Network Working Group B. Wu
Internet-Draft D. Dhody
Intended status: Standards Track Huawei Technologies
Expires: 3 August 2022 Y. Cheng
China Unicom
30 January 2022
A YANG Data Model for Network Resource Partition (NRP)
draft-wd-teas-nrp-yang-00
Abstract
This document defines a YANG data model for managing Network Resource
Partition (NRP) topologies and associated resource allocation. The
model can be used for the realization of IETF network slice services.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 3 August 2022.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Wu, et al. Expires 3 August 2022 [Page 1]
Internet-Draft NRP YANG January 2022
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 3
3. NRP Modelling Consideration . . . . . . . . . . . . . . . . . 3
3.1. NRP Model Usage example . . . . . . . . . . . . . . . . . 5
3.2. NRP Modeling Design . . . . . . . . . . . . . . . . . . . 6
4. Description of NRP YANG Module . . . . . . . . . . . . . . . 9
5. NRP Yang Module Tree . . . . . . . . . . . . . . . . . . . . 10
6. NRP Yang Module . . . . . . . . . . . . . . . . . . . . . . . 11
7. Security Considerations . . . . . . . . . . . . . . . . . . . 20
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 21
9. Contributor . . . . . . . . . . . . . . . . . . . . . . . . . 21
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 22
10.1. Normative References . . . . . . . . . . . . . . . . . . 22
10.2. Informative References . . . . . . . . . . . . . . . . . 24
Appendix A. An Example . . . . . . . . . . . . . . . . . . . . . 25
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 30
1. Introduction
[I-D.ietf-teas-ietf-network-slices] defines IETF network slice
services that provide connectivity coupled with network resources
commitment between a number of endpoints over a shared network
infrastructure and, for scalability concerns, defines network
resource partition (NRP) to host one or a group of network slice
services according to characteristics including SLOs and SLEs.
[I-D.dong-teas-nrp-scalability] analyzes the scalability issues of
network slice services in detail and suggests candidate technologies
of control and forwarding planes of the NRP.
This document defines a YANG model of NRP that the IETF NSC (Network
Slice controller) can use to manage NRP instances to realize the
network slicing services. According to the YANG model classification
of [RFC8309], the NRP model is a network configuration model.
2. Terminology
The following terms are defined in [RFC6241] and are used in this
specification:
* configuration data
* state data
The following terms are defined in [RFC7950] and are used in this
specification:
Wu, et al. Expires 3 August 2022 [Page 2]
Internet-Draft NRP YANG January 2022
* augment
* data model
* data node
The terminology for describing YANG data models is found in
[RFC7950].
2.1. Tree Diagrams
The tree diagram used in this document follows the notation defined
in [RFC8340].
3. NRP Modelling Consideration
As specified in [I-D.ietf-teas-ietf-network-slices], an NRP is a
subset of dedicated or shared nodes and links in a network, and
includes associated control plane and forwarding plane technologies
so that the traffic received from NRP edge nodes that is
characterized to match the NRP traffic classification rule is
constrained to the NRP exclusive topology and resource allocation.
The NRP allows network operators to manage the resources of IETF
network slices which are used to provide network slice service
traffic with specific SLOs and SLEs.
An NRP is a subset of resources allocated from a physical network or
logical network. Depending on the SLO and SLE requirements of the
slicing service and also the available resources of the operator's
network, there are several options of creating an NRP. One option is
that each physical link is allocated to only one specific NRP, and
different NRPs do not share any physical link. One more typical
option is that multiple NRPs share the same physical links, and each
NRP is built with virtual links with a certain subset of the
bandwidth available on the physical links to provide network resource
isolation.
To constrain the traffic that matches NRP traffic classification to
be forwarded based on the NRP topology and resources, an NRP also
includes the control and forwarding plane functions. As defined in
[I-D.dong-teas-nrp-scalability], the draft discusses NRP control
plane and data plane requirements in different provisioning
scenarios, and describes that the NRP control plane is used to
exchange network resource attributes and associated logical topology
information between nodes of the NRP so that NRP-specific routing and
forwarding tables could be generated. For the NRP control plane,
distributed control plane mechanism, such as Multi-topology, Flex-
Algo or centralized SDN or hybrid combination could be defined. To
Wu, et al. Expires 3 August 2022 [Page 3]
Internet-Draft NRP YANG January 2022
help with forwarding entries, several data-plane encapsulation
options are also discussed to carry NRP information in the NRP
traffic packets. The example NRP data plane identifier could be the
IPv6 addresses or the MPLS forwarding labels or dedicated NRP data-
plane identifiers.
An example of NRP instances and a physical network is illustrated in
Figure 1. In the example, each NRP instance has a customized network
topology comprised of a set of links and nodes in the physical
network. In control plane, each NRP could be associated with a
multi-topology or a Flex-Algo. And it also has its own forwarding
plane resources and identifiers which provide NRP-specific packet
forwarding.
++++ ++++ ++++
+--+===+--+===+--+
+--+===+--+===+--+
++++ +++\\ ++++
|| || \\ || Physical
|| || \\ || Network
++++ ++++ ++++ \\+++ ++++
+ +===+--+===+--+===+--+===+ +
+ +===+--+===+--+===+--+===+ +
++++ ++++ ++++ ++++ ++++
PE1 PE2
|
\|/
o----o-----o
/ / NRP-1
o-----o-----o----o----o
o----o
/ / \ NRP-2
o-----o----o---o------o
...
o----o
/ / NPR-n
o-----o----o----o-----o
o is a virtual node
--- is a virtual link
Figure 1: An NRP Example
Wu, et al. Expires 3 August 2022 [Page 4]
Internet-Draft NRP YANG January 2022
[I-D.ietf-teas-ietf-network-slices] also describes the management of
the NRP. After an NRP created, the NRP may need to be refined and
modified as the network status and slice services change, and could
be extended if necessary to meet the customers' demands. In addition
to configuration management, the NRP should also provide detailed
monitoring information about underlying resources to further provide
monitoring for the hosted slice services.
3.1. NRP Model Usage example
One major application of network slices is 5G services. Figure 2
shows the use of the NRP model to realize the IETF Network Slice for
the 5G use case, based on the reference framework defined in
[I-D.ietf-teas-ietf-network-slices]. The figure shows that the NSC
uses the L3VPN network model [I-D.ietf-opsawg-l3sm-l3nm] to map to an
IETF Network Slice service and uses the NRP model to map VPN traffic
to underlying network resources, so that the SLO and SLE required by
the IETF network slice service are ensured when the VPN service
traverses the underlying network.
+------------------------------------------+
| Customer |
| |
+------------------------------------------+
A
| Network slice service interface
V
+------------------------------------------+
| IETF Network Slice Controller (NSC) |
+------------------------------------------+
A
L3NM model | NSC SBI NRP model
V NRP as VPN underlay
+------------------------------------------+
| Network Controller(s) |
+------------------------------------------+
A
| Device model
V
+------------------------------------------------+
Network
Figure 2: Reference Module Use Case
In the process of realizing an IETF network slice service, the NSC
can use a static NRP instance or dynamically create one as one or a
group of VPNs underlay construct. Compared with existing VPN
underlying built with full mesh tunneling mechanisms, the NRP could
Wu, et al. Expires 3 August 2022 [Page 5]
Internet-Draft NRP YANG January 2022
provide resource isolation, topology constraints, and simplified
configuration. Additionally, specific service flows of a VPN can be
further optimized using SR policies defined in
[I-D.dong-idr-sr-policy-vtn].
3.2. NRP Modeling Design
An NRP is modeled as network topology defined in [RFC8345] with
augmentations. A new network type "nrp" is defined. A network
topology data instance containing the nrp network type, indicates an
NRP instance.
As discussed in [I-D.dong-teas-nrp-scalability], an NRP could have
multiple control plane implementation options. For a better network
scalability, an NRP does not require an independent Layer 3 topology,
that is, multiple NRPs can share a same Layer 3 topology or TE
topology. Thus, an NRP can use a predefined basic TE topology by
referring to the TE network instance or a predefined basic Layer3 TE
topology by referring to the network instance with both TE and Layer3
type enabled or other topology combination. The Figure 3 shows the
example references between this module and other YANG modules.
Wu, et al. Expires 3 August 2022 [Page 6]
Internet-Draft NRP YANG January 2022
+--------------------------+
| ietf-te-topology: |
|+------------------------+|
|| ietf-network-topology: ||
+-->|| network-id (key) ||
+-------------------------------+ | || network-types: { ||
| ietf-nrp: | | || te-topology ||
| +---------------------------+ | | || } ||
| | ietf-network-topology: | | | || <other attributes> ||
| | network-id (key) | | | |+------------------------+|
| | network-types: { | | | | <TE attributes> |
| | nrp: | |--+ +--------------------------+
| | } | | |
| | <other attributes> | | | +-----------------------------+
| +---------------------------+ | | | ietf-l3-te-topology: |
| network-ref | | |+---------------------------+|
| | | || ietf-network-topology: ||
+-------------------------------+ | || network-id (key) ||
| || network-types: { ||
+-->|| l3-unicast-topology ||
|| te-topology ||
|| } ||
|| <other attributes> ||
|+---------------------------+|
| <L3 unicast attributes> |
| <TE attributes> |
+-----------------------------+
Figure 3: Topology References
But in some situations, an NRP may need its own Layer 3 topology or
Traffic Engineering (TE) topology to support route forwarding or TE
forwarding capability. Inheriting the extensibility from [RFC8345],
an NRP can have several types of networks simultaneously. The Layer
3 Topologies model defined in [RFC8346] can be used to enable an NRP
unicast capable. And the TE Topology model defined in [RFC8795] can
be used to make an NRP TE capable. The Figure 4 shows the
relationship between this module and other YANG modules.
Wu, et al. Expires 3 August 2022 [Page 7]
Internet-Draft NRP YANG January 2022
+-----------------------+
|Network Topology Model |
| RFC8345 |
+-----------------------+
|
+-------------+-------------+-------------+
| | | |
V V V V
............ +----------+ ............ ............
: L3 : | Network | : TE : : L2 :
:Topology : | Resource | : Topology : : Topology :
: Model : | Partition| : Model : : Model :
:..........: | Model | :..........: :..........:
| +----------+
|
V
.................
: ospf-topology :
:...............:
Figure 4: NRP Model Relationship
The container "nrp" under 'network' of [RFC8345] defines global
parameters for an NRP, which defines the specific control plane and
data plane mechanisms of an NRP. And also, the traffic steering
policy of the NRP may include a dynamic color based policies or an
ACL-based static ones.
Each NRP instance consists of a set of nodes and a set of links.
Each node and link have different attributes that represent the
allocated resources or the operational status of the NRP. An NRP
could support several resource partition methods, which are defined
by 'link-partition-type'' under an NRP link, which can further be
supported by FlexE or independent queue techniques.
There are multiple modes of NRP operations to be supported as
follows:
* NRP instantiation: Depending on the slice services types and also
network status, there can be two types of approaches. One method
is to create an NRP instance before the network controller
processes the IETF network slice service request. Another one is
that the network controller may start creating an NRP instance
while configuring the IETF network slice service request.
Wu, et al. Expires 3 August 2022 [Page 8]
Internet-Draft NRP YANG January 2022
* NRP modification: When the capacity of an existing NPR link is
close to capacity, the bandwidth of the link could be increased.
And when the NRP link or node resources are insufficient, new NRP
links and nodes could be added.
* NRP Deletion: If the NSC determines that no slice service is using
an NRP, the NSC can delete the NRP instance.
* NRP Monitoring: The NSC can use the NRP model to track and monitor
NRP resource status and usage.
4. Description of NRP YANG Module
The description of the NRP data nodes are as follows:
* "nrp-id": Is an identifier that is used to uniquely identify an
NRP instance within the network scope.
* NRP resources reservation: The nodes and links represent the
network resource allocated for an NRP instance. 'bandwidth-
reservation' specifies the bandwidth allocated to an NRP instance,
or is overridden by the configuration of the NRP link. 'link-
partition-type' specifies the resource partition types of the
physical interfaces associated with an NRP link.
* NRP control plane: When an NRP shares an IGP topology or TE
topology with other NRPs, "network-ref" or "te-topology-
identifier" is used to refer to the existing IGP network instance
or TE topology instance. And an NRP can further use Multi-
Topology Routing (MTR) or Flex-algo to refer to the IGP instance
to generate its own NRP-specific forwarding tables. Multi-
Topology Routing (MTR) is defined in [RFC4915], [RFC5120], and
[I-D.ietf-lsr-isis-sr-vtn-mt] or Flex-algo is defined in
[I-D.ietf-lsr-flex-algo].
* NRP data plane: Defines the data plane mechanism and the NRP
identifier of the network domain managed by the network
controller. The data plane mechanism could be based on MPLS or
IPv6 forwarding. The container "data plane" is used to specify
the NRP data plane encapsulation types and values that are used to
identify NRP-specific network resources. The NRP data plane
identifier is defined in [I-D.ietf-spring-sr-for-enhanced-vpn]
and[I-D.dong-6man-enhanced-vpn-vtn-id].
* NRP steering policy: The leaf-list "color-id" is used for dynamic
traffic steering based on SR policy of an NRP and The leaf-list
"acl-ref" is used for common traffic steering.
Wu, et al. Expires 3 August 2022 [Page 9]
Internet-Draft NRP YANG January 2022
5. NRP Yang Module Tree
module: ietf-nrp
augment /nw:networks/nw:network/nw:network-types:
+--rw nrp!
augment /nw:networks/nw:network:
+--rw nrp
+--rw nrp-id? uint32
+--rw nrp-name? string
+--rw bandwidth-reservation
| +--rw (bandwidth-type)?
| +--:(bandwidth-value)
| | +--rw bandwidth-value? uint64
| +--:(bandwidth-percentage)
| +--rw bandwidth-percent? rt-types:percentage
+--rw control-plane
| +--rw topology-ref
| +--rw igp-topology-ref
| | +--rw network-ref?
| | | -> /nw:networks/network/network-id
| | +--rw multi-topology-id? uint32
| | +--rw flex-algo-id? uint32
| +--rw te-topology-identifier
| +--rw provider-id? te-global-id
| +--rw client-id? te-global-id
| +--rw topology-id? te-topology-id
+--rw data-plane
| +--rw global-resource-identifier
| | +--rw nrp-dataplane-ipv6-type
| | | +--rw nrp-dp-value? inet:ipv6-address
| | +--rw nrp-dataplane-mpls-type
| | +--rw nrp-dp-value? uint32
| +--rw nrp-aware-dp
| +--rw nrp-aware-srv6-type!
| +--rw nrp-aware-sr-mpls-type!
+--rw steering-policy
+--rw color-id* uint32
+--rw acl-ref* -> /acl:acls/acl/name
augment /nw:networks/nw:network/nw:node:
+--rw nrp
+--rw nrp-aware-srv6
| +--rw nrp-dp-value? srv6-types:srv6-sid
+--rw nrp-aware-sr-mpls
+--rw nrp-dp-value? rt-types:mpls-label
augment /nw:networks/nw:network/nt:link:
+--rw nrp
| +--rw link-partition-type? identityref
| +--rw bandwidth-reservation
Wu, et al. Expires 3 August 2022 [Page 10]
Internet-Draft NRP YANG January 2022
| | +--rw (bandwidth-type)?
| | +--:(bandwidth-value)
| | | +--rw bandwidth-value? uint64
| | +--:(bandwidth-percentage)
| | +--rw bandwidth-percent? rt-types:percentage
| +--rw nrp-aware-srv6
| | +--rw nrp-dp-value? srv6-types:srv6-sid
| +--rw nrp-aware-sr-mpls
| +--rw nrp-dp-value? rt-types:mpls-label
+--ro statistics
+--ro admin-status? te-types:te-admin-status
+--ro oper-status? te-types:te-oper-status
+--ro one-way-available-bandwidth?
| rt-types:bandwidth-ieee-float32
+--ro one-way-utilized-bandwidth?
| rt-types:bandwidth-ieee-float32
+--ro one-way-min-delay? uint32
+--ro one-way-max-delay? uint32
+--ro one-way-delay-variation? uint32
+--ro one-way-packet-loss? decimal64
6. NRP Yang Module
<CODE BEGINS> file "ietf-nrp@2022-01-29.yang"
module ietf-nrp {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-nrp";
prefix nrp;
import ietf-network {
prefix nw;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-network-topology {
prefix nt;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-routing-types {
prefix rt-types;
reference
"RFC 8294: Common YANG Data Types for the Routing Area";
}
import ietf-te-types {
prefix te-types;
reference
Wu, et al. Expires 3 August 2022 [Page 11]
Internet-Draft NRP YANG January 2022
"RFC 8776: Traffic Engineering Common YANG Types";
}
import ietf-te-packet-types {
prefix te-packet-types;
reference
"RFC 8776: Traffic Engineering Common YANG Types";
}
import ietf-srv6-types {
prefix srv6-types;
}
import ietf-inet-types {
prefix inet;
reference
"RFC 6991: Common YANG Data Types";
}
import ietf-access-control-list {
prefix acl;
reference
"RFC 8519: YANG Data Model for Network Access Control Lists
(ACLs)";
}
organization
"IETF TEAS Working Group";
contact
"
WG Web: <http://tools.ietf.org/wg/teas/>
WG List:<mailto:teas@ietf.org>
Editor: Bo Wu <lana.wubo@huawei.com>
: Dhruv Dhody <dhruv.ietf@gmail.com>";
description
"This YANG module defines a network data module for
NRP(Network Resource Partition).
Copyright (c) 2022 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
for full legal notices.";
Wu, et al. Expires 3 August 2022 [Page 12]
Internet-Draft NRP YANG January 2022
revision 2022-01-29 {
description
"This is the initial version of NRP YANG model.";
reference
"RFC XXX: A YANG Data Model for Network Resource Partition";
}
identity link-partition-type {
description
"Base identity for interface partition type.";
}
identity virtual-sub-interface-partition {
base link-partition-type;
description
"Identity for virtual interface or sub-interface, e.g. FlexE.";
}
identity queue-partition {
base link-partition-type;
description
"Identity for queue partition type.";
}
identity nrp-dataplane-type {
description
"Base identity for NRP data plane type.";
}
identity nrp-dataplane-ipv6 {
base nrp-dataplane-type;
description
"Identity for NRP specific packet forwarding of IPv6.";
}
identity nrp-dataplane-mpls {
base nrp-dataplane-type;
description
"Identity for NRP specific packet forwarding of MPLS.";
}
identity nrp-dataplane-sr-mpls {
base nrp-dataplane-type;
description
"Identity for NRP specific packet forwarding of SR MPLS.";
}
identity nrp-dataplane-srv6 {
Wu, et al. Expires 3 August 2022 [Page 13]
Internet-Draft NRP YANG January 2022
base nrp-dataplane-type;
description
"Identity for NRP specific packet forwarding of SRv6.";
}
/*
* Groupings
*/
grouping nrp-bandwidth-reservation {
description
"Grouping for NRP bandwidth reservation.";
container bandwidth-reservation {
description
"Container for NRP bandwidth reservation.";
choice bandwidth-type {
description
"Choice of bandwidth reservation type.";
case bandwidth-value {
leaf bandwidth-value {
type uint64;
units "bps";
description
"Bandwidth allocation for the NRP as absolute value.";
}
}
case bandwidth-percentage {
leaf bandwidth-percent {
type rt-types:percentage;
description
"Bandwidth allocation for the NRP as a percentage
of a link.";
}
}
}
}
}
grouping nrp-control-plane-attributes {
description
"Grouping for NRP control plane attributes.";
container control-plane {
description
"The container of NRP control plane mechanisms.";
container topology-ref {
description
"Container for topology reference.";
container igp-topology-ref {
Wu, et al. Expires 3 August 2022 [Page 14]
Internet-Draft NRP YANG January 2022
description
"Container for IGP topology reference.";
uses nw:network-ref;
leaf multi-topology-id {
type uint32;
description
"The MT-id of an NRP.";
}
leaf flex-algo-id {
type uint32;
description
"The flex-algo-id of an NRP.";
}
}
uses te-types:te-topology-identifier;
}
}
}
grouping nrp-data-plane-attributes {
description
"Grouping for NRP data plane attributes.";
container data-plane {
description
"The data plane mechanisms of an NRP. The forwarding plane
could be MPLS, IPv6, SRv6, or SR-MPLS.";
container global-resource-identifier {
description
"The container of global NRP data-plane ID.";
container nrp-dataplane-ipv6-type {
description
"The container of IPv6 based NRP data-plane identifier.";
leaf nrp-dp-value {
type inet:ipv6-address;
description
"Indicates the IPv6 NRP data-plane identifier.";
}
}
container nrp-dataplane-mpls-type {
description
"The container of MPLS based NRP data-plane identifier.";
leaf nrp-dp-value {
type uint32;
description
"Indicates MPLS metadata values to identify MPLS NRP
data plane identifier, e.g. Ancillary data.";
}
}
Wu, et al. Expires 3 August 2022 [Page 15]
Internet-Draft NRP YANG January 2022
}
container nrp-aware-dp {
description
"The container of SR based NRP data-plane identifier.";
container nrp-aware-srv6-type {
presence "Enables SRv6 data plane type.";
description
"The container of SRv6 based NRP data-plane identifier.";
}
container nrp-aware-sr-mpls-type {
presence "Enables SR MPLS data plane type.";
description
"The container of SR MPLS based NRP data-plane identifier.";
}
}
}
}
grouping nrp-traffic-steering-policy {
description
"The grouping of the NRP traffic steering policy.";
container steering-policy {
description
"The container of a policy set
matching an NRP traffic classifier.";
leaf-list color-id {
type uint32;
description
"A list of color ID for NRP traffic steering based on
SR policy.";
}
leaf-list acl-ref {
type leafref {
path "/acl:acls/acl:acl/acl:name";
}
description
"A list of ACL for NRP traffic classification.";
}
}
}
grouping nrp-aware-id {
description
"The grouping of NRP aware SR ID.";
container nrp-aware-srv6 {
description
"The container of SRv6 based NRP data plane identifier.";
leaf nrp-dp-value {
Wu, et al. Expires 3 August 2022 [Page 16]
Internet-Draft NRP YANG January 2022
type srv6-types:srv6-sid;
description
"Indicates the SRv6 SID value as the NRP data plane
identifier.";
}
}
container nrp-aware-sr-mpls {
description
"The container of SR MPLS based NRP data plane identifier.";
leaf nrp-dp-value {
type rt-types:mpls-label;
description
"Indicates the SR MPLS ID value as the NRP data plane
identifier.";
}
}
}
grouping nrp-topology-attributes {
description
"NRP global attributes.";
container nrp {
description
"Containing NRP topology attributes.";
leaf nrp-id {
type uint32;
description
"NRP identifier.";
}
leaf nrp-name {
type string;
description
"NRP Name.";
}
uses nrp-bandwidth-reservation;
uses nrp-control-plane-attributes;
uses nrp-data-plane-attributes;
uses nrp-traffic-steering-policy;
}
// nrp
}
// nrp-node-attributes
grouping nrp-node-attributes {
description
"NRP node scope attributes.";
container nrp {
Wu, et al. Expires 3 August 2022 [Page 17]
Internet-Draft NRP YANG January 2022
description
"Containing NRP attributes.";
uses nrp-aware-id;
}
}
// nrp-node-attributes
grouping nrp-link-attributes {
description
"NRP link scope attributes.";
container nrp {
description
"Containing NRP attributes.";
leaf link-partition-type {
type identityref {
base link-partition-type;
}
description
"Indicates the resource partition type of a link.";
}
uses nrp-bandwidth-reservation;
uses nrp-aware-id;
}
}
// nrp-statistics
grouping statistics-per-nrp {
description
"Statistics attributes per NRP.";
}
// nrp-node-statistics
grouping statistics-per-node {
description
"Statistics attributes per NRP node.";
}
// one-way-performance-metrics
grouping one-way-performance-bandwidth {
description
"Grouping for one-way performance bandwidth.";
leaf one-way-available-bandwidth {
type rt-types:bandwidth-ieee-float32;
units "bytes per second";
Wu, et al. Expires 3 August 2022 [Page 18]
Internet-Draft NRP YANG January 2022
default "0x0p0";
description
"Available bandwidth that is defined to be NRP link
bandwidth minus bandwidth utilization. For a
bundled link, available bandwidth is defined to be the
sum of the component link available bandwidths.";
}
leaf one-way-utilized-bandwidth {
type rt-types:bandwidth-ieee-float32;
units "bytes per second";
default "0x0p0";
description
"Bandwidth utilization that represents the actual
utilization of the link (i.e. as measured in the router).
For a bundled link, bandwidth utilization is defined to
be the sum of the component link bandwidth
utilizations.";
}
}
// nrp-link-statistics
grouping nrp-statistics-per-link {
description
"Statistics attributes per NRP link.";
container statistics {
config false;
description
"Statistics for NRP link.";
leaf admin-status {
type te-types:te-admin-status;
description
"The administrative state of the link.";
}
leaf oper-status {
type te-types:te-oper-status;
description
"The current operational state of the link.";
}
uses one-way-performance-bandwidth;
uses te-packet-types:one-way-performance-metrics-packet;
}
}
augment "/nw:networks/nw:network/nw:network-types" {
description
"Defines the NRP topology type.";
container nrp {
Wu, et al. Expires 3 August 2022 [Page 19]
Internet-Draft NRP YANG January 2022
presence "Indicates NRP topology";
description
"The presence identifies the NRP type.";
}
}
augment "/nw:networks/nw:network" {
when 'nw:network-types/nrp:nrp' {
description
"Augment only for NRP topology.";
}
description
"Augment NRP configuration and state.";
uses nrp-topology-attributes;
}
augment "/nw:networks/nw:network/nw:node" {
when '../nw:network-types/nrp:nrp' {
description
"Augment only for NRP topology.";
}
description
"Augment node configuration and state.";
uses nrp-node-attributes;
}
augment "/nw:networks/nw:network/nt:link" {
when '../nw:network-types/nrp:nrp' {
description
"Augment only for NRP topology.";
}
description
"Augment link configuration and state.";
uses nrp-link-attributes;
uses nrp-statistics-per-link;
}
}
<CODE ENDS>
7. Security Considerations
The YANG module defined in this document is designed to be accessed
via network management protocols such as NETCONF [RFC6241] or
RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport
layer, and the mandatory-to-implement secure transport is Secure
Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the
mandatory-to-implement secure transport is TLS [RFC8446].
Wu, et al. Expires 3 August 2022 [Page 20]
Internet-Draft NRP YANG January 2022
The NETCONF access control model [RFC8341] provides the means to
restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
to these data nodes without proper protection can have a negative
effect on network operations.
nrp-link: A malicious client could attempt to remove a link from a
topology, add a new link. In each case, the structure of the
topology would be sabotaged, and this scenario could, for example,
result in an NRP topology that is less than optimal.
The entries in the nodes above include the whole network
configurations corresponding with the NRP, and indirectly create or
modify the PE or P device configurations. Unexpected changes to
these entries could lead to service disruption and/or network
misbehavior.
8. IANA Considerations
This document registers a URI in the IETF XML registry [RFC3688].
Following the format in [RFC3688], the following registration is
requested to be made:
URI: urn:ietf:params:xml:ns:yang:ietf-nrp
Registrant Contact: The IESG.
XML: N/A, the requested URI is an XML namespace.
This document requests to register a YANG module in the YANG Module
Names registry [RFC7950].
Name: ietf-nrp
Namespace: urn:ietf:params:xml:ns:yang:ietf-nrp
Prefix: nrp
Reference: RFC XXXX
9. Contributor
Wu, et al. Expires 3 August 2022 [Page 21]
Internet-Draft NRP YANG January 2022
Zhenbin Li
Huawei
Email: lizhenbin@huawei.com
Jie Dong
Huawei
Email: jie.dong@huawei.com
10. References
10.1. Normative References
[I-D.dong-6man-enhanced-vpn-vtn-id]
Dong, J., Li, Z., Xie, C., Ma, C., and G. Mishra,
"Carrying Virtual Transport Network (VTN) Identifier in
IPv6 Extension Header", Work in Progress, Internet-Draft,
draft-dong-6man-enhanced-vpn-vtn-id-06, 24 October 2021,
<https://www.ietf.org/archive/id/draft-dong-6man-enhanced-
vpn-vtn-id-06.txt>.
[I-D.dong-idr-sr-policy-vtn]
Dong, J., Hu, Z., and R. Pang, "BGP SR Policy Extensions
for Virtual Transport Network", Work in Progress,
Internet-Draft, draft-dong-idr-sr-policy-vtn-01, 11 July
2021, <https://www.ietf.org/archive/id/draft-dong-idr-sr-
policy-vtn-01.txt>.
[I-D.ietf-lsr-flex-algo]
Psenak, P., Hegde, S., Filsfils, C., Talaulikar, K., and
A. Gulko, "IGP Flexible Algorithm", Work in Progress,
Internet-Draft, draft-ietf-lsr-flex-algo-18, 25 October
2021, <https://www.ietf.org/archive/id/draft-ietf-lsr-
flex-algo-18.txt>.
[I-D.ietf-lsr-isis-sr-vtn-mt]
Xie, C., Ma, C., Dong, J., and Z. Li, "Using IS-IS Multi-
Topology (MT) for Segment Routing based Virtual Transport
Network", Work in Progress, Internet-Draft, draft-ietf-
lsr-isis-sr-vtn-mt-02, 13 January 2022,
<https://www.ietf.org/archive/id/draft-ietf-lsr-isis-sr-
vtn-mt-02.txt>.
[I-D.ietf-spring-sr-for-enhanced-vpn]
Dong, J., Bryant, S., Miyasaka, T., Zhu, Y., Qin, F., Li,
Z., and F. Clad, "Segment Routing based Virtual Transport
Wu, et al. Expires 3 August 2022 [Page 22]
Internet-Draft NRP YANG January 2022
Network (VTN) for Enhanced VPN", Work in Progress,
Internet-Draft, draft-ietf-spring-sr-for-enhanced-vpn-01,
12 July 2021, <https://www.ietf.org/archive/id/draft-ietf-
spring-sr-for-enhanced-vpn-01.txt>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC4915] Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",
RFC 4915, DOI 10.17487/RFC4915, June 2007,
<https://www.rfc-editor.org/info/rfc4915>.
[RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
Topology (MT) Routing in Intermediate System to
Intermediate Systems (IS-ISs)", RFC 5120,
DOI 10.17487/RFC5120, February 2008,
<https://www.rfc-editor.org/info/rfc5120>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
RFC 7951, DOI 10.17487/RFC7951, August 2016,
<https://www.rfc-editor.org/info/rfc7951>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8309] Wu, Q., Liu, W., and A. Farrel, "Service Models
Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
<https://www.rfc-editor.org/info/rfc8309>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
Wu, et al. Expires 3 August 2022 [Page 23]
Internet-Draft NRP YANG January 2022
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8346] Clemm, A., Medved, J., Varga, R., Liu, X.,
Ananthakrishnan, H., and N. Bahadur, "A YANG Data Model
for Layer 3 Topologies", RFC 8346, DOI 10.17487/RFC8346,
March 2018, <https://www.rfc-editor.org/info/rfc8346>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC8795] Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Gonzalez de Dios, "YANG Data Model for Traffic
Engineering (TE) Topologies", RFC 8795,
DOI 10.17487/RFC8795, August 2020,
<https://www.rfc-editor.org/info/rfc8795>.
10.2. Informative References
[I-D.dong-teas-nrp-scalability]
Dong, J., Li, Z., Gong, L., Yang, G., Guichard, J. N.,
Mishra, G., and F. Qin, "Scalability Considerations for
Network Resource Partition", Work in Progress, Internet-
Draft, draft-dong-teas-nrp-scalability-00, 17 December
2021, <https://www.ietf.org/archive/id/draft-dong-teas-
nrp-scalability-00.txt>.
[I-D.ietf-opsawg-l3sm-l3nm]
Barguil, S., Dios, O. G. D., Boucadair, M., Munoz, L. A.,
and A. Aguado, "A Layer 3 VPN Network YANG Model", Work in
Progress, Internet-Draft, draft-ietf-opsawg-l3sm-l3nm-18,
8 October 2021, <https://www.ietf.org/archive/id/draft-
ietf-opsawg-l3sm-l3nm-18.txt>.
Wu, et al. Expires 3 August 2022 [Page 24]
Internet-Draft NRP YANG January 2022
[I-D.ietf-teas-ietf-network-slices]
Farrel, A., Gray, E., Drake, J., Rokui, R., Homma, S.,
Makhijani, K., Contreras, L. M., and J. Tantsura,
"Framework for IETF Network Slices", Work in Progress,
Internet-Draft, draft-ietf-teas-ietf-network-slices-05, 25
October 2021, <https://www.ietf.org/archive/id/draft-ietf-
teas-ietf-network-slices-05.txt>.
Appendix A. An Example
This section contains an example of an instance data tree in JSON
encoding [RFC7951]. The example instantiates ietf-nrp for the
topology that is depicted in the following diagram. There are three
nodes, D1, D2, and D3. D1 has three termination points, 1-0-1,
1-2-1, and 1-3-1. D2 has three termination points as well, 2-1-1,
2-0-1, and 2-3-1. D3 has two termination points, 3-1-1 and 3-2-1.
In addition there are six links, two between each pair of nodes with
one going in each direction.
+------------+ +------------+
| D1 | | D2 |
/-\ /-\ /-\ /-\
| | 1-0-1 | |---------------->| | 2-1-1 | |
| | 1-2-1 | |<----------------| | 2-0-1 | |
\-/ 1-3-1 \-/ \-/ 2-3-1 \-/
| /----\ | | /----\ |
+---| |---+ +---| |---+
\----/ \----/
| | | |
| | | |
| | | |
| | +------------+ | |
| | | D3 | | |
| | /-\ /-\ | |
| +----->| | 3-1-1 | |-------+ |
+---------| | 3-2-1 | |<---------+
\-/ \-/
| |
+------------+
Figure 5: An NRP Instance Example
The corresponding NRP instance data tree is depicted below:
Wu, et al. Expires 3 August 2022 [Page 25]
Internet-Draft NRP YANG January 2022
{
"ietf-network:networks":{
"network":[
{
"network-types":{
"ietf-nrp:nrp":{
}
},
"network-id":"nrp-example",
"ietf-nrp:nrp":{
"nrp-id":"NRP1",
"bandwidth-reservation":{
"bandwidth-value":10000
},
"control-plane":{
"topology-ref":{
"igp-topology-ref":{
" network-ref":"L3-topology",
" flex-algo-id":129
}
}
},
"data-plane":{
"global-resource-identifier":{
"nrp-dataplane-ipv6-type":{
" nrp-dp-value:":100
}
}
},
"steering-policy":{
"color-id":100
}
},
"node":[
{
"node-id":"D1",
"termination-point":[
{
"tp-id":"1-0-1"
},
{
"tp-id":"1-2-1"
},
{
"tp-id":"1-3-1"
}
]
},
Wu, et al. Expires 3 August 2022 [Page 26]
Internet-Draft NRP YANG January 2022
{
"node-id":"D2",
"termination-point":[
{
"tp-id":"2-0-1"
},
{
"tp-id":"2-1-1"
},
{
"tp-id":"2-3-1"
}
]
},
{
"node-id":"D3",
"termination-point":[
{
},
{
"tp-id":"3-2-1"
}
]
}
],
"ietf-network-topology:link":[
{
"link-id":"D1,1-2-1,D2,2-1-1",
"source":{
"source-node":"D1",
"source-tp":"1-2-1"
},
"destination":{
"dest-node":"D2",
"dest-tp":"2-1-1"
},
"ietf-nrp:nrp":{
"link-partition-type":
"virtual-sub-interface-partition",
"bandwidth-reservation":{
"bandwidth-value":"10000"
},
"nrp-aware-srv6":{
" nrp-dp-value:":101
}
}
},
Wu, et al. Expires 3 August 2022 [Page 27]
Internet-Draft NRP YANG January 2022
{
"link-id":"D2,2-1-1,D1,1-2-1",
"source":{
"source-node":"D2",
"source-tp":"2-1-1"
},
"destination":{
"dest-node":"D1",
"dest-tp":"1-2-1"
},
"ietf-nrp:nrp":{
"link-partition-type":
"virtual-sub-interface-partition",
"bandwidth-reservation":{
"bandwidth-value":"10000"
},
"nrp-aware-srv6":{
" nrp-dp-value:":101
}
}
},
{
"link-id":"D1,1-3-1,D3,3-1-1",
"source":{
"source-node":"D1",
"source-tp":"1-3-1"
},
"destination":{
"dest-node":"D3",
"dest-tp":"3-1-1"
},
"ietf-nrp:nrp":{
"link-partition-type":
"virtual-sub-interface-partition",
"bandwidth-reservation":{
"bandwidth-value":"10000"
},
"nrp-aware-srv6":{
" nrp-dp-value:":101
}
}
},
{
"link-id":"D3,3-1-1,D1,1-3-1",
"source":{
"source-node":"D3",
"source-tp":"3-1-1"
},
Wu, et al. Expires 3 August 2022 [Page 28]
Internet-Draft NRP YANG January 2022
"destination":{
"dest-node":"D1",
"dest-tp":"1-3-1"
},
"ietf-nrp:nrp":{
"link-partition-type":
"virtual-sub-interface-partition",
"bandwidth-reservation":{
"bandwidth-value":"10000"
},
"nrp-aware-srv6":{
" nrp-dp-value:":101
}
}
},
{
"link-id":"D2,2-3-1,D3,3-2-1",
"source":{
"source-node":"D2",
"source-tp":"2-3-1"
},
"destination":{
"dest-node":"D3",
"dest-tp":"3-2-1"
},
"ietf-nrp:nrp":{
"link-partition-type":
"virtual-sub-interface-partition",
"bandwidth-reservation":{
"bandwidth-value":"10000"
},
"nrp-aware-srv6":{
" nrp-dp-value:":101
}
}
},
{
"link-id":"D3,3-2-1,D2,2-3-1",
"source":{
"source-node":"D3",
"source-tp":"3-2-1"
},
"destination":{
"dest-node":"D2",
"dest-tp":"2-3-1"
},
"ietf-nrp:nrp":{
"link-partition-type":
Wu, et al. Expires 3 August 2022 [Page 29]
Internet-Draft NRP YANG January 2022
"virtual-sub-interface-partition",
"bandwidth-reservation":{
"bandwidth-value":"10000"
},
"nrp-aware-srv6":{
" nrp-dp-value:":101
}
}
}
]
}
]
}
}
Figure 6: Instance data tree
Authors' Addresses
Bo Wu
Huawei Technologies
101 Software Avenue, Yuhua District
Nanjing
Jiangsu, 210012
China
Email: lana.wubo@huawei.com
Dhruv Dhody
Huawei Technologies
Divyashree Techno Park
Bangalore 560066
Karnataka
India
Email: dhruv.ietf@gmail.com
Ying Cheng
China Unicom
Beijing
China
Email: chengying10@chinaunicom.cn
Wu, et al. Expires 3 August 2022 [Page 30]