Network Working Group E. Crabbe, Ed. Internet-Draft Google Intended status: Standards Track L. Yong, Ed. Expires: December 06, 2013 Huawei USA X. Xu, Ed. Huawei Technologies June 04, 2013 Generic UDP Encapsulation for IP Tunneling draft-yong-tsvwg-gre-in-udp-encap-00 Abstract This document describes a method of encapsulating arbitrary protocols within UDP and GRE headers. In this encapsulation, the source UDP port may be used as an entropy field for purposes of load balancing while the payload protocol may be identified by the GRE Protocol Type. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on December 06, 2013. Crabbe, et al. Expires December 06, 2013 [Page 1]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 Copyright Notice Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 3 4. Encapsulation Considerations . . . . . . . . . . . . . . . . 6 5. Backward Compatibility . . . . . . . . . . . . . . . . . . . 7 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 7 7. Security Considerations . . . . . . . . . . . . . . . . . . . 7 7.1. Vulnerability . . . . . . . . . . . . . . . . . . . . . . 7 8. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 7 9. Contributing Authors . . . . . . . . . . . . . . . . . . . . 7 10. References . . . . . . . . . . . . . . . . . . . . . . . . . 8 10.1. Normative References . . . . . . . . . . . . . . . . . . 8 10.2. Informative References . . . . . . . . . . . . . . . . . 9 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 10 1. Introduction Load balancing, or more specifically, statistical multiplexing of traffic using Equal Cost Multi-Path (ECMP) and/or Link Aggregation Groups (LAGs) in IP networks is a widely used technique for creating higher capacity networks out of lower capacity links. Most existing routers in IP networks are already capable of distributing IP traffic flows over ECMP paths and/or LAGs on the basis of a hash function performed on flow invariant fields in IP packet headers and their payload protocol headers. Specifically, when the IP payload is a User Datagram Protocol (UDP)[RFC0768] or Transmission Control Protocol (TCP) packet, router hash functions frequently operate on the five-tuple of the source IP address, the destination IP address, the source port, the destination port, and the protocol/next-header field. Crabbe, et al. Expires December 06, 2013 [Page 2]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 Several tunneling techniques are in common use in IP networks, such as Generic Routing Encapsulation (GRE) [RFC2784], MPLS [RFC4023] and L2TPv3 [RFC3931]. GRE is an increasingly popular encapsulation choice, especially in environments where MPLS is unavailable or unnecessary. Unfortunately, use of common GRE endpoints may reduce the entropy available for use in load balancing, especially in environments where the GRE Key field [RFC2890] is not readily available for use as entropy in forwarding decisions. This document defines a generic GRE in UDP encapsulation for tunneling arbitrary network protocol payloads across an IP network environment where ECMP or LAGs are used. The GRE header provides payload protocol de-multiplexing by way of it's protocol type field [RFC2784] while the UDP header provides additional entropy by way of its source port. This encapsulation method requires no changes to the transit IP network. Hash functions in existing IP routers a GRE in UDP tunnel transits will automatically utilize and benefit from this procedure without needing any change or upgrade. The encapsulation mechanism is applicable to a variety of IP networks including Data Center and Wide Area networks. 2. Terminology The terms defined in [RFC0768] are used in this document. 3. Procedures When a tunnel ingress device conforming to this document receives a packet, the ingress MUST encapsulate the packet in UDP and GRE headers and set the destination port of the UDP header to [TBD] Section 6. The ingress device must also insert the payload protocol type in the GRE Protocol Type field. The ingress device MAY set the UDP source port based on flow invariant fields from the payload header, otherwise it should be set to zero. How a tunnel ingress generates entropy from the payload is outside the scope of this document. The tunnel ingress MUST encode its own IP address as the source IP address and the egress tunnel endpoint IP address. The TTL field in the IP header must be set to a value appropriate for delivery of the encapsulated packet to the tunnel egress endpoint. When the tunnel egress receives a packet, it must remove the outer UDP and GRE headers. Section 5 describes the error handling when this entity is not instantiated at the tunnel egress. To simplify packet processing at the tunnel egress, the UDP checksum and Sequence flags should be set to zero. Although IPv6 [RFC2460] Crabbe, et al. Expires December 06, 2013 [Page 3]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 restricts the processing a packet with the UDP checksum of zero, [I-D.ietf-6man-udpchecksums] and [I-D.ietf-6man-udpzero] relax this constraint to allow the zero UDP checksum. Note that: 1. the IPv6 tunnel ingress and egress SHOULD follow the node requirements specified in Section 4 of [I-D.ietf-6man-udpzero] and the usage requirements specified in Section 5 of [I-D.ietf-6man-udpzero] 2. IPv6 transit nodes SHOULD follow the requirements 9, 10, 11 specified in Section 5 of [I-D.ietf-6man-udpzero]. The GRE Key Present, Sequence Number Present and Checksum Present bits and asscociated fields may all be set in the GRE header per [RFC2784] and [RFC2890] The format of the GRE in UDP encapsulation for both IPv4 and IPv6 outer headersis shown in the following figures: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 IPv4 Header: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| IHL |Type of Service| Total Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification |Flags| Fragment Offset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time to Live |Protcol=17[UDP]| Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source IPv4 Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination IPv4 Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP Header: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Port = XXXX | Dest Port = TBD | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | UDP Length | UDP Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ GRE Header: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |C| |K|S| Reserved0 | Ver | Protocol Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum (optional) | Reserved1 (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Crabbe, et al. Expires December 06, 2013 [Page 4]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 | Key (optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: UDP+GRE IPv4 headers 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 IPv6 Header: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Traffic Class | Flow Label | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Payload Length | NxtHdr=17[UDP]| Hop Limit | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Outer Source IPv6 Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Outer Destination IPv6 Address + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ UDP Header: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Port = XXXX | Dest Port = TBD | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | UDP Length | UDP Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ GRE Header: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |C| |K|S| Reserved0 | Ver | Protocol Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum (optional) | Reserved1 (Optional) | Crabbe, et al. Expires December 06, 2013 [Page 5]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Key (optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sequence Number (Optional) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: UDP+GRE IPv6 headers The total overhead increase for a UDP+GRE tunnel without use of optional GRE fields, representing the lowest total overhead increase, is 32 bytes in the case of IPv4 and 52 bytes in the case of IPv6. The total overhead increase for a UDP+GRE tunnel with use of GRE Key, Sequence and Checksum Fields, representing the highest total overhead increase, is 44 bytes in the case of IPv4 and 64 bytes in the case of IPv6. 4. Encapsulation Considerations GRE in UDP encapsulation allows the tunneled traffic to be unicast, broadcast, or multicast traffic. Entropy may be generated from the header of tunneled unicast or broadcast/multicast packets at a tunnel ingress. The mapping mechanism between the tunneled multicast traffic and the multicast capability in the IP network is transparent and independent to the encapsulation and is outside the scope of this document. If a tunnel ingress must perform fragmentation on a packet before encapsulation, it must use the same source UDP port for all packet fragments. This ensures that the transit routers will forward the packet fragments on the same path. GRE in UDP encapsulation introduces some overhead as mentioned in section 3, which reduces the effective Maximum Transmission Unit (MTU) size. An operator should factor in this addition overhead bytes when considering an MTU size for the payload to reduce the likelihood of fragmentation. To ensure the tunneled traffic gets the same treatment over the IP network, prior to the encapsulation process, a tunnel ingress should process the payload to get the proper parameters to fill into the IP header such as DiffServ [RFC2983]]. Both tunnel ingress and egress should follow the procedures described in [RFC6040] for ECN marking propagation. This process is outside of the scope of this document. Note that the IPv6 header [RFC2460] contains a flow label field that may be used for load balancing information in the IPv6 network [RFC6438]. The next header in IPv6 can be used to provide the payload type. However, applying the UDP encapsulation to both IPv4 Crabbe, et al. Expires December 06, 2013 [Page 6]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 and IPv6 networks provides a unified hardware implementation for load balancing in an IP network. 5. Backward Compatibility It is assumed that tunnel ingress routers must be upgraded in order to support the encapsulations described in this document. No change is required at transit routers to support forwarding of the encapsulation described in this document. If a router that is intended for use as a tunnel egress does not support the GRE in UDP encapsulation described in this document, it will not be listening on destination port [TBD]. In these cases, the router will conform to normal UDP processing and respond to the tunnel ingress with an ICMP message indicating "port unreachable" according to [RFC0792] and [RFC4884]. Upon receiving this ICMP message, the tunnel ingress MUST NOT continue to use GRE in UDP encapsulation toward this tunnel egress without management intervention. 6. IANA Considerations This document requests that IANA allocate an port number from the registry designated Service Name and Transport Protocol Port Number Registry for use in GRE in UDP encapsulation. 7. Security Considerations 7.1. Vulnerability Neither UDP nor GRE encapsulation effect security for the payload protocol. Network Security in a network using GRE in UDP encapsulation is similar to that of a network using GRE. 8. Contributors Authors like to thank Vivek Kumar, Ron Bonica, Joe Touch, Ruediger Geib, and Gorry Fairhurst for their review and valuable input on this draft. 9. Contributing Authors The following people all contributed significantly to this document and are listed below in alphabetical order: John E. Drake Juniper Networks Crabbe, et al. Expires December 06, 2013 [Page 7]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 Email: jdrake@juniper.net Adrian Farrel Juniper Networks Email: adrian@olddog.co.uk Vishwas Manral Hewlett-Packard Corp. 3000 Hanover St, Palo Alto. Email: vishwas.manral@hp.com Carlos Pignataro Cisco Systems 7200-12 Kit Creek Road Research Triangle Park, NC 27709 USA EMail: cpignata@cisco.com Yongbing Fan China Telecom Guangzhou, China. Phone: +86 20 38639121 10. References 10.1. Normative References [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980. [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981. [RFC0792] Postel, J., "Internet Control Message Protocol", STD 5, RFC 792, September 1981. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998. [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, March 2000. [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE", RFC 2890, September 2000. Crabbe, et al. Expires December 06, 2013 [Page 8]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 [RFC2983] Black, D., "Differentiated Services and Tunnels", RFC 2983, October 2000. [RFC3931] Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005. [RFC4023] Worster, T., Rekhter, Y., and E. Rosen, "Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE)", RFC 4023, March 2005. [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, February 2006. [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro, "Extended ICMP to Support Multi-Part Messages", RFC 4884, April 2007. [RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines for Application Designers", BCP 145, RFC 5405, November 2008. [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion Notification", RFC 6040, November 2010. [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S. Cheshire, "Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry", BCP 165, RFC 6335, August 2011. [RFC6438] Carpenter, B. and S. Amante, "Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link Aggregation in Tunnels", RFC 6438, November 2011. [RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and L. Yong, "The Use of Entropy Labels in MPLS Forwarding", RFC 6790, November 2012. 10.2. Informative References [I-D.ietf-6man-udpchecksums] Eubanks, M., Chimento, P., and M. Westerlund, "IPv6 and UDP Checksums for Tunneled Packets", draft-ietf-6man- udpchecksums-08 (work in progress), February 2013. [I-D.ietf-6man-udpzero] Fairhurst, G. and M. Westerlund, "Applicability Statement for the use of IPv6 UDP Datagrams with Zero Checksums", Crabbe, et al. Expires December 06, 2013 [Page 9]
Internet-Draft Generic UDP Encapsulation for IP Tunneling June 2013 draft-ietf-6man-udpzero-12 (work in progress), February 2013. Authors' Addresses Edward Crabbe (editor) Google 1600 Amphitheatre Parkway Mountain View, CA 94043 US Email: edward.crabbe@gmail.com Lucy Yong (editor) Huawei USA 5340 Legacy Drive San Jose, TX 75025 US Email: lucy.yong@huawei.com Xiaohu Xu (editor) Huawei Technologies Beijing China Email: xuxiaohu@huawei.com Crabbe, et al. Expires December 06, 2013 [Page 10]