Addresses for Reports

   Version 2 Multicast Listener Reports are sent with an IP
   destination address to which all MLDv2-capable multicast routers
   listen (see section 11 for IANA considerations related to this
   special destination address).  A node that operates in version 1
   compatibility mode (see details in section 8) sends version 1 Reports
   to the multicast address specified in the Multicast Address field of
   the Report.  In addition, a node MUST accept and process any version
   1 Report whose IP Destination Address field contains *any* of the
   IPv6 addresses (unicast or multicast) assigned to the interface on
   which the Report arrives.  This might be useful, e.g., for debugging
   purposes.


5.2.15.  Multicast Listener Report Size

   If the set of Multicast Address Records required in a Report does not
   fit within the size limit of a single Report message (as determined
   by the MTU of the link on which it will be sent), the Multicast
   Address Records are sent in as many Report messages as needed to
   report the entire set.

   If a single Multicast Address Record contains so many source
   addresses that it does not fit within the size limit of a single
   Report message, then:

   o if its Type is not IS_EX or TO_EX, it is split into multiple
     Multicast Address Records;  each such record contains a different
     subset of the source addresses, and is sent in a separate Report.

   o if its Type is IS_EX or TO_EX, a single Multicast Address Record is
     sent, with as many source addresses as can fit;  the remaining
     source addresses are not reported.  Although the choice of which
     sources to report is arbitrary, it is preferable to report the same
     set of sources in each subsequent report, rather than reporting
     different sources each time.


6.  Protocol Description for Multicast Address Listeners

   MLD is an asymmetric protocol, as it specifies separate behaviors for
   multicast address listeners -- that is, hosts or routers that listen
   to multicast packets -- and multicast routers.  This section
   describes the part of MLDv2 that applies to all multicast address
   listeners.  (Note that a multicast router that is also a multicast
   address listener performs both parts of MLDv2;  it receives and it

Vida, Costa - Editors                                          [Page 24]


INTERNET-DRAFT                    MLDv2                        June 2003


   responds to its own MLD messages, as well as to those of its
   neighbors.)  The multicast router part of MLDv2 is described in
   section 7.

   A node performs the protocol described in this section over all
   interfaces on which multicast reception is supported, even if more
   than one of those interfaces are connected to the same link.

   For interoperability with multicast routers that run the MLDv1
   protocol, nodes maintain a Host Compatibility Mode variable for each
   interface on which multicast reception is supported.  This section
   describes the behavior of multicast address listener nodes on
   interfaces for which Host Compatibility Mode = MLDv2.  The algorithm
   for determining Host Compatibility Mode, and the behavior if its
   value is set to MLDv1, are described in section 8.

   The link-scope all-nodes multicast address, (FF02::1), is handled as
   a special case.  On all nodes -- that is all hosts and routers,
   including multicast routers -- listening to packets destined to the
   all-nodes multicast address, from all sources, is permanently enabled
   on all interfaces on which multicast listening is supported.  No MLD
   messages are ever sent regarding neither the link-scope all-nodes
   multicast address, nor any multicast address of scope 0 (reserved) or
   1 (node-local).

   There are three types of events that trigger MLDv2 protocol actions on
   an interface:

     o a change of the interface listening state, caused by a local
       invocation of IPv6MulticastListen;

     o the firing of a specific timer;

     o the reception of a Query.

   (Received MLD messages of types other than Query are silently
   ignored, except as required for interoperation with nodes that
   implement MLDv1.)

   The following subsections describe the actions to be taken for each
   case.  Timer and counter names appear in square brackets.  Default
   values for those timers and counters are specified in section 9.


6.1.  Action on Change of Interface State

   An invocation of IPv6MulticastListen may cause the multicast
   listening state of an interface to change, according to the rules in
   section 4.2.  Each such change affects the per-interface entry for a
   single multicast address.

   A change of interface state causes the node to immediately transmit a

Vida, Costa - Editors                                          [Page 25]


INTERNET-DRAFT                    MLDv2                        June 2003


   State Change Report from that interface.  The type and contents of
   the Multicast Address Record(s) in that Report are determined by
   comparing the filter mode and source list for the affected multicast
   address before and after the change, according to the table below.
   If no interface state existed for that multicast address before the
   change (i.e., the change consisted of creating a new per-interface
   record), or if no state exists after the change (i.e., the change
   consisted of deleting a per-interface record), then the
   "non-existent" state is considered to have an INCLUDE filter mode
   and an empty source list.

    Old State         New State         State Change Record Sent
    ---------         ---------         ------------------------
    INCLUDE (A)       INCLUDE (B)       ALLOW (B-A), BLOCK (A-B)

    EXCLUDE (A)       EXCLUDE (B)       ALLOW (A-B), BLOCK (B-A)

    INCLUDE (A)       EXCLUDE (B)       TO_EX (B)

    EXCLUDE (A)       INCLUDE (B)       TO_IN (B)

   If the computed source list for either an ALLOW or a BLOCK State
   Change Record is empty, that record is omitted from the Report.

   To cover the possibility of the State Change Report being missed by
   one or more multicast routers, [Robustness Variable] û 1
   retransmissions are scheduled, through a Retransmission Timer, at
   intervals chosen at random from the range (0, [Unsolicited Report
   Interval]).

   If more changes to the same interface state entry occur before all
   the retransmissions of the State Change Report for the first change
   have been completed, each such additional change triggers the
   immediate transmission of a new State Change Report.

   The contents of the new Report are calculated as follows:

   o As for the first Report, the interface state for the affected
     multicast address before and after the latest change is compared.

   o The records that express the difference are built according to the
     table above.  Nevertheless, these records are not transmitted in a
     separate message, but they are instead merged with the contents of
     the pending report, to create the new State Change Report.  The
     rules for calculating this merged report are described below.

   The transmission of the merged State Change Report terminates
   retransmissions of the earlier State Change Reports for the same
   multicast address, and becomes the first of [Robustness Variable]
   transmissions of the new State Change Reports.

   Each time a source is included in the difference report calculated

Vida, Costa - Editors                                          [Page 26]


INTERNET-DRAFT                    MLDv2                        June 2003


   above, retransmission state for that source needs to be maintained
   until [Robustness Variable] State Change Reports have been sent by
   the node.  This is done in order to ensure that a series of
   successive state changes do not break the protocol robustness.
   Sources in retransmission state can be kept in a per multicast
   address Retransmission List, with a Source Retransmission Counter
   associated to each source in the list.  When a source is included in
   the list, its counter is set to [Robustness Variable].  Each time a
   State Change Report is sent the counter is decreased by one unit.
   When the counter reaches zero, the source is deleted from the
   Retransmission List for that multicast address.

   If the interface listening state change that triggers the new report
   is a filter mode change, then the next [Robustness Variable] State
   Change Reports will include a Filter Mode Change Record. This applies
   even if any number of source list changes occur in that period.  The
   node has to maintain retransmission state for the multicast address
   until the [Robustness Variable] State Change Reports have been sent.
   This can be done through a per multicast address Filter Mode
   Retransmission Counter.  When the filter mode changes, the counter is
   set to [Robustness Variable].  Each time a State Change Report is
   sent the counter is decreased by one unit.  When the counter reaches
   zero, i.e., [Robustness Variable] State Change Reports with Filter
   Mode Change Records have been transmitted after the last filter mode
   change, and if source list changes have resulted in additional
   reports being scheduled, then the next State Change Report will
   include Source List Change Records.

   Each time an interface listening state change triggers the immediate
   transmission of a new State Change Report, its contents are
   determined as follows.  If the report should contain a Filter Mode
   Change Record, i.e., the Filter Mode Retransmission Counter for that
   multicast address has a value higher than zero, then, if the current
   filter mode of the interface is INCLUDE, a TO_IN record is included
   in the report;  otherwise a TO_EX record is included.  If instead the
   report should contain Source List Change Records, i.e., the Filter
   Mode Retransmission Counter for that multicast address is zero, an
   ALLOW and a BLOCK record is included.  The contents of these records
   are built according to the table below.

     Record   Sources included
     ------   ----------------
     TO_IN    All in the current interface state that must be forwarded
     TO_EX    All in the current interface state that must be blocked
     ALLOW    All with retransmission state (i.e., all sources from the
              Retransmission List) that must be forwarded
     BLOCK    All with retransmission state that must be blocked

   If the computed source list for either an ALLOW or a BLOCK record is
   empty, that record is omitted from the State Change Report.

   Note:  When the first State Change Report is sent, the non-existent

Vida, Costa - Editors                                          [Page 27]


INTERNET-DRAFT                    MLDv2                        June 2003


   pending report to merge with can be treated as a Source Change
   Report with empty ALLOW and BLOCK records (no sources have
   retransmission state).

   The building of a scheduled State Change Report, triggered by the
   firing of a Retransmission Timer, instead of an interface listening
   state change, is described in section 6.3.


6.2.  Action on Reception of a Query

   Upon reception of an MLD message that contains a Query, the node
   checks if the source address of the message is a valid link-local
   address, if the Hop Limit is set to 1, and if the Router Alert option
   is present in the Hop-By-Hop Options header of the IPv6 packet.  If
   any of these checks fails, the packet is dropped.

   If the validity of the MLD message is verified, the node starts to
   process the Query.  Instead of responding immediately, the node
   delays its response by a random amount of time, bounded by the
   Maximum Response Delay value derived from the Maximum Response Code
   in the received Query message.  A node may receive a variety of
   Queries on different interfaces and of different kinds (e.g., General
   Queries, Multicast Address Specific Queries, and Multicast Address
   and Source Specific Queries), each of which may require its own
   delayed response.

   Before scheduling a response to a Query, the node must first consider
   previously scheduled pending responses and, in many cases, schedule a
   combined response.  Therefore, for each of its interfaces on which it
   operates the listener part of the MLDv2 protocol, the node must be
   able to maintain the following state:

   o an Interface Timer for scheduling responses to General Queries;

   o a Multicast Address Timer for scheduling responses to Multicast
     Address (and Source) Specific Queries, for each multicast address
     the node has to report on;

   o a per-multicast-address list of sources to be reported in response
     to a Multicast Address and Source Specific Query.

   When a new valid General Query arrives on an interface, the node
   checks whether it has any per-interface listening state record to
   report on, or not.  Similarly, when a new valid Multicast Address
   (and Source) Specific Query arrives on an interface, the node checks
   whether it has a per-interface listening state record that
   corresponds to the queried multicast address (and source), or not.
   If it does, a delay for a response is randomly selected in the range
   (0, [Maximum Response Delay]), where Maximum Response Delay is
   derived from the Maximum Response Code inserted in the received Query
   message.  The following rules are then used to determine if a Report

Vida, Costa - Editors                                          [Page 28]


INTERNET-DRAFT                    MLDv2                        June 2003


   needs to be scheduled or not, and the type of Report to schedule.
   (The rules are considered in order and only the first matching rule
   is applied.)

   1. If there is a pending response to a previous General Query
      scheduled sooner than the selected delay, no additional response
      needs to be scheduled.

   2. If the received Query is a General Query, the Interface Timer is
      used to schedule a response to the General Query after the
      selected delay.  Any previously pending response to a General
      Query is canceled.

   3. If the received Query is a Multicast Address Specific Query or a
      Multicast Address and Source Specific Query and there is no
      pending response to a previous Query for this multicast address,
      then the Multicast Address Timer is used to schedule a report.  If
      the received Query is a Multicast Address and Source Specific
      Query, the list of queried sources is recorded to be used when
      generating a response.

   4. If there is already a pending response to a previous Query
      scheduled for this multicast address, and either the new Query is
      a Multicast Address Specific Query or the recorded source list
      associated with the multicast address is empty, then the multicast
      address source list is cleared and a single response is scheduled,
      using the Multicast Address Timer.  The new response is scheduled
      to be sent at the earliest of the remaining time for the pending
      report and the selected delay.

   5. If the received Query is a Multicast Address and Source Specific
      Query and there is a pending response for this multicast address
      with a non-empty source list, then the multicast address source
      list is augmented to contain the list of sources in the new Query,
      and a single response is scheduled using the Multicast Address
      Timer.  The new response is scheduled to be sent at the earliest
      of the remaining time for the pending report and the selected
      delay.


6.3.  Action on Timer Expiration

   There are several timers that, upon expiration, trigger protocol
   actions on an MLDv2 Multicast Address Listener node.  All these
   actions are related to pending reports scheduled by the node.

   1. If the expired timer is the Interface Timer (i.e., there is a
      pending response to a General Query), then one Current State
      Record is sent for each multicast address for which the specified
      interface has listening state, as described in section 4.2.  The
      Current State Record carries the multicast address and its
      associated filter mode (MODE_IS_INCLUDE or MODE_IS_EXCLUDE) and

Vida, Costa - Editors                                          [Page 29]


INTERNET-DRAFT                    MLDv2                        June 2003


      Source list.  Multiple Current State Records are packed into
      individual Report messages, to the extent possible.

      This naive algorithm may result in bursts of packets when a node
      listens to a large number of multicast addresses.  Instead of
      using a single Interface Timer, implementations are recommended to
      spread transmission of such Report messages over the interval
      (0, [Maximum Response Delay]).  Note that any such implementation
      MUST avoid the "ack-implosion" problem, i.e., MUST NOT send a
      Report immediately upon reception of a General Query.

   2. If the expired timer is a Multicast Address Timer and the list of
      recorded sources for that multicast address is empty (i.e., there
      is a pending response to a Multicast Address Specific Query), then
      if, and only if, the interface has listening state for that
      multicast address, a single Current State Record is sent for that
      address.  The Current State Record carries the multicast address
      and its associated filter mode (MODE_IS_INCLUDE or
      MODE_IS_EXCLUDE) and source list, if any.

   3. If the expired timer is a Multicast Address Timer and the list of
      recorded sources for that multicast address is non-empty (i.e.,
      there is a pending response to a Multicast Address and Source
      Specific Query), then if, and only if, the interface has listening
      state for that multicast address, the contents of the
      corresponding Current State Record are determined from the
      interface state and the pending response record, as specified in
      the following table:

                         set of sources in the
      interface state   pending response record   Current State Record
      ---------------   -----------------------   --------------------
       INCLUDE (A)                B                   IS_IN (A*B)

       EXCLUDE (A)                B                   IS_IN (B-A)

      If the resulting Current State Record has an empty set of source
      addresses, then no response is sent.  After the required Report
      messages have been generated, the source lists associated with any
      reported multicast addresses are cleared.

   4. If the expired timer is a Retransmission Timer for a multicast
      address (i.e., there is a pending State Change Report for that
      multicast address), the contents of the report are determined as
      follows.  If the report should contain a Filter Mode Change
      Record, i.e., the Filter Mode Retransmission Counter for that
      multicast address has a value higher than zero, then, if the
      current filter mode of the interface is INCLUDE, a TO_IN record is
      included in the report;  otherwise a TO_EX record is included.  In
      both cases, the Filter Mode Retransmission Counter for that
      multicast address is decremented by one unit after the
      transmission of the report.

Vida, Costa - Editors                                          [Page 30]


INTERNET-DRAFT                    MLDv2                        June 2003


      If instead the report should contain Source List Change Records,
      i.e., the Filter Mode Retransmission Counter for that multicast
      address is zero, an ALLOW and a BLOCK record is included.  The
      contents of these records are built according to the table below:

      Record   Sources included
      ------   ----------------
      TO_IN    All in the current interface state that must be forwarded
      TO_EX    All in the current interface state that must be blocked
      ALLOW    All with retransmission state (i.e., all sources from the
               Retransmission List) that must be forwarded.  For each
               included source, its Source Retransmission Counter is
               decreased with one unit after the transmission of the
               report.  If the counter reaches zero, the source is
               deleted from the Retransmission List for that multicast
               address.
      BLOCK    All with retransmission state (i.e., all sources from the
               Retransmission List) that must be blocked.  For each
               included source, its Source Retransmission Counter is
               decreased with one unit after the transmission of the
               report.  If the counter reaches zero, the source is
               deleted from the Retransmission List for that multicast
               address.

      If the computed source list for either an ALLOW or a BLOCK record
      is empty, that record is omitted from the State Change Report.


7.  Description of the Protocol for Multicast Routers

   The purpose of MLD is to enable each multicast router to learn, for
   each of its directly attached links, which multicast addresses have
   listeners on that link.  MLD version 2 adds the capability for a
   multicast router to also learn which *sources* have listeners among
   the neighboring nodes, for packets sent to any particular
   multicast address.  The information gathered by MLD is provided to
   whichever multicast routing protocol is used by the router, in
   order to ensure that multicast packets are delivered to all links
   where there are interested listeners.

   This section describes the part of MLDv2 that is performed by
   multicast routers.  Multicast routers may themselves become multicast
   address listeners, and therefore also perform the multicast listener
   part of MLDv2, described in section 6.

   A multicast router performs the protocol described in this section
   over each of its directly attached links.  If a multicast router has
   more than one interface to the same link, it only needs to operate
   this protocol over one of those interfaces.

   For each interface over which the router operates the MLD protocol,
   the router must configure that interface to listen to all link-layer

Vida, Costa - Editors                                          [Page 31]


INTERNET-DRAFT                    MLDv2                        June 2003


   multicast addresses that can be generated by IPv6 multicasts.  For
   example, an Ethernet-attached router must set its Ethernet address
   reception filter to accept all Ethernet multicast addresses that
   start with the hexadecimal value 3333 [RFC 2464];  in the case of an
   Ethernet interface that does not support the filtering of such a
   multicast address range, it must be configured to accept ALL Ethernet
   multicast addresses, in order to meet the requirements of MLD.

   On each interface over which this protocol is being run, the router
   MUST enable reception of the link-scope "all MLDv2-capable routers"
   multicast address from all sources, and MUST perform the multicast
   address listener part of MLDv2 for that address on that interface.

   Multicast routers only need to know that *at least one* node on an
   attached link listens to packets for a particular multicast address
   from a particular source;  a multicast router is not required to
   *individually* keep track of the interests of each neighboring node.
   (Nevertheless, see Appendix A2 item 1 for discussion.)

   MLDv2 is backward compatible with the MLDv1 protocol.  For a detailed
   description of compatibility issues see section 8.


7.1.  Conditions for MLD Queries

   The behavior of a router that implements the MLDv2 protocol depends
   on whether there are several multicast routers on the same subnet, or
   not.  If it is the case, a querier election mechanism (described in
   section 7.6.2) is used to elect a single multicast router to be in
   Querier state.  All the multicast routers on the subnet listen to the
   messages sent by multicast address listeners, and maintain the same
   multicast listening information state, so that they can quickly and
   correctly take over the querier functionality, should the present
   Querier fail.  Nevertheless, it is only the Querier that sends
   periodical or triggered query messages on the subnet.

   The Querier periodically sends General Queries to request Multicast
   Address Listener information from an attached link.  These queries
   are used to build and refresh the Multicast Address Listener state of
   routers on attached links.

   Nodes respond to these queries by reporting their Multicast Address
   Listening state (and set of sources they listen to) with Current
   State Multicast Address Records in MLDv2 Multicast Listener Reports.

   As a listener of a multicast address, a node may express interest in
   listening or not listening to traffic from particular sources.  As
   the desired listening state of a node changes, it reports these
   changes using Filter Mode Change Records or Source List Change
   Records.  These records indicate an explicit state change in a
   multicast address at a node in either the Multicast Address Record's
   source list or its filter mode.  When Multicast Address Listening is

Vida, Costa - Editors                                          [Page 32]


INTERNET-DRAFT                    MLDv2                        June 2003


   terminated at a node or traffic from a particular source is no longer
   desired, the Querier must query for other listeners of the multicast
   address or of the source before deleting the multicast address (or
   source) from its Multicast Address Listener state and pruning its
   traffic.

   To enable all nodes on a link to respond to changes in multicast
   address listening, the Querier sends specific queries.  A Multicast
   Address Specific Query is sent to verify that there are no nodes that
   listen to the specified multicast address or to "rebuild" the
   listening state for a particular multicast address.  Multicast
   Address Specific Queries are sent when the Querier receives a State
   Change Record indicating that a node ceases to listen to a multicast
   address.  They are also sent in order to enable a fast transition of
   a router from EXCLUDE to INCLUDE mode, in case a received State
   Change Record motivates this action.

   A Multicast Address and Source Specific Query is used to verify that
   there are no nodes on a link which listen to traffic from a specific
   set of sources.  Multicast Address and Source Specific Queries list
   sources for a particular multicast address which have been requested
   to no longer be forwarded.  This query is sent by the Querier in
   order to learn if any node listens to packets sent to the specified
   multicast address, from the specified source addresses.  Multicast
   Address and Source Specific Queries are only sent in response to
   State Change Records and never in response to Current State Records.
   Section 5.1.13 describes each query in more detail.


7.2.  MLD State Maintained by Multicast Routers

   Multicast routers that implement the MLDv2 protocol keep state per
   multicast address per attached link.  This multicast address state
   consists of a filter mode, a list of sources, and various timers.
   For each attached link on which MLD runs, a multicast router records
   the listening state for that link.  That state conceptually consists
   of a set of records of the form:

          (IPv6 multicast address, Filter Timer,
           Router Filter Mode, (source records) )

   Each source record is of the form:

          (IPv6 source address, source timer)

   If all sources for a multicast address are listened to, an empty
   source record list is kept with the Router Filter Mode set to
   EXCLUDE.  This means that nodes on this link want all sources for
   this multicast address to be forwarded.  This is the MLDv2
   equivalent of an MLDv1 listening state.



Vida, Costa - Editors                                          [Page 33]


INTERNET-DRAFT                    MLDv2                        June 2003


7.2.1.  Definition of Router Filter Mode

   To reduce internal state, MLDv2 routers keep a filter mode per
   multicast address per attached link.  This filter mode is used to
   summarize the total listening state of a multicast address to a
   minimum set such that all nodes' listening states are respected.  The
   filter mode may change in response to the reception of particular
   types of Multicast Address Records or when certain timer conditions
   occur.  In the following sections, we use the term "Router Filter
   Mode" to refer to the filter mode of a particular multicast address
   within a router.  Section 7.4 describes the changes of the Router
   Filter Mode per Multicast Address Record received.

   A router is in INCLUDE mode for a specific multicast address on a
   given interface if all the listeners on the link interested in that
   address are in INCLUDE mode.  The router state is represented through
   the notation INCLUDE (A), where A is called the "Include List".  The
   Include List is the set of sources that one or more listeners on the
   link have requested to receive.  All the sources from the Include
   List will be forwarded by the router.  Any other source that is not
   in the Include List will be blocked by the router.

   A router is in EXCLUDE mode for a specific multicast address on a
   given interface if there is at least one listener in EXCLUDE mode
   interested in that address on the link.  Conceptually, when a
   Multicast Address Record is received, the Router Filter Mode for that
   multicast address is updated to cover all the requested sources using
   the least amount of state.  As a rule, once a Multicast Address
   Record with a filter mode of EXCLUDE is received, the Router Filter
   Mode for that multicast address will be set to EXCLUDE.
   Nevertheless, if all nodes with a multicast address record having
   filter mode set to EXCLUDE cease reporting, it is desirable for the
   Router Filter Mode for that multicast address to transition back to
   INCLUDE mode.  This transition occurs when the Filter Timer expires,
   and is explained in detail in section 7.5.

   When the router is in EXCLUDE mode, the router state is represented
   through the notation EXCLUDE (X,Y), where X is called the "Requested
   List" and Y is called the "Exclude List".  All sources, except those
   from the Exclude List, will be forwarded by the router.  The
   Requested List has no effect on forwarding.  Nevertheless, it has to
   be maintained for several reasons, as explained in section 7.2.3.

   The exact handling of both the INCLUDE and EXCLUDE mode router state,
   according to the received reports, is presented in details in Tables
   7.4.1 and 7.4.2.


7.2.2.  Definition of Filter Timers

   The Filter Timer is only used when the router is in EXCLUDE mode for
   a specific multicast address, and it represents the time for the

Vida, Costa - Editors                                          [Page 34]


INTERNET-DRAFT                    MLDv2                        June 2003


   Router Filter Mode of the multicast address to expire and switch to
   INCLUDE mode.  A Filter Timer is a decrementing timer with a lower
   bound of zero.  One Filter Timer exists per multicast address record.
   Filter Timers are updated according to the types of Multicast Address
   Records received.

   If a Filter Timer expires, with the Router Filter Mode for that
   multicast address being EXCLUDE, it means that there are no more
   listeners in EXCLUDE mode on the attached link.  At this point, the
   router transitions to INCLUDE filter mode.  Section 7.5 describes the
   actions taken when a Filter Timer expires while in EXCLUDE mode.

   The following table summarizes the role of the Filter Timer.  Section
   7.4 describes the details of setting the Filter Timer per type of
   Multicast Address Record received.

         Router               Filter
       Filter Mode          Timer Value          Actions/Comments
       -----------       -----------------       ----------------

         INCLUDE             Not Used            All listeners in
                                                 INCLUDE mode.

         EXCLUDE             Timer > 0           At least one listener
                                                 in EXCLUDE mode.

         EXCLUDE             Timer == 0          No more listeners in
                                                 EXCLUDE mode for the
                                                 multicast address.
                                                 If the Requested List
                                                 is empty, delete
                                                 Multicast Address
                                                 Record.  If not, switch
                                                 to INCLUDE filter mode;
                                                 the sources in the
                                                 Requested List are
                                                 moved to the Include
                                                 List, and the Exclude
                                                 List is deleted.


7.2.3.  Definition of Source Timers

   A Source Timer is a decrementing timer with a lower bound of zero.
   One Source Timer is kept per source record.  Source timers are
   updated according to the type and filter mode of the Multicast
   Address Record received.  Section 7.4 describes the setting of source
   timers per type of Multicast Address Records received.

   In the following, abbreviations are used for several variables (all
   of which are described in detail in section 9).  The variable MALI
   stands for the Multicast Address Listening Interval, which is the

Vida, Costa - Editors                                          [Page 35]


INTERNET-DRAFT                    MLDv2                        June 2003


   time in which multicast address listening state will time out.  The
   variable LLQT is the Last Listener Query Time, which is the total
   time the router should wait for a report, after the Querier has sent
   the first query.  During this time, the Querier should send [Last
   Member Query Count]-1 retransmissions of the query.  LLQT represents
   the "leave latency", or the difference between the transmission of a
   listener state change and the modification of the information passed
   to the routing protocol.

   If the router is in INCLUDE filter mode, a source can be added to the
   current Include List if a listener in INCLUDE mode sends a Current
   State or a State Change Report which includes that source.  Each
   source from the Include List is associated with a source timer that
   is updated whenever a listener in INCLUDE mode sends a report that
   confirms its interest in that specific source.  If the timer of a
   source from the Include List expires, the source is deleted from the
   Include List.  If there are no more source records left, the
   multicast address record is deleted from the router.

   Besides this "soft leave" mechanism, there is also a "fast leave"
   scheme in MLDv2;  it is also based on the use of source timers.  When
   a node in INCLUDE mode expresses its desire to stop listening to a
   specific source, all the multicast routers on the link lower their
   timer for that source to a small interval of LLQT milliseconds.  The
   Querier then sends then a Multicast Address and Source Specific
   Query, to verify whether there are other listeners for that source on
   the link, or not.  If a corresponding report is received before the
   timer expires, all the multicast routers on the link update their
   source timer.  If not, the source is deleted from the Include List.
   The handling of the Include List, according to the received reports,
   is detailed in Tables 7.4.1 and 7.4.2.

   Source timers are treated differently when the Router Filter Mode for
   a multicast address is EXCLUDE.  For sources from the Requested List
   the source timers have running values;  these sources are forwarded
   by the router.  For sources from the Exclude List the source timers
   are set to zero;  these sources are blocked by the router.  If the
   timer of a source from the Requested List expires, the source is
   moved to the Exclude List.  The router informs then the routing
   protocol that there is no longer a listener on the link interested in
   traffic from this source.

   The router has to maintain the Requested List for two reasons:

   o To keep track of sources that listeners in INCLUDE mode listen to.
     This is necessary in order to assure a seamless transition of the
     router to INCLUDE mode, when there will be no listener in EXCLUDE
     mode left.  This transition should not interrupt the flow of
     traffic to the listeners in INCLUDE mode still interested in that
     multicast address.  Therefore, at the moment of the transition, the
     Requested List should represent the set of sources that nodes in
     INCLUDE mode have explicitly requested.

Vida, Costa - Editors                                          [Page 36]


INTERNET-DRAFT                    MLDv2                        June 2003


     When the router switches to INCLUDE mode, the sources in the
     Requested List are moved to the Include List, and the Exclude List
     is deleted.  Before the switch, the Requested List can contain an
     inexact guess at the sources that listeners in INCLUDE mode listen
     to - might be too large or too small.  These inexactitudes are due
     to the fact that the Requested List is also used for fast blocking
     purposes, as described below.  If such a fast blocking is required,
     some sources may be deleted from the Requested List (as shown in
     Tables 7.4.1 and 7.4.2) in order to reduce router state.
     Nevertheless, in each such case the Filter Timer is updated as
     well.  Therefore, listeners in INCLUDE mode will have enough time,
     before an eventual switching, to reconfirm their interest in the
     eliminated source(s), and rebuild the Requested List accordingly.
     The protocol ensures that when a switch to INCLUDE mode occurs, the
     Requested List will be accurate.  Details about the transition of
     the router to INCLUDE mode are presented in Appendix A3.

   o To allow a fast blocking of previously unblocked sources.  If the
     router receives a report that contains such a request, the
     concerned sources are added to the Requested List.  Their timers
     are set to a small interval of LLQT milliseconds, and a Multicast
     Address and Source Specific Query is sent by the Querier, to check
     whether there are nodes on the link still interested in those
     sources, or not.  If no node confirms its interest in receiving a
     specific source, the timer of that source expires.  Then, the
     source is moved from the Requested List to the Exclude List.  From
     then on, the source will be blocked by the router.

   The handling of the EXCLUDE mode router state, according to the
   received reports, is detailed in Tables 7.4.1 and 7.4.2.

   When the Router Filter Mode for a multicast address is EXCLUDE,
   source records are only deleted when the Filter Timer expires, or
   when newly received Multicast Address Records modify the source
   record list of the router.


7.3.  MLDv2 Source Specific Forwarding Rules

   When a multicast router receives a datagram from a source destined to
   a particular multicast address, a decision has to be made whether to
   forward the datagram on an attached link or not.  The multicast
   routing protocol in use is in charge of this decision, and should use
   the MLDv2 information to ensure that all sources/multicast addresses
   that have listeners on a link are forwarded to that link.  MLDv2
   information does not override multicast routing information;  for
   example, if the MLDv2 filter mode for a multicast address is EXCLUDE,
   a router may still forward packets for excluded sources to a transit
   link.

   To summarize, the following table describes the forwarding
   suggestions made by MLDv2 to the routing protocol for traffic

Vida, Costa - Editors                                          [Page 37]


INTERNET-DRAFT                    MLDv2                        June 2003


   originating from a source destined to a multicast address.  It also
   summarizes the actions taken upon the expiration of a source timer
   based on the Router Filter Mode of the multicast address.

         Router
       Filter Mode      Source Timer Value           Action
       -----------      ------------------           ------

        INCLUDE            TIMER > 0         Suggest to forward traffic
                                             from source

        INCLUDE            TIMER == 0        Suggest to stop forwarding
                                             traffic from source and
                                             remove source record.  If
                                             there are no more source
                                             records, delete multicast
                                             address record

        EXCLUDE            TIMER > 0         Suggest to forward traffic
                                             from source

        EXCLUDE            TIMER == 0        Suggest to not forward
                                             traffic from source.  Move
                                             the source from the
                                             Requested List to the
                                             Exclude List (DO NOT remove
                                             source record)

        EXCLUDE         No Source Element    Suggest to forward traffic
                                             from all sources


7.4.  Action on Reception of Reports

   Upon reception of an MLD message that contains a Report, the router
   checks if the source address of the message is a valid link-local
   address, if the Hop Limit is set to 1, and if the Router Alert option
   is present in the Hop-By-Hop Options header of the IPv6 packet.  If
   any of these checks fails, the packet is dropped.  If the validity of
   the MLD message is verified, the router starts to process the Report.


7.4.1.  Reception of Current State Records

   When receiving Current State Records, a router updates both its
   Filter Timer and its source timers.  In some circumstances, the
   reception of a type of multicast address record will cause the Router
   Filter Mode for that multicast address to change.  The table below
   describes the actions, with respect to state and timers, that occur
   to a router's state upon reception of Current State Records.

   If the router is in INCLUDE filter mode for a multicast address, we

Vida, Costa - Editors                                          [Page 38]


INTERNET-DRAFT                    MLDv2                        June 2003


   will use the notation INCLUDE (A), where A denotes the associated
   Include List.  If the router is in EXCLUDE filter mode for a
   multicast address, we will use the notation EXCLUDE (X,Y), where X
   and Y denote the associated Requested List and Exclude List
   respectively.

   Within the "Actions" section of the router state tables, we use the
   notation '(A)=J', which means that the set A of source records should
   have their source timers set to value J.  'Delete (A)' means that the
   set A of source records should be deleted.  'Filter Timer = J' means
   that the Filter Timer for the multicast address should be set to
   value J.

    Router State   Report Received  New Router State   Actions
    ------------   ---------------  ----------------   -------

    INCLUDE (A)       IS_IN (B)     INCLUDE (A+B)      (B)=MALI

    INCLUDE (A)       IS_EX (B)     EXCLUDE (A*B, B-A) (B-A)=0
                                                       Delete (A-B)
                                                       Filter Timer=MALI

    EXCLUDE (X,Y)     IS_IN (A)     EXCLUDE (X+A, Y-A) (A)=MALI

    EXCLUDE (X,Y)     IS_EX (A)     EXCLUDE (A-Y, Y*A) (A-X-Y)=MALI
                                                       Delete (X-A)
                                                       Delete (Y-A)
                                                       Filter Timer=MALI


7.4.2.  Reception of Filter Mode Change and Source List Change Records

   When a change in the global state of a multicast address occurs in a
   node, the node sends either a Source List Change Record or a Filter
   Mode Change Record for that multicast address.  As with Current State
   Records, routers must act upon these records and possibly change
   their own state to reflect the new listening state of the link.

   The Querier must query sources or multicast addresses that are requested
   to be no longer forwarded.  When a router queries or receives a query
   for a specific set of sources, it lowers its source timers for those
   sources to a small interval of Last Listener Query Time milliseconds.
   If multicast address records are received in response to the queries
   which express interest in listening the queried sources, the
   corresponding timers are updated.

   Multicast Address Specific queries can also be used in order to
   enable a fast transition of a router from EXCLUDE to INCLUDE mode, in
   case a received Multicast Address Record motivates this action.  The
   Filter Timer for that multicast address is lowered to a small
   interval of Last Listener Query Time milliseconds.  If any multicast
   address records that express EXCLUDE mode interest in the multicast

Vida, Costa - Editors                                          [Page 39]


INTERNET-DRAFT                    MLDv2                        June 2003


   address are received within this interval, the Filter Timer is
   updated and the suggestion to the routing protocol to forward the
   multicast address stands without any interruption.  If not, the
   router will switch to INCLUDE filter mode for that multicast address.

   During the query period (i.e., Last Listener Query Time milliseconds)
   the MLD component in the router continues to suggest to the routing
   protocol to forward traffic from the multicast addresses or sources
   that are queried.  It is not until after Last Listener Query Time
   milliseconds without receiving a record that expresses interest in
   the queried multicast address or sources that the router may prune
   the multicast address or sources from the link.

   The following table describes the changes in multicast address state
   and the action(s) taken when receiving either Filter Mode Change or
   Source List Change Records.  This table also describes the queries
   which are sent by the Querier when a particular report is received.

   We use the following notation for describing the queries which are
   sent.  We use the notation 'Q(MA)' to describe a Multicast Address
   Specific Query to the MA multicast address.  We use the notation
   'Q(MA,A)' to describe a Multicast Address and Source Specific Query
   to the MA multicast address with source list A.  If source list A is
   null as a result of the action (e.g. A*B) then no query is sent as a
   result of the operation.

   In order to maintain protocol robustness, queries defined in the
   Actions column of the table below need to be transmitted [Last
   Listener Query Count] times, once every [Last Listener Query
   Interval] period.

   If while scheduling new queries, there are already pending
   queries to be retransmitted for the same multicast address, the new
   and pending queries have to be merged.  In addition, received host
   reports for a multicast address with pending queries may affect the
   contents of those queries.  Section 7.6.3. describes the process of
   building and maintaining the state of pending queries.

   Router State  Report Received  New Router State     Actions
   ------------  ---------------  ----------------     -------
   INCLUDE (A)     ALLOW (B)      INCLUDE (A+B)        (B)=MALI

   INCLUDE (A)     BLOCK (B)      INCLUDE (A)          Send Q(MA,A*B)

   INCLUDE (A)     TO_EX (B)      EXCLUDE (A*B,B-A)    (B-A)=0
                                                       Delete (A-B)
                                                       Send Q(MA,A*B)
                                                       Filter Timer=MALI

   INCLUDE (A)     TO_IN (B)      INCLUDE (A+B)        (B)=MALI
                                                       Send Q(MA,A-B)


Vida, Costa - Editors                                          [Page 40]


INTERNET-DRAFT                    MLDv2                        June 2003


   EXCLUDE (X,Y)   ALLOW (A)      EXCLUDE (X+A,Y-A)    (A)=MALI

   EXCLUDE (X,Y)   BLOCK (A)      EXCLUDE (X+(A-Y),Y)  (A-X-Y) =
                                                            Filter Timer
                                                       Send Q(MA,A-Y)

   EXCLUDE (X,Y)   TO_EX (A)      EXCLUDE (A-Y,Y*A)    (A-X-Y) =
                                                            Filter Timer
                                                       Delete (X-A)
                                                       Delete (Y-A)
                                                       Send Q(MA,A-Y)
                                                       Filter Timer=MALI

   EXCLUDE (X,Y)   TO_IN (A)      EXCLUDE (X+A,Y-A)    (A)=MALI
                                                       Send Q(MA,X-A)
                                                       Send Q(MA)


7.5.  Switching Router Filter Modes

   The Filter Timer is used as a mechanism for transitioning the Router
   Filter Mode from EXCLUDE to INCLUDE.

   When a Filter Timer expires with a Router Filter Mode of EXCLUDE, a
   router assumes that there are no nodes with a *filter mode* of
   EXCLUDE present on the attached link.  Thus, the router transitions
   to INCLUDE filter mode for the multicast address.

   A router uses the sources from the Requested List as its state for
   the switch to a filter mode of INCLUDE.  Sources from the Requested
   List are moved in the Include List, while sources from the Exclude
   List are deleted.  For example, if a router's state for a multicast
   address is EXCLUDE(X,Y) and the Filter Timer expires for that
   multicast address, the router switches to filter mode of INCLUDE with
   state INCLUDE(X).  If at the moment of the switch the Requested List
   (X) is empty, the multicast address record is deleted from the
   router.


7.6.  Action on Reception of Queries

   Upon reception of an MLD message that contains a Query, the router
   checks if the source address of the message is a valid link-local
   address, if the Hop Limit is set to 1, and if the Router Alert option
   is present in the Hop-By-Hop Options header of the IPv6 packet.  If
   any of these checks fails, the packet is dropped.

   If the validity of the MLD message is verified, the router starts to
   process the Query.




Vida, Costa - Editors                                          [Page 41]


INTERNET-DRAFT                    MLDv2                        June 2003


7.6.1.  Timer Updates

   MLDv2 uses the Suppress Router-Side Processing flag to ensure
   robustness, as explained in section 2.1.  When a router sends or
   receives a query with a clear Suppress Router-Side Processing flag,
   it must update its timers to reflect the correct timeout values for
   the multicast address or sources being queried.  The following table
   describes the timer actions when sending or receiving a Multicast
   Address Specific or Multicast Address and Source Specific Query with
   the Suppress Router-Side Processing flag not set.

    Query       Action
    -----       ------
    Q(MA,A)     Source Timers for sources in A are lowered to LLQT
    Q(MA)       Filter Timer is lowered to LLQT

   When a router sends or receives a query with the Suppress Router-Side
   Processing flag set, it will not update its timers.


7.6.2.  Querier Election

   MLDv2 elects a single router per subnet to be in Querier state using
   the same querier election mechanism as MLDv1, namely the IPv6
   address.  When a router starts operating on a subnet, by default it
   considers itself as being the Querier.  Thus, it sends several
   General Queries separated by a small time interval (see sections 9.6.
   and 9.7. for details).

   When a router receives a query with a lower IPv6 address than its
   own, it sets the Other Querier Present timer to Other Querier Present
   Timeout;  if it was previously in Querier state, it ceases to send
   queries on the link.  After the Other Querier Present timer expires,
   it should begin sending General Queries.

   All MLDv2 queries MUST be sent with the FE80::/64 link-local
   source address prefix.  Therefore, for the purpose of MLDv2 querier
   election, an IPv6 address A is considered to be lower than an IPv6
   address B if the interface ID represented by the last 64 bits of
   address A, in big-endian bit order, is lower than the interface ID
   represented by the last 64 bits of address B.


7.6.3  Building and Sending Specific Queries

7.6.3.1.  Building and Sending Multicast Address Specific Queries

   When a table action "Send Q(MA)" is encountered, the Filter Timer
   must be lowered to LLQT.  The Querier must then immediately send a
   Multicast Address Specific query as well as schedule [Last Listener
   Query Count - 1] query retransmissions to be sent every [Last
   Listener Query Interval], over [Last Listener Query Time].

Vida, Costa - Editors                                          [Page 42]


INTERNET-DRAFT                    MLDv2                        June 2003


   When transmitting a Multicast Address Specific Query, if the
   Filter Timer is larger than LLQT, the "Suppress Router-Side
   Processing" bit is set in the query message.


7.6.3.2.  Building and Sending Multicast Address and Source Specific
          Queries

   When a table action "Send Q(MA,X)" is encountered by the Querier in
   the table in section 7.4.2, the following actions must be performed
   for each of the sources in X that send to multicast address MA, with
   source timer larger than LLQT:

   o Lower source timer to LLQT;

   o Add the sources to the Retransmission List;

   o Set the Source Retransmission Counter for each source to [Last
     Listener Query Count].

   The Querier must then immediately send a Multicast Address and Source
   Specific Query as well as schedule [Last Listener Query Count -1]
   query retransmissions to be sent every [Last Listener Query
   Interval], over [Last Listener Query Time].  The contents of these
   queries are calculated as follows.

   When building a Multicast Address and Source Specific Query for a
   multicast address MA, two separate query messages are sent for the
   multicast address.  The first one has the "Suppress Router-Side
   Processing" bit set and contains all the sources with retransmission
   state (i.e., sources from the Retransmission List of that multicast
   address), and timers greater than LLQT.  The second has the "Suppress
   Router-Side Processing" bit clear and contains all the sources with
   retransmission state and timers lower or equal to LLQT.  If either of
   the two calculated messages does not contain any sources, then its
   transmission is suppressed.

   Note: If a Multicast Address Specific query is scheduled to be
   transmitted at the same time as a Multicast Address and Source
   specific query for the same multicast address, then transmission of
   the Multicast Address and Source Specific message with the "Suppress
   Router-Side Processing" bit set may be suppressed.


8.  Interoperation with MLDv1

   MLD version 2 hosts and routers interoperate with hosts and routers
   that have not yet been upgraded to MLDv2.  This compatibility is
   maintained by hosts and routers taking appropriate actions depending
   on the versions of MLD operating on hosts and routers within a
   network.


Vida, Costa - Editors                                          [Page 43]


INTERNET-DRAFT                    MLDv2                        June 2003


8.1.  Query Version Distinctions

   The MLD version of a Multicast Listener Query message is determined
   as follows:

   MLDv1 Query: length = 24 octets

   MLDv2 Query: length >= 28 octets

   Query messages that do not match any of the above conditions (e.g., a
   Query of length 26 octets) MUST be silently ignored.


8.2.  Multicast Address Listener Behavior


8.2.1.  In the Presence of MLDv1 Routers

   In order to be compatible with MLDv1 routers, MLDv2 hosts MUST
   operate in version 1 compatibility mode.  MLDv2 hosts MUST keep state
   per local interface regarding the compatibility mode of each
   attached link.  A host's compatibility mode is determined from the
   Host Compatibility Mode variable which can be in one of the two
   states: MLDv1 or MLDv2.

   The Host Compatibility Mode of an interface is set to MLDv1 whenever
   an MLDv1 Multicast Address Listener Query is received on that
   interface.  At the same time, the Older Version Querier Present timer
   for the interface is set to Older Version Querier Present Timeout
   seconds.  The timer is re-set whenever a new MLDv1 Query is received
   on that interface.  If the Older Version Querier Present timer
   expires, the host switches back to Host Compatibility Mode of MLDv2.

   When Host Compatibility Mode is MLDv2, a host acts using the MLDv2
   protocol on that interface.  When Host Compatibility Mode is MLDv1, a
   host acts in MLDv1 compatibility mode, using only the MLDv1 protocol,
   on that interface.

   An MLDv1 Querier will send General Queries with the Maximum Response
   Code set to the desired Maximum Response Delay, i.e., the full range
   of this field is linear and the exponential algorithm described in
   section 5.1.3. is not used.

   Whenever a host changes its compatibility mode, it cancels all its
   pending responses and retransmission timers.


8.2.2.  In the Presence of MLDv1 Multicast Address Listeners

   An MLDv2 host may be placed on a link where there are MLDv1 hosts.
   A host MAY allow its MLDv2 Multicast Listener Report to be suppressed
   by a Version 1 Multicast Listener Report.

Vida, Costa - Editors                                          [Page 44]


INTERNET-DRAFT                    MLDv2                        June 2003


8.3.  Multicast Router Behavior


8.3.1.  In the Presence of MLDv1 Routers

   MLDv2 routers may be placed on a network where there is at least one
   MLDv1 router.  The following requirements apply:

   o If an MLDv1 router is present on the link, the Querier MUST
     use the lowest version of MLD present on the network.  This must be
     administratively assured.  Routers that desire to be compatible
     with MLDv1 MUST have a configuration option to act in MLDv1 mode;
     if an MLDv1 router is present on the link, the system administrator
     must explicitly configure all MLDv2 routers to act in MLDv1 mode.
     When in MLDv1 mode, the Querier MUST send periodic General Queries
     truncated at the Multicast Address field (i.e., 24 bytes long), and
     SHOULD also warn about receiving an MLDv2 Query (such warnings must
     be rate-limited).  The Querier MUST also fill in the Maximum
     Response Delay in the Maximum Response Code field, i.e., the
     exponential algorithm described in section 5.1.3. is not used.

   o If a router is not explicitly configured to use MLDv1 and receives
     an MLDv1 General Query, it SHOULD log a warning.  These warnings
     MUST be rate-limited.


8.3.2.  In the Presence of MLDv1 Multicast Address Listeners

   MLDv2 routers may be placed on a network where there are hosts that
   have not yet been upgraded to MLDv2.  In order to be compatible with
   MLDv1 hosts, MLDv2 routers MUST operate in version 1 compatibility
   mode.  MLDv2 routers keep a compatibility mode per multicast address
   record.  The compatibility mode of a multicast address is determined
   from the Multicast Address Compatibility Mode variable, which can be
   in one of the two following states: MLDv1 or MLDv2.

   The Multicast Address Compatibility Mode of a multicast address
   record is set to MLDv1 whenever an MLDv1 Multicast Listener Report is
   received for that multicast address.  At the same time, the Older
   Version Host Present timer for the multicast address is set to Older
   Version Host Present Timeout seconds.  The timer is re-set whenever a
   new MLDv1 Report is received for that multicast address.  If the Older
   Version Host Present timer expires, the router switches back to
   Multicast Address Compatibility Mode of MLDv2 for that multicast
   address.

   Note that when a router switches back to MLDv2 Multicast Address
   Compatibility Mode for a multicast address, it takes some time to
   regain source-specific state information.  Source-specific
   information will be learned during the next General Query, but
   sources that should be blocked will not be blocked until [Multicast
   Address Listening Interval] after that.

Vida, Costa - Editors                                          [Page 45]


INTERNET-DRAFT                    MLDv2                        June 2003


   When Multicast Address Compatibility Mode is MLDv2, a router acts
   using the MLDv2 protocol for that multicast address.  When Multicast
   Address Compatibility Mode is MLDv1, a router internally translates
   the following MLDv1 messages for that multicast address to their
   MLDv2 equivalents:

      MLDv1 Message                 MLDv2 Equivalent
      -------------                 ----------------

         Report                        IS_EX( {} )

         Done                          TO_IN( {} )

   MLDv2 BLOCK messages are ignored, as are source-lists in TO_EX()
   messages (i.e., any TO_EX() message is treated as TO_EX( {} )).  On
   the other hand, the Querier continues to send MLDv2 queries,
   regardless of its Multicast Address Compatibility Mode.


9.  List of Timers, Counters, and their Default Values

   Most of these timers are configurable.  If non-default settings are
   used, they MUST be consistent among all nodes on a single link.  Note
   that parentheses are used to group expressions to make the algebra
   clear.


9.1.  Robustness Variable

   The Robustness Variable allows tuning for the expected packet loss on
   a link.  If a link is expected to be lossy, the Robustness Variable
   may be increased.  MLD is robust to (Robustness Variable - 1) packet
   losses.  The Robustness Variable MUST NOT be zero, and SHOULD NOT be
   one.  Default: 2.


9.2.  Query Interval

   The Query Interval is the interval between General Queries sent by
   the Querier.  Default: 125 seconds.

   By varying the [Query Interval], an administrator may tune the number
   of MLD messages on the link;  larger values cause MLD Queries to be
   sent less often.


9.3.  Query Response Interval

   The Maximum Response Delay used to calculate the Maximum Response
   Code inserted into the periodic General Queries.  Default: 10000 (10
   seconds)


Vida, Costa - Editors                                          [Page 46]


INTERNET-DRAFT                    MLDv2                        June 2003


   By varying the [Query Response Interval], an administrator may tune
   the burstiness of MLD messages on the link;  larger values make the
   traffic less bursty, as host responses are spread out over a larger
   interval.  The number of seconds represented by the [Query Response
   Interval] must be less than the [Query Interval].


9.4.  Multicast Address Listening Interval

   The Multicast Address Listening Interval (MALI) is the amount of time
   that must pass before a multicast router decides there are no more
   listeners of a multicast address or a particular source on a link.
   This value MUST be ((the Robustness Variable) times (the Query
   Interval)) plus (one Query Response Interval).


9.5.  Other Querier Present Timeout

   The Other Querier Present Timeout is the length of time that must
   pass before a multicast router decides that there is no longer
   another multicast router which should be the Querier.  This value
   MUST be ((the Robustness Variable) times (the Query Interval)) plus
   (one half of one Query Response Interval).


9.6.  Startup Query Interval

   The Startup Query Interval is the interval between General Queries
   sent by a Querier on startup.  Default: 1/4 the Query Interval.


9.7.  Startup Query Count

   The Startup Query Count is the number of Queries sent out on startup,
   separated by the Startup Query Interval.  Default: the Robustness
   Variable.


9.8.  Last Listener Query Interval

   The Last Listener Query Interval is the Maximum Response Delay used
   to calculate the Maximum Response Code inserted into Multicast
   Address Specific Queries sent in response to Version 1 Multicast
   Listener Done messages.  It is also the Maximum Response Delay used
   to calculate the Maximum Response Code inserted into Multicast
   Address and Source Specific Query messages.  Default: 1000 (1
   second).

   Note that for values of LLQI greater than 32.768 seconds, a limited
   set of values can be represented, corresponding to sequential values
   of Maximum Response Code.  When converting a configured time to a
   Maximum Response Code value, it is recommended to use the exact value

Vida, Costa - Editors                                          [Page 47]


INTERNET-DRAFT                    MLDv2                        June 2003


   if possible, or the next lower value if the requested value is not
   exactly representable.

   This value may be tuned to modify the "leave latency" of the link.  A
   reduced value results in reduced time to detect the departure of the
   last listener for a multicast address or source.


9.9.  Last Listener Query Count

   The Last Listener Query Count is the number of Multicast Address
   Specific Queries sent before the router assumes there are no local
   listeners.  The Last Listener Query Count is also the number of
   Multicast Address and Source Specific Queries sent before the router
   assumes there are no listeners for a particular source.  Default: the
   Robustness Variable.


9.10.  Last Listener Query Time

   The Last Listener Query Time is the time value represented by the
   Last Listener Query Interval, multiplied by the Last Listener Query
   Count.  It is not a tunable value, but may be tuned by changing its
   components.


9.11.  Unsolicited Report Interval

   The Unsolicited Report Interval is the time between repetitions of a
   node's initial report of interest in a multicast address.  Default: 1
   second.


9.12.  Older Version Querier Present Timeout

   The Older Version Querier Present Timeout is the time-out for
   transitioning a host back to MLDv2 Host Compatibility Mode.  When an
   MLDv1 query is received, MLDv2 hosts set their Older Version Querier
   Present Timer to Older Version Querier Present Timeout.

   This value MUST be ((the Robustness Variable) times (the Query
   Interval in the last Query received)) plus (one Query Response
   Interval).


9.13.  Older Version Host Present Timeout

   The Older Version Host Present Timeout is the time-out for
   transitioning a router back to MLDv2 Multicast Address
   Compatibility Mode for a specific multicast address.  When an MLDv1
   report is received for that multicast address, routers set their
   Older Version Host Present Timer to Older Version Host Present

Vida, Costa - Editors                                          [Page 48]


INTERNET-DRAFT                    MLDv2                        June 2003


   Timeout.

   This value MUST be ((the Robustness Variable) times (the Query
   Interval)) plus (one Query Response Interval).


9.14.  Configuring timers

   This section is meant to provide advice to network administrators on
   how to tune these settings to their network.  Ambitious router
   implementations might tune these settings dynamically based upon
   changing characteristics of the network.


9.14.1.  Robustness Variable

   The Robustness Variable tunes MLD to expected losses on a link.
   MLDv2 is robust to (Robustness Variable - 1) packet losses, e.g., if
   the Robustness Variable is set to the default value of 2, MLDv2 is
   robust to a single packet loss but may operate imperfectly if more
   losses occur.  On lossy links, the Robustness Variable should be
   increased to allow for the expected level of packet loss.  However,
   increasing the Robustness Variable increases the leave latency of the
   link (the time between when the last listener stops listening to a
   source or multicast address and when the traffic stops flowing).


9.14.2.  Query Interval

   The overall level of periodic MLD traffic is inversely proportional
   to the Query Interval.  A longer Query Interval results in a lower
   overall level of MLD traffic.  The Query Interval MUST be equal to or
   longer than the Maximum Response Delay used to calculate the Maximum
   Response Code inserted in General Query messages.


9.14.3.  Maximum Response Delay

   The burstiness of MLD traffic is inversely proportional to the
   Maximum Response Delay.  A longer Maximum Response Delay will spread
   Report messages over a longer interval.  However, a longer Maximum
   Response Delay in Multicast Address Specific and Multicast Address
   And Source Specific Queries extends the leave latency (the time
   between when the last listener stops listening to a source or
   multicast address and when the traffic stops flowing.)  The expected
   rate of Report messages can be calculated by dividing the expected
   number of Reporters by the Maximum Response Delay.  The Maximum
   Response Delay may be dynamically calculated per Query by using the
   expected number of Reporters for that Query as follows:




Vida, Costa - Editors                                          [Page 49]


INTERNET-DRAFT                    MLDv2                        June 2003


   Query Type                         Expected number of Reporters
   ----------                         ----------------------------

   General Query                      All nodes on link

   Multicast Address Specific Query   All nodes on the link that had
                                      expressed interest in the
                                      multicast address

   Multicast Address and Source       All nodes on the link that had
    Specific Query                    expressed interest in the source
                                      and multicast address

   A router is not required to calculate these populations or tune the
   Maximum Response Delay dynamically;  these are simply guidelines.


10.  Security Considerations

   We consider the ramifications of a forged message of each type.  Note
   that before processing an MLD message, nodes verify if the source
   address of the message is a valid link-local address (or the
   unspecified address), if the Hop Limit is set to 1, and if the Router
   Alert option is present in the Hop-By-Hop Options header of the IPv6
   packet.  If any of these checks fails, the packet is dropped.  This
   defends the MLDv2 nodes from acting on forged MLD messages
   originated off-link.  Therefore, in the following we discuss only the
   effects of on-link forgery.


10.1.  Query Message

   A forged Query message from a machine with a lower IPv6 address than
   the current Querier will cause Querier duties to be assigned to the
   forger.  If the forger then sends no more Query messages, other
   routers' Other Querier Present timer will time out and one will
   resume the role of Querier.  During this time, if the forger ignores
   Multicast Listener Done Messages, traffic might flow to multicast
   addresses with no listeners for up to [Multicast Address Listener
   Interval].

   A forged Version 1 Query message will put MLDv2 listeners on that
   link in MLDv1 Host Compatibility Mode.  This scenario can be avoided
   by providing MLDv2 hosts with a configuration option to ignore
   Version 1 messages completely.

   A DoS attack on a node could be staged through forged Multicast
   Address and Source Specific Queries.  The attacker can find out about
   the listening state of a specific node with a general query.  After
   that it could send a large number of Multicast Address and Source
   Specific Queries, each with a large source list and/or long Maximum
   Response Delay.  The node will have to store and maintain the sources

Vida, Costa - Editors                                          [Page 50]


INTERNET-DRAFT                    MLDv2                        June 2003


   specified in all of those queries for as long as it takes to send the
   delayed response.  This would consume both memory and CPU cycles in
   order to augment the recorded sources with the source lists included
   in the successive queries.

   To protect against such a DoS attack, a node stack implementation
   could restrict the number of Multicast Address and Source Specific
   Queries per multicast address within this interval, and/or record
   only a limited number of sources.


10.2.  Current State Report messages

   A forged Report message may cause multicast routers to think there
   are listeners of a multicast address on a link when there are not.
   Nevertheless, since listening to a multicast address on a host is
   generally an unprivileged operation, a local user may trivially gain
   the same result without forging any messages.

   A forged Version 1 Report Message may put a router into MLDv1
   Multicast Address Compatibility Mode for a particular multicast
   address, meaning that the router will ignore MLDv2 source specific
   state messages.  This can cause traffic to flow from unwanted sources
   for up to [Multicast Address Listener Interval].  This can be solved
   by providing routers with a configuration switch to ignore Version 1
   messages completely.  This breaks automatic compatibility with
   Version 1 hosts, so it should only be used in situations where source
   filtering is critical.


10.3.  State Change Report messages

   A forged State Change Report message will cause the Querier to send
   out Multicast Address Specific or Multicast Address and Source
   Specific Queries for the multicast address in question.  This causes
   extra processing on each router and on each listener of the multicast
   address, but cannot cause loss of desired traffic.


11.  IANA Considerations

   A special IPv6 link-local multicast address, called *all
   MLDv2-capable routers*, should be allocated by IANA, as stated in
   section 5.2.14.  Version 2 Multicast Listener Reports will be sent to
   this special address.  IANA should allocate as well a special ICMPv6
   message type number for Version 2 Multicast Listener Report messages,
   as specified in section 4.






Vida, Costa - Editors                                          [Page 51]


INTERNET-DRAFT                    MLDv2                        June 2003


12.  References


12.1.  Normative References

   [RFC 2026]    Bradner, S., "The Internet Standards Process - Revision
                 3", BCP 9, RFC 2026, November 1996.

   [RFC 2119]    Bradner, S., "Key words for use in RFCs to Indicate
                 Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC 2373]    Hinden, R. and S. Deering, "IP Version 6 Addressing
                 Architecture", RFC 2373, July 1998.

   [RFC 2460]    Deering, S. and R. Hinden, "Internet Protocol,
                 Version 6 (IPv6) Specification", RFC 2460, December
                 1998.

   [RFC 2463]    Conta, A. and S. Deering, "Internet Control Message
                 Protocol (ICMPv6) for the Internet Protocol Version 6
                 (IPv6) Specification", RFC 2463, December 1998.

   [RFC 2464]    Crawford, M., "Transmission of IPv6 Packets over
                 Ethernet Networks", RFC 2464, December 1998.

   [RFC 2710]    Deering, S., Fenner, W., Haberman, B., "Multicast
                 Listener Discovery (MLD) for IPv6", RFC 2710, November
                 1999.

   [RFC 2711]    Partridge, C., Jackson, A., "IPv6 Router Alert Option,"
                 RFC 2711, November 1999.


11.2.  Informative References

   [FILTER-API]  Thaler, D., Fenner, B., and Quinn, B., "Socket
                 Interface Extensions for Multicast Source Filters",
                 Work in progress, March 2003.
                 (draft-ietf-magma-msf-api-04.txt)

   [RFC 2236]    Fenner, W., "Internet Group Management Protocol,
                 Version 2", RFC 2236, November 1997.

   [RFC 2461]    Narten, T., Nordmark, E., Simpson, W., "Neighbor
                 Discovery for IP Version 6 (IPv6)", RFC 2461, December
                 1998.

   [RFC 2462]    Thomson, S., Narten, T., "IPv6 Stateless Address
                 Autoconfiguration", RFC 2462, December 1998.




Vida, Costa - Editors                                          [Page 52]


INTERNET-DRAFT                    MLDv2                        June 2003


   [RFC 3376]    Cain, B., Deering, S., Fenner,B., Kouvelas, I.,
                 Thyagarajan, A., "Internet Group Management Protocol,
                 Version 3", RFC 3376, May 2002.

   [SSM]         Bhattacharyya, S., et al., "An Overview of Source-
                 Specific Multicast (SSM)", Work in progress, May 2003.
                 (draft-ietf-ssm-overview-05.txt)


13.  Editors' Contact Information

   Rolland Vida
   LIP6, Universite Pierre et Marie Curie
   8, rue du Capitaine Scott
   75015 Paris, France
   phone: +33-1.44.27.71.26
   email: Rolland.Vida@lip6.fr

   Luis Henrique Maciel Kosmalski Costa
   LIP6, Universite Pierre et Marie Curie
   8, rue du Capitaine Scott
   75015 Paris, France
   phone: +33-1.44.27.87.72
   email: Luis.Costa@lip6.fr


14.  Authors

This document was written by:

   Rolland Vida, LIP6
   email: Rolland.Vida@lip6.fr

   Luis Henrique Maciel Kosmalski Costa, LIP6
   email: Luis.Costa@lip6.fr

   Serge Fdida, LIP6
   email: Serge.Fdida@lip6.fr

   Steve Deering, Cisco Systems, Inc.
   email: deering@cisco.com

   Bill Fenner, AT&T Labs - Research
   email: fenner@research.att.com

   Isidor Kouvelas, Cisco Systems, Inc.
   email: kouvelas@cisco.com

   Brian Haberman, Caspian Networks
   email: brian@innovationslab.net



Vida, Costa - Editors                                          [Page 53]


INTERNET-DRAFT                    MLDv2                        June 2003


   This document is the translation of [RFC 3376] for IPv6 semantics.
   It was elaborated based on the translation of [RFC 2236] into
   [RFC 2710].


15.  Acknowledgements

   We would like to thank Francis Dupont, Konstantin Kabassanov, Remi
   Zara, Hitoshi Asaeda, Shinsuke Suzuki, and Erik Nordmark for their
   valuable comments and suggestions on this document.


APPENDIX A.  Design Rationale


A.1  The Need for State Change Messages

   MLDv2 specifies two types of Multicast Listener Reports: Current
   State and State Change.  This section describes the rationale for the
   need for both these types of Reports.

   Routers need to distinguish Multicast Listener Reports that were sent
   in response to Queries from those that were sent as a result of a
   change in interface state.  Multicast Listener Reports that are sent
   in response to Multicast Address Listener Queries are used mainly to
   refresh the existing state at the router;  they typically do not
   cause transitions in state at the router.  Multicast Listener Reports
   that are sent in response to changes in interface state require the
   router to take some action in response to the received report (see
   Section 7.4.).

   The inability to distinguish between the two types of reports would
   force a router to treat all Multicast Listener Reports as potential
   changes in state and could result in increased processing at the
   router as well as an increase in MLD traffic on the link.


A.2  Host Suppression

   In MLDv1, a host would not send a pending multicast listener report
   if a similar report was sent by another listener on the link.  In
   MLDv2, the suppression of multicast listener reports has been
   removed.  The following points explain this decision.

   1. Routers may want to track per-host multicast listener status on an
      interface.  This would allow routers to implement fast leaves
      (e.g., for layered multicast congestion control schemes), as well
      as track listener status for possible security or accounting
      purposes.  The present specification does not require routers to
      implement per-host tracking.  Nevertheless, the lack of host
      suppression in MLDv2 makes possible to implement either
      proprietary or future standard behavior of multicast routers that

Vida, Costa - Editors                                          [Page 54]


INTERNET-DRAFT                    MLDv2                        June 2003


      would support per-host tracking, while being fully interoperable
      with MLDv2 listeners and routers that implement the exact behavior
      described in this specification.

   2. Multicast Listener Report suppression does not work well on
      bridged LANs.  Many bridges and Layer2/Layer3 switches that
      implement MLD snooping do not forward MLD messages across LAN
      segments in order to prevent multicast listener report
      suppression.

   3. By eliminating multicast listener report suppression, hosts have
      fewer messages to process;  this leads to a simpler state machine
      implementation.

   4. In MLDv2, a single multicast listener report now bundles multiple
      multicast address records to decrease the number of packets sent.
      In comparison, the previous version of MLD required that each
      multicast address be reported in a separate message.


A.3 Switching router filter modes from EXCLUDE to INCLUDE

   If on a link there are nodes in both EXCLUDE and INCLUDE modes for a
   single multicast address, the router must be in EXCLUDE mode as well
   (see section 7.2.1).  In EXCLUDE mode, a router forwards traffic
   from all sources except those in the Exclude List.  If all nodes in
   EXCLUDE mode cease to exist or to listen, it would be desirable for
   the router to switch back to INCLUDE mode seamlessly, without
   interrupting the flow of traffic to existing listeners.

   One of the ways to accomplish this is for routers to keep track of
   all sources that nodes that are in INCLUDE mode listen to, even
   though the router itself is in EXCLUDE mode.  If the Filter Timer for
   a multicast address expires, it implies that there are no nodes in
   EXCLUDE mode on the link (otherwise a multicast listener report from
   that node would have refreshed the Filter Timer).  The router can
   then switch to INCLUDE mode seamlessly;  sources from the Requested
   List are moved to the Include List, while sources from the Exclude
   List are deleted.


APPENDIX B.  Summary of Changes from MLDv1

   The following is a summary of changes from MLDv1, specified in
   RFC 2710.

   o MLDv2 introduces source filtering.

   o The IP service interface of MLDv2 nodes is modified accordingly.
     It enables the specification of a filter mode and a source list.



Vida, Costa - Editors                                          [Page 55]


INTERNET-DRAFT                    MLDv2                        June 2003


   o An MLDv2 node keeps per-socket and per-interface multicast
     listening states that include a filter mode and a source list for
     each multicast address.  This enables packet filtering based on a
     socket's multicast reception state.

   o MLDv2 state kept on routers includes a filter mode and a list of
     sources and source timers for each multicast address that has
     listeners on the link.  MLDv1 routers kept only the list of
     multicast addresses.

   o Queries include additional fields (section 5.1).

   o The S flag (Suppress Router-Side Processing) is included in queries
     in order to fix robustness issues.

   o The Querier's Robustness Variable and Query Interval Code are
     included in Queries in order to synchronize all MLDv2 routers
     connected to the same link.

   o A new Query type (Multicast Address and Source Specific Query) is
     introduced.

   o The Maximum Response Delay is not directly included in the Query
     anymore.  Instead, an exponential algorithm is used to calculate
     its value, based on the Maximum Response Code included in the
     Query.  The maximum value is increased from 65535 milliseconds to
     about 140 minutes.

   o Reports include Multicast Address Records.  Information on the
     listening state for several different multicast addresses can be
     included in the same Report message.

   o Reports are sent to the "all MLDv2-capable multicast routers"
     address, instead of the multicast address the host listens to, as
     in MLDv1.  This facilitates the operation of layer-2 snooping
     switches.

   o There is no "host suppression", as in MLDv1.  All nodes send Report
     messages.

   o Unsolicited Reports, announcing changes in receiver listening
     state, are sent [Robustness Variable] times.  RFC 2710 is less
     explicit.

   o There are no Done messages.

   o Interoperability with MLDv1 systems is achieved by MLDv2 state
     operations.

   o In order to ensure interoperability, hosts maintain a
     Host Compatibility Mode variable and an Older Version Querier
     Present timer per interface.  Routers maintain a Multicast Address

Vida, Costa - Editors                                          [Page 56]


INTERNET-DRAFT                    MLDv2                        June 2003


     Compatibility Mode variable and an Older Version Host Present timer
     per multicast address.


Full Copyright Statement

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.






















Vida, Costa - Editors                                          [Page 57]