Internet-Draft Finding Geofeeds, an Update June 2023
Bush, et al. Expires 13 December 2023 [Page]
Workgroup:
Network Working Group
Internet-Draft:
draft-ymbk-opsawg-9092-update-00
Obsoletes:
9092 (if approved)
Published:
Intended Status:
Standards Track
Expires:
Authors:
R. Bush
IIJ & Arrcus
M. Candela
NTT
W. Kumari
Google
R. Housley
Vigil Security

A Minor Update to Finding and Using Geofeed Data

Abstract

This document specifies how to augment the Routing Policy Specification Language inetnum: class to refer specifically to geofeed data files and describes an optional scheme that uses the Resource Public Key Infrastructure to authenticate the geofeed datafiles.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 December 2023.

1. Introduction

Providers of Internet content and other services may wish to customize those services based on the geographic location of the user of the service. This is often done using the source IP address used to contact the service. Also, infrastructure and other services might wish to publish the locale of their services. [RFC8805] defines geofeed, a syntax to associate geographic locales with IP addresses, but it does not specify how to find the relevant geofeed data given an IP address.

This document specifies how to augment the Routing Policy Specification Language (RPSL) [RFC2725] inetnum: class to refer specifically to geofeed data files and how to prudently use them. In all places inetnum: is used, inet6num: should also be assumed [RFC4012].

The reader may find [INETNUM] and [INET6NUM] informative, and certainly more verbose, descriptions of the inetnum: database classes.

An optional utterly awesome but slightly complex means for authenticating geofeed data is also defined.

This document obsoletes [RFC9092]. Changes from [RFC9092] include the following:

  • It is no longer assumed that a geofeed file is a CSV, comma separated value list.
  • RIPE has implemented the geofeed: attribute.
  • Allow, but discourage, an inetnum: to have both a geofeed remarks: attribute and a geofeed: attribute.
  • Stress that authenticating geofeed data is optional.
  • IP Address Delegation extensions must not use "inherit".
  • If geofeed data are present, ignore geographic location hints in other data.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Geofeed Files

Geofeed files are described in [RFC8805]. They provide a facility for an IP address resource "owner" to associate those IP addresses to geographic locales.

Content providers and other parties who wish to locate an IP address to a geographic locale need to find the relevant geofeed data. In Section 3, this document specifies how to find the relevant geofeed [RFC8805] file given an IP address.

Geofeed data for large providers with significant horizontal scale and high granularity can be quite large. The size of a file can be even larger if an unsigned geofeed file combines data for many prefixes, if dual IPv4/IPv6 spaces are represented, etc.

Geofeed data do have privacy considerations (see Section 6); this process makes bulk access to those data easier.

This document also suggests an optional signature to strongly authenticate the data in the geofeed files.

3. inetnum: Class

The original RPSL specifications starting with [RIPE81], [RIPE181], and a trail of subsequent documents were written by the RIPE community. The IETF standardized RPSL in [RFC2622] and [RFC4012]. Since then, it has been modified and extensively enhanced in the Regional Internet Registry (RIR) community, mostly by RIPE [RIPE-DB]. Currently, change control effectively lies in the operator community.

The RPSL, and [RFC2725] and [RFC4012] used by the Regional Internet Registries (RIRs), specify the inetnum: database class. Each of these objects describes an IP address range and its attributes. The inetnum: objects form a hierarchy ordered on the address space.

Ideally, RPSL would be augmented to define a new RPSL geofeed: attribute in the inetnum: class. Currently, this has been implemented in only the RIPE Database. Until such time, this document defines the syntax of a Geofeed remarks: attribute, which contains an HTTPS URL of a geofeed file. The format of the inetnum: geofeed remarks: attribute MUST be as in this example, "remarks: Geofeed ", where the token "Geofeed " MUST be case sensitive, followed by a URL that will vary, but it MUST refer only to a single geofeed [RFC8805] file.

    inetnum: 192.0.2.0/24 # example
    remarks: Geofeed https://example.com/geofeed

While we leave global agreement of RPSL modification to the relevant parties, we specify that a proper geofeed: attribute in the inetnum: class MUST be "geofeed:" and MUST be followed by a single URL that will vary, but it MUST refer only to a single geofeed [RFC8805] file.

    inetnum: 192.0.2.0/24 # example
    geofeed: https://example.com/geofeed

Registries MAY, for the interim, provide a mix of the remarks: attribute form and the geofeed: attribute form.

The URL uses HTTPS, so the WebPKI provides authentication, integrity, and confidentiality for the fetched geofeed file. However, the WebPKI can not provide authentication of IP address space assignment. In contrast, the RPKI (see [RFC6481]) can be used to authenticate IP space assignment; see optional authentication in Section 4.

Until all producers of inetnum: objects, i.e., the RIRs, state that they have migrated to supporting a geofeed: attribute, consumers looking at inetnum: objects to find geofeed URLs MUST be able to consume both the remarks: and geofeed: forms. The migration not only implies that the RIRs support the geofeed: attribute, but that all registrants have migrated any inetnum: objects from remarks: to geofeed: attributes.

Any particular inetnum: object SHOULD have, at most, one geofeed reference, whether a remarks: or a proper geofeed: attribute when it is implemented. If there is more than one, the geofeed: attribute SHOULD be used.

For inetnum:s covering the same address range, or an inetnum: with both remarks: and geofeed: attributes, a signed geofeed file SHOULD be preferred over an unsigned file.

If a geofeed file describes multiple disjoint ranges of IP address space, there are likely to be geofeed references from multiple inetnum: objects. Files with geofeed references from multiple inetnum: objects are not compatible with the signing procedure in Section 4.

An unsigned, and only an unsigned, geofeed file MAY be referenced by multiple inetnum:s and MAY contain prefixes from more than one registry.

When geofeed references are provided by multiple inetnum: objects that have identical address ranges, then the geofeed reference on the inetnum: with the most recent last-modified: attribute SHOULD be preferred.

As inetnum: objects form a hierarchy, geofeed references SHOULD be at the lowest applicable inetnum: object covering the relevant address ranges in the referenced geofeed file. When fetching, the most specific inetnum: object with a geofeed reference MUST be used.

It is significant that geofeed data may have finer granularity than the inetnum: that refers to them. For example, an INETNUM object for an address range P could refer to a geofeed file in which P has been subdivided into one or more longer prefixes.

Currently, the registry data published by ARIN are not the same RPSL as that of the other registries (see [RFC7485] for a survey of the WHOIS Tower of Babel); therefore, when fetching from ARIN via FTP [RFC0959], WHOIS [RFC3912], the Registration Data Access Protocol (RDAP) [RFC9082], etc., the "NetRange" attribute/key MUST be treated as "inetnum", and the "Comment" attribute MUST be treated as "remarks".

4. Authenticating Geofeed Data (Optional)

The question arises whether a particular geofeed [RFC8805] data set is valid, i.e., is authorized by the "owner" of the IP address space and is authoritative in some sense. The inetnum: that points to the geofeed [RFC8805] file provides some assurance. Unfortunately, the RPSL in many repositories is weakly authenticated at best. An approach where RPSL was signed per [RFC7909] would be good, except it would have to be deployed by all RPSL registries, and there is a fair number of them.

A single optional authenticator MAY be appended to a geofeed [RFC8805] file. It is a digest of the main body of the file signed by the private key of the relevant RPKI certificate for a covering address range. One needs a format that bundles the relevant RPKI certificate with the signature of the geofeed text.

The canonicalization procedure converts the data from their internal character representation to the UTF-8 [RFC3629] character encoding, and the <CRLF> sequence MUST be used to denote the end of a line of text. A blank line is represented solely by the <CRLF> sequence. For robustness, any non-printable characters MUST NOT be changed by canonicalization. Trailing blank lines MUST NOT appear at the end of the file. That is, the file must not end with multiple consecutive <CRLF> sequences. Any end-of-file marker used by an operating system is not considered to be part of the file content. When present, such end-of-file markers MUST NOT be processed by the digital signature algorithm.

Should the authenticator be syntactically incorrect per the above, the authenticator is invalid.

Borrowing detached signatures from [RFC5485], after file canonicalization, the Cryptographic Message Syntax (CMS) [RFC5652] would be used to create a detached DER-encoded signature that is then padded BASE64 encoded (as per Section 4 of [RFC4648]) and line wrapped to 72 or fewer characters. The same digest algorithm MUST be used for calculating the message digest on content being signed, which is the geofeed file, and for calculating the message digest on the SignerInfo SignedAttributes [RFC8933]. The message digest algorithm identifier MUST appear in both the SignedData DigestAlgorithmIdentifiers and the SignerInfo DigestAlgorithmIdentifier [RFC5652].

The address range of the signing certificate MUST cover all prefixes in the geofeed file it signs.

An address range A "covers" address range B if the range of B is identical to or a subset of A. "Address range" is used here because inetnum: objects and RPKI certificates need not align on Classless Inter-Domain Routing (CIDR) [RFC4632] prefix boundaries, while those of the lines in a geofeed file do.

As the signer specifies the covered RPKI resources relevant to the signature, the RPKI certificate covering the inetnum: object's address range is included in the [RFC5652] CMS SignedData certificates field.

Identifying the private key associated with the certificate and getting the department that controls the private key (which might be trapped in a Hardware Security Module (HSM)) to sign the CMS blob is left as an exercise for the implementor. On the other hand, verifying the signature requires no complexity; the certificate, which can be validated in the public RPKI, has the needed public key. The trust anchors for the RIRs are expected to already be available to the party performing signature validation. Validation of the CMS signature on the geofeed file involves:

  1. Obtaining the signer's certificate from the CMS SignedData CertificateSet [RFC5652]. The certificate SubjectKeyIdentifier extension [RFC5280] MUST match the SubjectKeyIdentifier in the CMS SignerInfo SignerIdentifier [RFC5652]. If the key identifiers do not match, then validation MUST fail.

    Validation of the signer's certificate MUST ensure that it is part of the current [RFC6486] manifest and that the resources are covered by the RPKI certificate.

  2. Constructing the certification path for the signer's certificate. All of the needed certificates are expected to be readily available in the RPKI repository. The certification path MUST be valid according to the validation algorithm in [RFC5280] and the additional checks specified in [RFC3779] associated with the IP Address Delegation certificate extension and the Autonomous System Identifier Delegation certificate extension. If certification path validation is unsuccessful, then validation MUST fail.
  3. Validating the CMS SignedData as specified in [RFC5652] using the public key from the validated signer's certificate. If the signature validation is unsuccessful, then validation MUST fail.
  4. Verifying that the IP Address Delegation certificate extension [RFC3779] covers all of the address ranges of the geofeed file. If all of the address ranges are not covered, then validation MUST fail.

All of these steps MUST be successful to consider the geofeed file signature as valid.

As the signer specifies the covered RPKI resources relevant to the signature, the RPKI certificate covering the inetnum: object's address range is included in the CMS SignedData certificates field [RFC5652].

As an IP Address Delegation extension using "inherit" would complicate processing, it MUST NOT be used. This is consistent with other RPKI signed objects.

Identifying the private key associated with the certificate and getting the department with the Hardware Security Module (HSM) to sign the CMS blob is left as an exercise for the implementor. On the other hand, verifying the signature requires no complexity; the certificate, which can be validated in the public RPKI, has the needed public key.

The appendix MUST be hidden as a series of "#" comments at the end of the geofeed file. The following is a cryptographically incorrect, albeit simple, example. A correct and full example is in Appendix A.

    # RPKI Signature: 192.0.2.0 - 192.0.2.255
    # MIIGlwYJKoZIhvcNAQcCoIIGiDCCBoQCAQMxDTALBglghkgBZQMEAgEwDQYLKoZ
    # IhvcNAQkQAS+gggSxMIIErTCCA5WgAwIBAgIUJ605QIPX8rW5m4Zwx3WyuW7hZu
    ...
    # imwYkXpiMxw44EZqDjl36MiWsRDLdgoijBBcGbibwyAfGeR46k5raZCGvxG+4xa
    # O8PDTxTfIYwAnBjRBKAqAZ7yX5xHfm58jUXsZJ7Ileq1S7G6Kk=
    # End Signature: 192.0.2.0 - 192.0.2.255

The signature does not cover the signature lines.

The bracketing "# RPKI Signature:" and "# End Signature:" MUST be present following the model as shown. Their IP address range MUST match that of the inetnum: URL followed to the file.

[RFC9323] describes and provides code for a CMS profile for a general purpose listing of checksums (a "checklist") for use with the Resource Public Key Infrastructure (RPKI). It provides usable, albeit complex, code to sign geofeed files.

[RPKI-RTA] describes a CMS profile for a general purpose Resource Tagged Attestation (RTA) based on the RPKI. While this is expected to become applicable in the long run, for the purposes of this document, a self-signed root trust anchor is used.

5. Operational Considerations

To create the needed inetnum: objects, an operator wishing to register the location of their geofeed file needs to coordinate with their Regional Internet Registry (RIR) or National Internet Registry (NIR) and/or any provider Local Internet Registry (LIR) that has assigned address ranges to them. RIRs/NIRs provide means for assignees to create and maintain inetnum: objects. They also provide means of assigning or sub-assigning IP address resources and allowing the assignee to create WHOIS data, including inetnum: objects, thereby referring to geofeed files.

The geofeed files MUST be published via and fetched using HTTPS [RFC2818].

When using data from a geofeed file, one MUST ignore data outside the referring inetnum: object's inetnum: attribute address range.

If and only if the geofeed file is not signed per Section 4, then multiple inetnum: objects MAY refer to the same geofeed file, and the consumer MUST use only lines in the geofeed file where the prefix is covered by the address range of the inetnum: object's URL it has followed.

If the geofeed file is signed, and the signer's certificate changes, the signature in the geofeed file MUST be updated.

It is good key hygiene to use a given key for only one purpose. To dedicate a signing private key for signing a geofeed file, an RPKI Certification Authority (CA) may issue a subordinate certificate exclusively for the purpose shown in Appendix A.

To minimize the load on RIR WHOIS [RFC3912] services, use of the RIR's FTP [RFC0959] services SHOULD be used for large-scale access to gather geofeed URLs. This also provides bulk access instead of fetching by brute-force search through the IP space.

Currently, geolocation providers have bulk WHOIS data access at all the RIRs. An anonymized version of such data is openly available for all RIRs except ARIN, which requires an authorization. However, for users without such authorization, the same result can be achieved with extra RDAP effort. There is open-source code to pass over such data across all RIRs, collect all geofeed references, and process them [GEOFEED-FINDER].

To prevent undue load on RPSL and geofeed servers, entity-fetching geofeed data using these mechanisms MUST NOT do frequent real-time lookups. Section 3.4 of [RFC8805] suggests use of the HTTP Expires header [RFC7234] to signal when geofeed data should be refetched. As the data change very infrequently, in the absence of such an HTTP Header signal, collectors SHOULD NOT fetch more frequently than weekly. It would be polite not to fetch at magic times such as midnight UTC, the first of the month, etc., because too many others are likely to do the same.

If geofeed data are specified, either as a geofeed: attribute or in a geofeed remarks: attribute, other geographic hints such as country:, DNS geoloc RRsets, etc., for that address range should be ignored.

6. Privacy Considerations

[RFC8805] geofeed data may reveal the approximate location of an IP address, which might in turn reveal the approximate location of an individual user. Unfortunately, [RFC8805] provides no privacy guidance on avoiding or ameliorating possible damage due to this exposure of the user. In publishing pointers to geofeed files as described in this document, the operator should be aware of this exposure in geofeed data and be cautious. All the privacy considerations of Section 4 of [RFC8805] apply to this document.

Where [RFC8805] provided the ability to publish location data, this document makes bulk access to those data readily available. This is a goal, not an accident.

7. Security Considerations

It is generally prudent for a consumer of geofeed data to also use other sources to cross-validate the data. All the security considerations of [RFC8805] apply here as well.

The consumer of geofeed data SHOULD fetch and process the data themselves. Importing datasets produced and/or processed by a third-party places ill-advised trust in the third-party.

As mentioned in Section 4, many RPSL repositories have weak, if any, authentication. This allows spoofing of inetnum: objects pointing to malicious geofeed files. Section 4 suggests an unfortunately complex method for stronger authentication based on the RPKI.

For example, if an inetnum: for a wide address range (e.g., a /16) points to an RPKI-signed geofeed file, a customer or attacker could publish an unsigned equal or narrower (e.g., a /24) inetnum: in a WHOIS registry that has weak authorization, abusing the rule that the most-specific inetnum: object with a geofeed reference MUST be used.

If signatures were mandatory, the above attack would be stymied, but of course that is not happening anytime soon.

The RPSL providers have had to throttle fetching from their servers due to too-frequent queries. Usually, they throttle by the querying IP address or block. Similar defenses will likely need to be deployed by geofeed file servers.

8. IANA Considerations

There are no new actions needed by the IANA.

9. References

9.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC2622]
Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D., Meyer, D., Bates, T., Karrenberg, D., and M. Terpstra, "Routing Policy Specification Language (RPSL)", RFC 2622, DOI 10.17487/RFC2622, , <https://www.rfc-editor.org/info/rfc2622>.
[RFC2725]
Villamizar, C., Alaettinoglu, C., Meyer, D., and S. Murphy, "Routing Policy System Security", RFC 2725, DOI 10.17487/RFC2725, , <https://www.rfc-editor.org/info/rfc2725>.
[RFC2818]
Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/RFC2818, , <https://www.rfc-editor.org/info/rfc2818>.
[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, , <https://www.rfc-editor.org/info/rfc3629>.
[RFC3779]
Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP Addresses and AS Identifiers", RFC 3779, DOI 10.17487/RFC3779, , <https://www.rfc-editor.org/info/rfc3779>.
[RFC4012]
Blunk, L., Damas, J., Parent, F., and A. Robachevsky, "Routing Policy Specification Language next generation (RPSLng)", RFC 4012, DOI 10.17487/RFC4012, , <https://www.rfc-editor.org/info/rfc4012>.
[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, , <https://www.rfc-editor.org/info/rfc4648>.
[RFC5280]
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, , <https://www.rfc-editor.org/info/rfc5280>.
[RFC5652]
Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, , <https://www.rfc-editor.org/info/rfc5652>.
[RFC6481]
Huston, G., Loomans, R., and G. Michaelson, "A Profile for Resource Certificate Repository Structure", RFC 6481, DOI 10.17487/RFC6481, , <https://www.rfc-editor.org/info/rfc6481>.
[RFC6486]
Austein, R., Huston, G., Kent, S., and M. Lepinski, "Manifests for the Resource Public Key Infrastructure (RPKI)", RFC 6486, DOI 10.17487/RFC6486, , <https://www.rfc-editor.org/info/rfc6486>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[RFC8805]
Kline, E., Duleba, K., Szamonek, Z., Moser, S., and W. Kumari, "A Format for Self-Published IP Geolocation Feeds", RFC 8805, DOI 10.17487/RFC8805, , <https://www.rfc-editor.org/info/rfc8805>.
[RFC8933]
Housley, R., "Update to the Cryptographic Message Syntax (CMS) for Algorithm Identifier Protection", RFC 8933, DOI 10.17487/RFC8933, , <https://www.rfc-editor.org/info/rfc8933>.
[RFC9092]
Bush, R., Candela, M., Kumari, W., and R. Housley, "Finding and Using Geofeed Data", RFC 9092, DOI 10.17487/RFC9092, , <https://www.rfc-editor.org/info/rfc9092>.

9.2. Informative References

[GEOFEED-FINDER]
"geofeed-finder", commit 5f557a4, , <https://github.com/massimocandela/geofeed-finder>.
[INET6NUM]
RIPE NCC, "Description of the INET6NUM Object", , <https://www.ripe.net/manage-ips-and-asns/db/support/documentation/ripe-database-documentation/rpsl-object-types/4-2-descriptions-of-primary-objects/4-2-3-description-of-the-inet6num-object>.
[INETNUM]
RIPE NCC, "Description of the INETNUM Object", , <https://www.ripe.net/manage-ips-and-asns/db/support/documentation/ripe-database-documentation/rpsl-object-types/4-2-descriptions-of-primary-objects/4-2-4-description-of-the-inetnum-object>.
[RFC0959]
Postel, J. and J. Reynolds, "File Transfer Protocol", STD 9, RFC 959, DOI 10.17487/RFC0959, , <https://www.rfc-editor.org/info/rfc959>.
[RFC3912]
Daigle, L., "WHOIS Protocol Specification", RFC 3912, DOI 10.17487/RFC3912, , <https://www.rfc-editor.org/info/rfc3912>.
[RFC4632]
Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632, , <https://www.rfc-editor.org/info/rfc4632>.
[RFC5485]
Housley, R., "Digital Signatures on Internet-Draft Documents", RFC 5485, DOI 10.17487/RFC5485, , <https://www.rfc-editor.org/info/rfc5485>.
[RFC7234]
Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching", RFC 7234, DOI 10.17487/RFC7234, , <https://www.rfc-editor.org/info/rfc7234>.
[RFC7485]
Zhou, L., Kong, N., Shen, S., Sheng, S., and A. Servin, "Inventory and Analysis of WHOIS Registration Objects", RFC 7485, DOI 10.17487/RFC7485, , <https://www.rfc-editor.org/info/rfc7485>.
[RFC7909]
Kisteleki, R. and B. Haberman, "Securing Routing Policy Specification Language (RPSL) Objects with Resource Public Key Infrastructure (RPKI) Signatures", RFC 7909, DOI 10.17487/RFC7909, , <https://www.rfc-editor.org/info/rfc7909>.
[RFC9082]
Hollenbeck, S. and A. Newton, "Registration Data Access Protocol (RDAP) Query Format", STD 95, RFC 9082, DOI 10.17487/RFC9082, , <https://www.rfc-editor.org/info/rfc9082>.
[RFC9323]
Snijders, J., Harrison, T., and B. Maddison, "A Profile for RPKI Signed Checklists (RSCs)", RFC 9323, DOI 10.17487/RFC9323, , <https://www.rfc-editor.org/info/rfc9323>.
[RIPE-DB]
RIPE NCC, "RIPE Database Documentation", <https://www.ripe.net/manage-ips-and-asns/db/support/documentation/ripe-database-documentation>.
[RIPE181]
RIPE NCC, "Representation Of IP Routing Policies In A Routing Registry", , <https://www.ripe.net/publications/docs/ripe-181>.
[RIPE81]
RIPE NCC, "Representation Of IP Routing Policies In The RIPE Database", , <https://www.ripe.net/publications/docs/ripe-081>.
[RPKI-RTA]
Michaelson, G. G., Huston, G., Harrison, T., Bruijnzeels, T., and M. Hoffmann, "A profile for Resource Tagged Attestations (RTAs)", Work in Progress, Internet-Draft, draft-ietf-sidrops-rpki-rta-00, , <https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-rpki-rta-00>.

Appendix A. Example

This appendix provides an example that includes a trust anchor, a CA certificate subordinate to the trust anchor, an end-entity certificate subordinate to the CA for signing the geofeed, and a detached signature.

The trust anchor is represented by a self-signed certificate. As usual in the RPKI, the trust anchor has authority over all IPv4 address blocks, all IPv6 address blocks, and all Autonomous System (AS) numbers.

    -----BEGIN CERTIFICATE-----
    MIIEPjCCAyagAwIBAgIUPsUFJ4e/7pKZ6E14aBdkbYzms1gwDQYJKoZIhvcNAQEL
    BQAwFTETMBEGA1UEAxMKZXhhbXBsZS10YTAeFw0yMDA5MDMxODU0NTRaFw0zMDA5
    MDExODU0NTRaMBUxEzARBgNVBAMTCmV4YW1wbGUtdGEwggEiMA0GCSqGSIb3DQEB
    AQUAA4IBDwAwggEKAoIBAQCelMmMDCGBhqn/a3VrNAoKMr1HVLKxGoG7VF/13HZJ
    0twObUZlh3Jz+XeD+kNAURhELWTrsgdTkQQfqinqOuRemxTl55+x7nLpe5nmwaBH
    XqqDOHubmkbAGanGcm6T/rD9KNk1Z46Uc2p7UYu0fwNO0mo0aqFL2FSyvzZwziNe
    g7ELYZ4a3LvGn81JfP/JvM6pgtoMNuee5RV6TWaz7LV304ICj8Bhphy/HFpOA1rb
    O9gs8CUMgqz+RroAIa8cV8gbF/fPCz9Ofl7Gdmib679JxxFrW4wRJ0nMJgJmsZXq
    jaVc0g7ORc+eIAcHw7Uroc6h7Y7lGjOkDZF75j0mLQa3AgMBAAGjggGEMIIBgDAd
    BgNVHQ4EFgQU3hNEuwvUGNCHY1TBatcUR03pNdYwHwYDVR0jBBgwFoAU3hNEuwvU
    GNCHY1TBatcUR03pNdYwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYw
    GAYDVR0gAQH/BA4wDDAKBggrBgEFBQcOAjCBuQYIKwYBBQUHAQsEgawwgakwPgYI
    KwYBBQUHMAqGMnJzeW5jOi8vcnBraS5leGFtcGxlLm5ldC9yZXBvc2l0b3J5L2V4
    YW1wbGUtdGEubWZ0MDUGCCsGAQUFBzANhilodHRwczovL3JyZHAuZXhhbXBsZS5u
    ZXQvbm90aWZpY2F0aW9uLnhtbDAwBggrBgEFBQcwBYYkcnN5bmM6Ly9ycGtpLmV4
    YW1wbGUubmV0L3JlcG9zaXRvcnkvMCcGCCsGAQUFBwEHAQH/BBgwFjAJBAIAATAD
    AwEAMAkEAgACMAMDAQAwHgYIKwYBBQUHAQgEEjAQoA4wDDAKAgEAAgUA/////zAN
    BgkqhkiG9w0BAQsFAAOCAQEAgZFQ0Sf3CI5Hwev61AUWHYOFniy69PuDTq+WnhDe
    xX5rpjSDRrs5L756KSKJcaOJ36lzO45lfOPSY9fH6x30pnipaqRA7t5rApky24jH
    cSUA9iRednzxhVyGjWKnfAKyNo2MYfaOAT0db1GjyLKbOADI9FowtHBUu+60ykcM
    Quz66XrzxtmxlrRcAnbv/HtV17qOd4my6q5yjTPR1dmYN9oR/2ChlXtGE6uQVguA
    rvNZ5CwiJ1TgGGTB7T8ORHwWU6dGTc0jk2rESAaikmLi1roZSNC21fckhapEit1a
    x8CyiVxjcVc5e0AmS1rJfL6LIfwmtive/N/eBtIM92HkBA==
    -----END CERTIFICATE-----

The CA certificate is issued by the trust anchor. This certificate grants authority over one IPv4 address block (192.0.2.0/24) and two AS numbers (64496 and 64497).

    -----BEGIN CERTIFICATE-----
    MIIFBzCCA++gAwIBAgIUcyCzS10hdfG65kbRq7toQAvRDKowDQYJKoZIhvcNAQEL
    BQAwFTETMBEGA1UEAxMKZXhhbXBsZS10YTAeFw0yMDA5MDMxOTAyMTlaFw0yMTA5
    MDMxOTAyMTlaMDMxMTAvBgNVBAMTKDNBQ0UyQ0VGNEZCMjFCN0QxMUUzRTE4NEVG
    QzFFMjk3QjM3Nzg2NDIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDc
    zz1qwTxC2ocw5rqp8ktm2XyYkl8riBVuqlXwfefTxsR2YFpgz9vkYUd5Az9EVEG7
    6wGIyZbtmhK63eEeaqbKz2GHub467498BXeVrYysO+YuIGgCEYKznNDZ4j5aaDbo
    j5+4/z0Qvv6HEsxQd0f8br6lKJwgeRM6+fm7796HNPB0aqD7Zj9NRCLXjbB0DCgJ
    liH6rXMKR86ofgll9V2mRjesvhdKYgkGbOif9rvxVpLJ/6zdru5CE9yeuJZ59l+n
    YH/r6PzdJ4Q7yKrJX8qD6A60j4+biaU4MQ72KpsjhQNTTqF/HRwi0N54GDaknEwE
    TnJQHgLJDYqww9yKWtjjAgMBAAGjggIvMIICKzAdBgNVHQ4EFgQUOs4s70+yG30R
    4+GE78Hil7N3hkIwHwYDVR0jBBgwFoAU3hNEuwvUGNCHY1TBatcUR03pNdYwDwYD
    VR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwGAYDVR0gAQH/BA4wDDAKBggr
    BgEFBQcOAjBhBgNVHR8EWjBYMFagVKBShlByc3luYzovL3Jwa2kuZXhhbXBsZS5u
    ZXQvcmVwb3NpdG9yeS8zQUNFMkNFRjRGQjIxQjdEMTFFM0UxODRFRkMxRTI5N0Iz
    Nzc4NjQyLmNybDBOBggrBgEFBQcBAQRCMEAwPgYIKwYBBQUHMAKGMnJzeW5jOi8v
    cnBraS5leGFtcGxlLm5ldC9yZXBvc2l0b3J5L2V4YW1wbGUtdGEuY2VyMIG5Bggr
    BgEFBQcBCwSBrDCBqTA+BggrBgEFBQcwCoYycnN5bmM6Ly9ycGtpLmV4YW1wbGUu
    bmV0L3JlcG9zaXRvcnkvZXhhbXBsZS1jYS5tZnQwNQYIKwYBBQUHMA2GKWh0dHBz
    Oi8vcnJkcC5leGFtcGxlLm5ldC9ub3RpZmljYXRpb24ueG1sMDAGCCsGAQUFBzAF
    hiRyc3luYzovL3Jwa2kuZXhhbXBsZS5uZXQvcmVwb3NpdG9yeS8wHwYIKwYBBQUH
    AQcBAf8EEDAOMAwEAgABMAYDBADAAAIwHgYIKwYBBQUHAQgEEjAQoA4wDDAKAgMA
    +/ACAwD78TANBgkqhkiG9w0BAQsFAAOCAQEAnLu+d1ZsUTiX3YWGueTHIalW4ad0
    Kupi7pYMV2nXbxNGmdJMol9BkzVz9tj55ReMghUU4YLm/ICYe4fz5e0T8o9s/vIm
    cGS29+WoGuiznMitpvbS/379gaMezk6KpqjH6Brw6meMqy09phmcmvm3x3WTmx09
    mLlQneMptwk8qSYcnMUmGLJs+cVqmkOa3sWRdw8WrGu6QqYtQz3HFZQojF06YzEq
    V/dBdCFdEOwTfVl2n2XqhoJl/oEBdC4uu2G0qRk3+WVs+uwVHP0Ttsbt7TzFgZfY
    yxqvOg6QoldxZVZmHHncKmETu/BqCDGJot9may31ukrx34Bu+XFMVihm0w==
    -----END CERTIFICATE-----

The end-entity certificate is issued by the CA. This certificate grants signature authority for one IPv4 address block (192.0.2.0/24). Signature authority for AS numbers is not needed for geofeed data signatures, so no AS numbers are included in the certificate.

    -----BEGIN CERTIFICATE-----
    MIIEpTCCA42gAwIBAgIUJ605QIPX8rW5m4Zwx3WyuW7hZuQwDQYJKoZIhvcNAQEL
    BQAwMzExMC8GA1UEAxMoM0FDRTJDRUY0RkIyMUI3RDExRTNFMTg0RUZDMUUyOTdC
    Mzc3ODY0MjAeFw0yMTA1MjAxNjA1NDVaFw0yMjAzMTYxNjA1NDVaMDMxMTAvBgNV
    BAMTKDkxNDY1MkEzQkQ1MUMxNDQyNjAxOTg4ODlGNUM0NUFCRjA1M0ExODcwggEi
    MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCycTQrOb/qB2W3i3Ki8PhA/DEW
    yii2TgGo9pgCwO9lsIRI6Zb/k+aSiWWP9kSczlcQgtPCVwr62hTQZCIowBN0BL0c
    K0/5k1imJdi5qdM3nvKswM8CnoR11vB8pQFwruZmr5xphXRvE+mzuJVLgu2V1upm
    BXuWloeymudh6WWJ+GDjwPXO3RiXBejBrOFNXhaFLe08y4DPfr/S/tXJOBm7QzQp
    tmbPLYtGfprYu45liFFqqP94UeLpISfXd36AKGzqTFCcc3EW9l5UFE1MFLlnoEog
    qtoLoKABt0IkOFGKeC/EgeaBdWLe469ddC9rQft5w6g6cmxG+aYDdIEB34zrAgMB
    AAGjggGvMIIBqzAdBgNVHQ4EFgQUkUZSo71RwUQmAZiIn1xFq/BToYcwHwYDVR0j
    BBgwFoAUOs4s70+yG30R4+GE78Hil7N3hkIwDAYDVR0TAQH/BAIwADAOBgNVHQ8B
    Af8EBAMCB4AwGAYDVR0gAQH/BA4wDDAKBggrBgEFBQcOAjBhBgNVHR8EWjBYMFag
    VKBShlByc3luYzovL3Jwa2kuZXhhbXBsZS5uZXQvcmVwb3NpdG9yeS8zQUNFMkNF
    RjRGQjIxQjdEMTFFM0UxODRFRkMxRTI5N0IzNzc4NjQyLmNybDBsBggrBgEFBQcB
    AQRgMF4wXAYIKwYBBQUHMAKGUHJzeW5jOi8vcnBraS5leGFtcGxlLm5ldC9yZXBv
    c2l0b3J5LzNBQ0UyQ0VGNEZCMjFCN0QxMUUzRTE4NEVGQzFFMjk3QjM3Nzg2NDIu
    Y2VyMBkGCCsGAQUFBwEHAQH/BAowCDAGBAIAAQUAMEUGCCsGAQUFBwELBDkwNzA1
    BggrBgEFBQcwDYYpaHR0cHM6Ly9ycmRwLmV4YW1wbGUubmV0L25vdGlmaWNhdGlv
    bi54bWwwDQYJKoZIhvcNAQELBQADggEBAEjC98gVp0Mb7uiKaHylP0453mtJ+AkN
    07fsK/qGw/e90DJv7cp1hvjj4uy3sgf7PJQ7cKNGrgybq/lE0jce+ARgVjbi2Brz
    ZsWAnB846Snwsktw6cenaif6Aww6q00NspAepMBd2Vg/9sKFvOwJFVOgNcqiQiXP
    5rGJPWBcOMv52a/7adjfXwpnOijiTOgMloQGmC2TPZpydZKjlxEATdFEQssa33xD
    nlpp+/r9xuNVYRtRcC36oWraVA3jzN6F6rDE8r8xs3ylISVz6JeCQ4YRYwbMsjjc
    /tiJLM7ZYxIe5IrYz1ZtN6n/SEssJAswRIgps2EhCt/HS2xAmGCOhgU=
    -----END CERTIFICATE-----

The end-entity certificate is displayed below in detail. For brevity, the other two certificates are not.

    0 1189: SEQUENCE {
    4  909:  SEQUENCE {
    8    3:   [0] {
   10    1:    INTEGER 2
          :     }
   13   20:   INTEGER 27AD394083D7F2B5B99B8670C775B2B96EE166E4
   35   13:   SEQUENCE {
   37    9:    OBJECT IDENTIFIER
          :     sha256WithRSAEncryption (1 2 840 113549 1 1 11)
   48    0:    NULL
          :     }
   50   51:   SEQUENCE {
   52   49:    SET {
   54   47:     SEQUENCE {
   56    3:      OBJECT IDENTIFIER commonName (2 5 4 3)
   61   40:      PrintableString
          :       '3ACE2CEF4FB21B7D11E3E184EFC1E297B3778642'
          :       }
          :      }
          :     }
  103   30:   SEQUENCE {
  105   13:    UTCTime 20/05/2021 16:05:45 GMT
  120   13:    UTCTime 16/03/2022 16:05:45 GMT
          :     }
  135   51:   SEQUENCE {
  137   49:    SET {
  139   47:     SEQUENCE {
  141    3:      OBJECT IDENTIFIER commonName (2 5 4 3)
  146   40:      PrintableString
          :       '914652A3BD51C144260198889F5C45ABF053A187'
          :       }
          :      }
          :     }
  188  290:   SEQUENCE {
  192   13:    SEQUENCE {
  194    9:     OBJECT IDENTIFIER rsaEncryption
          :      (1 2 840 113549 1 1 1)
  205    0:     NULL
          :      }
  207  271:    BIT STRING, encapsulates {
  212  266:     SEQUENCE {
  216  257:      INTEGER
          :       00 B2 71 34 2B 39 BF EA 07 65 B7 8B 72 A2 F0 F8
          :       40 FC 31 16 CA 28 B6 4E 01 A8 F6 98 02 C0 EF 65
          :       B0 84 48 E9 96 FF 93 E6 92 89 65 8F F6 44 9C CE
          :       57 10 82 D3 C2 57 0A FA DA 14 D0 64 22 28 C0 13
          :       74 04 BD 1C 2B 4F F9 93 58 A6 25 D8 B9 A9 D3 37
          :       9E F2 AC C0 CF 02 9E 84 75 D6 F0 7C A5 01 70 AE
          :       E6 66 AF 9C 69 85 74 6F 13 E9 B3 B8 95 4B 82 ED
          :       95 D6 EA 66 05 7B 96 96 87 B2 9A E7 61 E9 65 89
          :       F8 60 E3 C0 F5 CE DD 18 97 05 E8 C1 AC E1 4D 5E
          :       16 85 2D ED 3C CB 80 CF 7E BF D2 FE D5 C9 38 19
          :       BB 43 34 29 B6 66 CF 2D 8B 46 7E 9A D8 BB 8E 65
          :       88 51 6A A8 FF 78 51 E2 E9 21 27 D7 77 7E 80 28
          :       6C EA 4C 50 9C 73 71 16 F6 5E 54 14 4D 4C 14 B9
          :       67 A0 4A 20 AA DA 0B A0 A0 01 B7 42 24 38 51 8A
          :       78 2F C4 81 E6 81 75 62 DE E3 AF 5D 74 2F 6B 41
          :       FB 79 C3 A8 3A 72 6C 46 F9 A6 03 74 81 01 DF 8C
          :       EB
  477    3:      INTEGER 65537
          :       }
          :      }
          :     }
  482  431:   [3] {
  486  427:    SEQUENCE {
  490   29:     SEQUENCE {
  492    3:      OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
  497   22:      OCTET STRING, encapsulates {
  499   20:       OCTET STRING
          :        91 46 52 A3 BD 51 C1 44 26 01 98 88 9F 5C 45 AB
          :        F0 53 A1 87
          :        }
          :       }
  521   31:     SEQUENCE {
  523    3:      OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29 35)
  528   24:      OCTET STRING, encapsulates {
  530   22:       SEQUENCE {
  532   20:        [0]
          :         3A CE 2C EF 4F B2 1B 7D 11 E3 E1 84 EF C1 E2 97
          :         B3 77 86 42
          :         }
          :        }
          :       }
  554   12:     SEQUENCE {
  556    3:      OBJECT IDENTIFIER basicConstraints (2 5 29 19)
  561    1:      BOOLEAN TRUE
  564    2:      OCTET STRING, encapsulates {
  566    0:       SEQUENCE {}
          :        }
          :       }
  568   14:     SEQUENCE {
  570    3:      OBJECT IDENTIFIER keyUsage (2 5 29 15)
  575    1:      BOOLEAN TRUE
  578    4:      OCTET STRING, encapsulates {
  580    2:       BIT STRING 7 unused bits
          :        '1'B (bit 0)
          :        }
          :       }
  584   24:     SEQUENCE {
  586    3:      OBJECT IDENTIFIER certificatePolicies (2 5 29 32)
  591    1:      BOOLEAN TRUE
  594   14:      OCTET STRING, encapsulates {
  596   12:       SEQUENCE {
  598   10:        SEQUENCE {
  600    8:         OBJECT IDENTIFIER
          :          resourceCertificatePolicy (1 3 6 1 5 5 7 14 2)
          :          }
          :         }
          :        }
          :       }
  610   97:     SEQUENCE {
  612    3:      OBJECT IDENTIFIER cRLDistributionPoints (2 5 29 31)
  617   90:      OCTET STRING, encapsulates {
  619   88:       SEQUENCE {
  621   86:        SEQUENCE {
  623   84:         [0] {
  625   82:          [0] {
  627   80:           [6]
          :          'rsync://rpki.example.net/repository/3ACE2CEF4F'
          :          'B21B7D11E3E184EFC1E297B3778642.crl'
          :            }
          :           }
          :          }
          :         }
          :        }
          :       }
  709  108:     SEQUENCE {
  711    8:      OBJECT IDENTIFIER authorityInfoAccess
          :       (1 3 6 1 5 5 7 1 1)
  721   96:      OCTET STRING, encapsulates {
  723   94:       SEQUENCE {
  725   92:        SEQUENCE {
  727    8:         OBJECT IDENTIFIER caIssuers (1 3 6 1 5 5 7 48 2)
  737   80:         [6]
          :          'rsync://rpki.example.net/repository/3ACE2CEF4F'
          :          'B21B7D11E3E184EFC1E297B3778642.cer'
          :          }
          :         }
          :        }
          :       }
  819   25:     SEQUENCE {
  821    8:      OBJECT IDENTIFIER ipAddrBlocks (1 3 6 1 5 5 7 1 7)
  831    1:      BOOLEAN TRUE
  834   10:      OCTET STRING, encapsulates {
  836    8:       SEQUENCE {
  838    6:        SEQUENCE {
  840    2:         OCTET STRING 00 01
  844    0:         NULL
          :          }
          :         }
          :        }
          :       }
  846   69:     SEQUENCE {
  848    8:      OBJECT IDENTIFIER subjectInfoAccess
          :       (1 3 6 1 5 5 7 1 11)
  858   57:      OCTET STRING, encapsulates {
  860   55:       SEQUENCE {
  862   53:        SEQUENCE {
  864    8:         OBJECT IDENTIFIER '1 3 6 1 5 5 7 48 13'
  874   41:         [6]
          :          'https://rrdp.example.net/notification.xml'
          :          }
          :         }
          :        }
          :       }
          :      }
          :     }
          :    }
  917   13:  SEQUENCE {
  919    9:   OBJECT IDENTIFIER sha256WithRSAEncryption
          :    (1 2 840 113549 1 1 11)
  930    0:   NULL
          :    }
  932  257:  BIT STRING
          :   48 C2 F7 C8 15 A7 43 1B EE E8 8A 68 7C A5 3F 4E
          :   39 DE 6B 49 F8 09 0D D3 B7 EC 2B FA 86 C3 F7 BD
          :   D0 32 6F ED CA 75 86 F8 E3 E2 EC B7 B2 07 FB 3C
          :   94 3B 70 A3 46 AE 0C 9B AB F9 44 D2 37 1E F8 04
          :   60 56 36 E2 D8 1A F3 66 C5 80 9C 1F 38 E9 29 F0
          :   B2 4B 70 E9 C7 A7 6A 27 FA 03 0C 3A AB 4D 0D B2
          :   90 1E A4 C0 5D D9 58 3F F6 C2 85 BC EC 09 15 53
          :   A0 35 CA A2 42 25 CF E6 B1 89 3D 60 5C 38 CB F9
          :   D9 AF FB 69 D8 DF 5F 0A 67 3A 28 E2 4C E8 0C 96
          :   84 06 98 2D 93 3D 9A 72 75 92 A3 97 11 00 4D D1
          :   44 42 CB 1A DF 7C 43 9E 5A 69 FB FA FD C6 E3 55
          :   61 1B 51 70 2D FA A1 6A DA 54 0D E3 CC DE 85 EA
          :   B0 C4 F2 BF 31 B3 7C A5 21 25 73 E8 97 82 43 86
          :   11 63 06 CC B2 38 DC FE D8 89 2C CE D9 63 12 1E
          :   E4 8A D8 CF 56 6D 37 A9 FF 48 4B 2C 24 0B 30 44
          :   88 29 B3 61 21 0A DF C7 4B 6C 40 98 60 8E 86 05
          :   }

To allow reproduction of the signature results, the end-entity private key is provided. For brevity, the other two private keys are not.

 -----BEGIN RSA PRIVATE KEY-----
 MIIEpQIBAAKCAQEAsnE0Kzm/6gdlt4tyovD4QPwxFsootk4BqPaYAsDvZbCESOmW
 /5Pmkollj/ZEnM5XEILTwlcK+toU0GQiKMATdAS9HCtP+ZNYpiXYuanTN57yrMDP
 Ap6EddbwfKUBcK7mZq+caYV0bxPps7iVS4LtldbqZgV7lpaHsprnYellifhg48D1
 zt0YlwXowazhTV4WhS3tPMuAz36/0v7VyTgZu0M0KbZmzy2LRn6a2LuOZYhRaqj/
 eFHi6SEn13d+gChs6kxQnHNxFvZeVBRNTBS5Z6BKIKraC6CgAbdCJDhRingvxIHm
 gXVi3uOvXXQva0H7ecOoOnJsRvmmA3SBAd+M6wIDAQABAoIBAQCyB0FeMuKm8bRo
 18aKjFGSPEoZi53srIz5bvUgIi92TBLez7ZnzL6Iym26oJ+5th+lCHGO/dqlhXio
 pI50C5Yc9TFbblb/ECOsuCuuqKFjZ8CD3GVsHozXKJeMM+/o5YZXQrORj6UnwT0z
 ol/JE5pIGUCIgsXX6tz9s5BP3lUAvVQHsv6+vEVKLxQ3wj/1vIL8O/CN036EV0GJ
 mpkwmygPjfECT9wbWo0yn3jxJb36+M/QjjUP28oNIVn/IKoPZRXnqchEbuuCJ651
 IsaFSqtiThm4WZtvCH/IDq+6/dcMucmTjIRcYwW7fdHfjplllVPve9c/OmpWEQvF
 t3ArWUt5AoGBANs4764yHxo4mctLIE7G7l/tf9bP4KKUiYw4R4ByEocuqMC4yhmt
 MPCfOFLOQet71OWCkjP2L/7EKUe9yx7G5KmxAHY6jOjvcRkvGsl6lWFOsQ8p126M
 Y9hmGzMOjtsdhAiMmOWKzjvm4WqfMgghQe+PnjjSVkgTt+7BxpIuGBAvAoGBANBg
 26FF5cDLpixOd3Za1YXsOgguwCaw3Plvi7vUZRpa/zBMELEtyOebfakkIRWNm07l
 nE+lAZwxm+29PTD0nqCFE91teyzjnQaLO5kkAdJiFuVV3icLOGo399FrnJbKensm
 FGSli+3KxQhCNIJJfgWzq4bE0ioAMjdGbYXzIYQFAoGBAM6tuDJ36KDU+hIS6wu6
 O2TPSfZhF/zPo3pCWQ78/QDb+Zdw4IEiqoBA7F4NPVLg9Y/H8UTx9r/veqe7hPOo
 Ok7NpIzSmKTHkc5XfZ60Zn9OLFoKbaQ40a1kXoJdWEu2YROaUlAe9F6/Rog6PHYz
 vLE5qscRbu0XQhLkN+z7bg5bAoGBAKDsbDEb/dbqbyaAYpmwhH2sdRSkphg7Niwc
 DNm9qWa1J6Zw1+M87I6Q8naRREuU1IAVqqWHVLr/ROBQ6NTJ1Uc5/qFeT2XXUgkf
 taMKv61tuyjZK3sTmznMh0HfzUpWjEhWnCEuB+ZYVdmO52ZGw2A75RdrILL2+9Dc
 PvDXVubRAoGAdqXeSWoLxuzZXzl8rsaKrQsTYaXnOWaZieU1SL5vVe8nK257UDqZ
 E3ng2j5XPTUWli+aNGFEJGRoNtcQvO60O/sFZUhu52sqq9mWVYZNh1TB5aP8X+pV
 iFcZOLUvQEcN6PA+YQK5FU11rAI1M0Gm5RDnVnUl0L2xfCYxb7FzV6Y=
 -----END RSA PRIVATE KEY-----

Signing of "192.0.2.0/24,US,WA,Seattle," (terminated by CR and LF) yields the following detached CMS signature.

 # RPKI Signature: 192.0.2.0 - 192.0.2.255
 # MIIGjwYJKoZIhvcNAQcCoIIGgDCCBnwCAQMxDTALBglghkgBZQMEAgEwDQYLKoZ
 # IhvcNAQkQAS+gggSpMIIEpTCCA42gAwIBAgIUJ605QIPX8rW5m4Zwx3WyuW7hZu
 # QwDQYJKoZIhvcNAQELBQAwMzExMC8GA1UEAxMoM0FDRTJDRUY0RkIyMUI3RDExR
 # TNFMTg0RUZDMUUyOTdCMzc3ODY0MjAeFw0yMTA1MjAxNjA1NDVaFw0yMjAzMTYx
 # NjA1NDVaMDMxMTAvBgNVBAMTKDkxNDY1MkEzQkQ1MUMxNDQyNjAxOTg4ODlGNUM
 # 0NUFCRjA1M0ExODcwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCycT
 # QrOb/qB2W3i3Ki8PhA/DEWyii2TgGo9pgCwO9lsIRI6Zb/k+aSiWWP9kSczlcQg
 # tPCVwr62hTQZCIowBN0BL0cK0/5k1imJdi5qdM3nvKswM8CnoR11vB8pQFwruZm
 # r5xphXRvE+mzuJVLgu2V1upmBXuWloeymudh6WWJ+GDjwPXO3RiXBejBrOFNXha
 # FLe08y4DPfr/S/tXJOBm7QzQptmbPLYtGfprYu45liFFqqP94UeLpISfXd36AKG
 # zqTFCcc3EW9l5UFE1MFLlnoEogqtoLoKABt0IkOFGKeC/EgeaBdWLe469ddC9rQ
 # ft5w6g6cmxG+aYDdIEB34zrAgMBAAGjggGvMIIBqzAdBgNVHQ4EFgQUkUZSo71R
 # wUQmAZiIn1xFq/BToYcwHwYDVR0jBBgwFoAUOs4s70+yG30R4+GE78Hil7N3hkI
 # wDAYDVR0TAQH/BAIwADAOBgNVHQ8BAf8EBAMCB4AwGAYDVR0gAQH/BA4wDDAKBg
 # grBgEFBQcOAjBhBgNVHR8EWjBYMFagVKBShlByc3luYzovL3Jwa2kuZXhhbXBsZ
 # S5uZXQvcmVwb3NpdG9yeS8zQUNFMkNFRjRGQjIxQjdEMTFFM0UxODRFRkMxRTI5
 # N0IzNzc4NjQyLmNybDBsBggrBgEFBQcBAQRgMF4wXAYIKwYBBQUHMAKGUHJzeW5
 # jOi8vcnBraS5leGFtcGxlLm5ldC9yZXBvc2l0b3J5LzNBQ0UyQ0VGNEZCMjFCN0
 # QxMUUzRTE4NEVGQzFFMjk3QjM3Nzg2NDIuY2VyMBkGCCsGAQUFBwEHAQH/BAowC
 # DAGBAIAAQUAMEUGCCsGAQUFBwELBDkwNzA1BggrBgEFBQcwDYYpaHR0cHM6Ly9y
 # cmRwLmV4YW1wbGUubmV0L25vdGlmaWNhdGlvbi54bWwwDQYJKoZIhvcNAQELBQA
 # DggEBAEjC98gVp0Mb7uiKaHylP0453mtJ+AkN07fsK/qGw/e90DJv7cp1hvjj4u
 # y3sgf7PJQ7cKNGrgybq/lE0jce+ARgVjbi2BrzZsWAnB846Snwsktw6cenaif6A
 # ww6q00NspAepMBd2Vg/9sKFvOwJFVOgNcqiQiXP5rGJPWBcOMv52a/7adjfXwpn
 # OijiTOgMloQGmC2TPZpydZKjlxEATdFEQssa33xDnlpp+/r9xuNVYRtRcC36oWr
 # aVA3jzN6F6rDE8r8xs3ylISVz6JeCQ4YRYwbMsjjc/tiJLM7ZYxIe5IrYz1ZtN6
 # n/SEssJAswRIgps2EhCt/HS2xAmGCOhgUxggGqMIIBpgIBA4AUkUZSo71RwUQmA
 # ZiIn1xFq/BToYcwCwYJYIZIAWUDBAIBoGswGgYJKoZIhvcNAQkDMQ0GCyqGSIb3
 # DQEJEAEvMBwGCSqGSIb3DQEJBTEPFw0yMTA1MjAxNjI4MzlaMC8GCSqGSIb3DQE
 # JBDEiBCAr4vKeUvHJINsE0YQwUMxoo48qrOU+iPuFbQR8qX3BFjANBgkqhkiG9w
 # 0BAQEFAASCAQB85HsCBrU3EcVOcf4nC6Z3jrOjT+fVlyTDAObF6GTNWgrxe7jSA
 # Inyf51UzuIGqhVY3sQiiXbdWcVYtPb4118KvyeXh8A/HLp4eeAJntl9D3igt38M
 # o84q5pf9pTQXx3hbsm51ilpOip/TKVMqzE42s6OPox3M0+6eKH3/vBKnw1s1ayM
 # 0MUnPDTBfZL3JJEGPWfIZHEcrypevbqR7Jjsz5vp0qyF2D9v+w+nyhZOPmuePm7
 # YqLyOw/E99PVBs9uI+hmBiCz/BK2Z3VRjrrlrUU+49eldSTkZ2sJyhCbbV2Ufgi
 # S2FOquAgJzjilyN3BDQLV8Rp9cGh0PpVslKH2na
 # End Signature: 192.0.2.0 - 192.0.2.255

Acknowledgments

Thanks to Rob Austein for CMS and detached signature clue, George Michaelson for the first and substantial external review, and Erik Kline who was too shy to agree to coauthorship. Additionally, we express our gratitude to early implementors, including Menno Schepers; Flavio Luciani; Eric Dugas; Job Snijders, who also found an ASN.1 'inherit' issue; and Kevin Pack. Also, thanks to the following geolocation providers who are consuming geofeeds with this described solution: Jonathan Kosgei (ipdata.co), Ben Dowling (ipinfo.io), and Pol Nisenblat (bigdatacloud.com). For an amazing number of helpful reviews, we thank Adrian Farrel, Antonio Prado, Francesca Palombini, Jean-Michel Combes (INTDIR), John Scudder, Kyle Rose (SECDIR), Martin Duke, Murray Kucherawy, Paul Kyzivat (GENART), Rob Wilton, Roman Danyliw, and Ties de Kock.

Authors' Addresses

Randy Bush
IIJ & Arrcus
5147 Crystal Springs
Bainbridge Island, Washington 98110
United States of America
Massimo Candela
NTT
Siriusdreef 70-72
2132 WT Hoofddorp
Netherlands
Warren Kumari
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043
United States of America
Russ Housley
Vigil Security, LLC
516 Dranesville Road
Herndon, VA 20170
United States of America