Network Working Group                                            Q. Zhao
Internet-Draft                                                   E. Chen
Intended status: Standards Track                       Huawei Technology
Expires: May 26, 2012                                  November 23, 2011


 Protection Mechanisms for Label Distribution Protocol P2MP/MP2MP Label
                             Switched Paths
                draft-zhao-mpls-mldp-protections-01.txt

Abstract

   Service providers continue to deploy real-time multicast applications
   using Multicast LDP (mLDP) across MPLS networks.  There is a clear
   need to protect these real-time applications and to provide the
   shortest switching times in the event of failure.  This document
   outlines the requirements, describes the protection mechanisms
   available, and where necessary proposes extensions to facilitate mLDP
   P2MP and MP2MP LSP protection within an MPLS network.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 26, 2012.

Copyright Notice

   Copyright (c) 2011 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must



Zhao & Chen               Expires May 26, 2012                  [Page 1]


Internet-Draft              mLDP Protections               November 2011


   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.


Table of Contents

   1.  Terminology  . . . . . . . . . . . . . . . . . . . . . . . . .  4
   2.  Requirement Language . . . . . . . . . . . . . . . . . . . . .  4
   3.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
     3.1.  Requirements . . . . . . . . . . . . . . . . . . . . . . .  6
     3.2.  Scope  . . . . . . . . . . . . . . . . . . . . . . . . . .  6
   4.  mLDP Local Protection using P2P LSP  . . . . . . . . . . . . .  6
     4.1.  Signaling procedures for P2P Based Local Protection  . . .  8
     4.2.  Protocol Extensions for P2P Based Local Protection . . . .  8
   5.  mLDP Local Protection using P2MP LSP . . . . . . . . . . . . .  9
     5.1.  Signaling Procedures for P2MP Based Local Protection . . . 11
     5.2.  Protocol extensions for P2MP Based Local Protection  . . . 12
   6.  mLDP End-to-End Protection using LDP/mLDP Multiple Topology  . 13
     6.1.  Signaling Procedures for MT Based End-to-end Protection  . 16
     6.2.  Protocol extensions for MT Based End-to-end Protection . . 16
   7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 16
   8.  Manageability Considerations . . . . . . . . . . . . . . . . . 16
     8.1.  Control of Function and Policy . . . . . . . . . . . . . . 16
     8.2.  Information and Data Models  . . . . . . . . . . . . . . . 16
     8.3.  Liveness Detection and Monitoring  . . . . . . . . . . . . 16
     8.4.  Verifying Correct Operation  . . . . . . . . . . . . . . . 16
     8.5.  Requirements on Other Protocols and Functional
           Component  . . . . . . . . . . . . . . . . . . . . . . . . 16
     8.6.  Impact on Network Operation  . . . . . . . . . . . . . . . 16
     8.7.  Policy Control . . . . . . . . . . . . . . . . . . . . . . 16
   9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 17
   10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 17
   11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 17
     11.1. Normative References . . . . . . . . . . . . . . . . . . . 17
     11.2. Informative References . . . . . . . . . . . . . . . . . . 18



Zhao & Chen               Expires May 26, 2012                  [Page 2]


Internet-Draft              mLDP Protections               November 2011


   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 18


















































Zhao & Chen               Expires May 26, 2012                  [Page 3]


Internet-Draft              mLDP Protections               November 2011


1.  Terminology

   For a clear narrative, this section gives a general conceptional
   overview of the terms.

   o  PLR: The node where the traffic is logically redirected onto the
      preset backup path is called Point of Local Repair.

   o  MP: The node where the backup path merges with the primary path is
      called Merge Point.

   o  FD: The node that detects the failure on primary path, and then
      triggers the action(s) for traffic protection is called Failure
      Detector.  Either traffic sender or receiver can be the FD,
      depending on which protection mode are deployed.  More details are
      described in later sections of this document.

   o  SP: The node where the traffic is physically switched/duplicated
      onto the backup path is called Switchover Point.  In multicast
      cases, PLR and SP can be two different nodes.  More details are
      described in later sections of this document.


2.  Requirement Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].


3.  Introduction

   In order to meet user demands, operators and service providers
   continue to deploy multicast applications using mLDP across MPLS
   networks.  In certain scenarios, traditional IGP-mLDP convergence
   mechanisms fail to meet protection switching times required to
   minimise, or negate entirely, application interruptions for real-time
   applications, including stock trading, on-line games, and multimedia
   teleconferencing.

   Current best practice for protecting services, and higher
   applications includes the pre-computation and establishment of a
   backup path, this can decrease the convergence time efficiently.
   Once a failure has been detected on the primary path, the traffic
   should be transmitted across the back-up path.

   However, two major challenges exist with the aforementioned solution.
   The first is how to build an absolutely disjointed backup path for



Zhao & Chen               Expires May 26, 2012                  [Page 4]


Internet-Draft              mLDP Protections               November 2011


   each node in a multicast tree; the second is how to balance between
   convergence time and resource consumption.

   This document provides several ways to setup the backup path for mLDP
   LSP, including P2P tunnel based mLDP local protection, P2MP LSP based
   mLDP local protection, and end-to-end protection.  The goal is to
   build a reliable umbrella to against traffic black hole.  Note that
   the buackup path computation is out of the scope of this draft, the
   algorothm can be either LFA or any other algorithms available
   including the offline tools.  Besides, how to detect failure is also
   outside the scope of this document.

   More and more users are apt to deploy multicast applications on MPLS
   mLDP network.  In some scenarios, traditional IGP-mLDP convergence is
   hard to meet the requirements of those real-time applications, such
   as stock business, on-line game, and multimedia teleconference.

   The industry has reached a consensus that setting up a backup path
   previously can decrease the convergence time efficiently.  No matter
   how the above-mentioned backup path was established, once the failure
   is detected, the traffic should be transmitted at that path as soon
   as possible.  Even so, there are still two major challenges left for
   us, one is how to build an absolutely disjointed backup path for each
   node in a multicast tree; the other is how to balance between
   convergence time and resource consumption.

   It is getting urgent to find the ideal protection mechanism(s) to
   improve the convergence time, and at the meantime minimize the side-
   effects, such as bandwidth wastage.

   For a primary LDP P2MP/MP2MP LSP, there are several ways to set up
   its backup path.  It can use RSVP-TE P2P tunnel as a logical out-
   going interface, consequently utilize the mature high availability
   technologies of RSVP-TE.  Or, it can make use of LDP P2P backup LSP
   as a packet encapsulation, so that the complex configuration of P2P
   RSVP-TE can be skipped.  Or, it can build its own P2MP/MP2MP backup
   LSP according to IGP's loop-free alternative route, thus avoid
   unnecessary packet duplication.  Other than these, it can also build
   a totally disjointed LSP in another topology, accordingly take
   advantage of the real end-to-end protection.

   When the backup path is present, there are two options for packet
   forwarding and switchover.  If the traffic sender feeds the stream on
   both paths, and the traffic receiver drops packet on backup path, the
   switchover will be very quick once the failure is detected, because
   the whole switchover action is a local behavior on traffic receiver.
   The disadvantage of this manner is that traffic will be duplicated on
   both paths, and consume double bandwidth.  Contrastively, if the



Zhao & Chen               Expires May 26, 2012                  [Page 5]


Internet-Draft              mLDP Protections               November 2011


   traffic sender feeds stream only on the primary path, the resource
   wastage can be waived.  Cooperation is needed in this manner, so
   there will be some protocol extensions.  But if the performance can
   be equal or better than the previous option, it is reasonable to
   choose the second one.

   This document describes several methods to setup and switch paths for
   options to setup the backup LDP P2MP/MP2MP LSP. mLDP LSPs, including
   local protection, territorial protection, and end-to-end protection.
   The goal is to identify strengths, weaknesses and gaps, in order to
   build a reliable set of tools to shield against traffic black holes
   that would severely impact real-time applications, in the event of
   primary path failure.

3.1.  Requirements

   A number of requirements have been identified that allow the optimal
   set of mechanisms to developed.  These currently include:

   o  Computation of a disjointed (link and node) backup path within the
      multicast tree;

   o  Minimisation of protection convergence time;

   o  Optimisation of bandwidth usage.

3.2.  Scope

   The method to detect failure is outside the scope of this document.
   Also this document does not provide any authorization mechanism for
   controlling the set of LSRs that may attempt to join a mLDP
   protection session.


4.  mLDP Local Protection using P2P LSP

   By encapsulating mLDP packets within an P2P TE tunnel or P2P LDP
   backup LSP, the LDP P2MP/MP2MP LSP can be protected by the P2P
   protection mechanisms.  However, this protection mechanism is not
   capable of detecting, and recovering, if the failure occurs on the
   destination node of the P2P backup LSP.  Thus, this section provides
   a unified method to protect both node and link with P2P backup LSP.









Zhao & Chen               Expires May 26, 2012                  [Page 6]


Internet-Draft              mLDP Protections               November 2011


                             +------------+ Point of Local Repair/
                             |     R1     | Switchover Point
                             +------------+ (Upstream LSR)
                                /       \
                               /         \
                            10/           \20
                             /             \
                            /               \
                           /                 \
                     +----------+        +-----------+
                     |    R2    |        |     R3    |
                     +----------+        +-----------+
                       |       \                  |
                       |        \                 |
                       |         \                |
                     10|        10\             20|
                       |           \              |
                       |            \             |
                       |             \            |
                       |              \           |
                       |               \          |
                       |                \         |
                     +-----------+  10  +-----------+ Merge Point
                     |    R4     |------|    R5     | (Downstream LSR)
                     +-----------+      +-----------+


                    mLDP Local Protection using P2P LSP

                                 Figure 1

   In Figure 1 (P2P Based mLDP Local Protection Example) above, the
   preferential path from R1 to R4/R5 is through R2, and the secondary
   path is through R3.  In this case, the mLDP LSP will be established
   according to the IGP preferential path as R1--R2--R4/R5.

   It is the responsibility of R2 to inform R1 of its downstream LSRs
   (in this example R4 and R5) and the respective labels (L4 and L5).
   Once the link between R1 and R2 fails, or R2 node fails, R1 will
   duplicate the traffic to R4 and R5, with inner label as L4/L5, and
   outer label as the P2P backup LSP R1--R3--R5--R4 and R1--R3--R5.

   Finally, the previous forwarding states will be removed after R4 and
   R5 finish their Make-Before-Break (MBB) procedure.

   Note that the mLDP Local Protection mechanism can be used in any part
   of the mLDP LSP other then the ingress and egress nodes.  In other
   words, R1 can be either Ingress or Transit node, R4/R5 can be either



Zhao & Chen               Expires May 26, 2012                  [Page 7]


Internet-Draft              mLDP Protections               November 2011


   Transit or Egress node.  Only R1 and R2 need enhancement for this
   mechanism, other nodes can just follow the existing mature protocol
   procedures.

4.1.  Signaling procedures for P2P Based Local Protection

   Continuing to use Figure 1 (mLDP Local Protection Example), R2 sends
   a notification message to R1 to inform the node that R2 has two
   downstream nodes, R4 and R5 with forwarding labels L4 and L5
   respectively.

   When R1 sees R2 node going down, it takes mLDP packets as it would
   send them to R4 and R5 through R2 and sends them into the two P2P
   backup tunnels:

   o  P2P tunnel R1--R3--R5--R4, using inner label L4.

   o  P2P tunnel R1--R3--R5, using inner label L5.

   So that R4/R5 will receive same packets as from the interface between
   R2 and R4/R5, just from different interface.

4.2.  Protocol Extensions for P2P Based Local Protection

   A new type of LDP MP Status Value Element is introduced, for
   notifying downstream LSRs and respective labels.  It is encoded as
   follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |mLDP P2P Type=2|      Length                   |  Status Code  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                   Downstream Element 1                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       ~                                                               ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                   Downstream Element N                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Status Code:  1 = Advertise the existing downstream LSRs
                       2 = Withdraw the deleted downstream LSRs


     Encapsulation Status Code of mLDP Local Protection using P2P LSP

                                 Figure 2



Zhao & Chen               Expires May 26, 2012                  [Page 8]


Internet-Draft              mLDP Protections               November 2011


   The Downstream Element is encoded as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                   Downstream Label    |                       |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                   Downstream Node Address                     |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


         Downstream Element in mLDP P2P Encapsulation Status Code

                                 Figure 3


5.  mLDP Local Protection using P2MP LSP

   Making use of IGP-FRR results, LDP can build the backup mLDP LSP
   among PLR, the protected node, and MPs (the downstream nodes of the
   protected node).  In the cases where the amount of downstream nodes
   are huge, this mechanism can avoid unnecessary packet duplication on
   PLR, so that protect the network from traffic congestion risk.




























Zhao & Chen               Expires May 26, 2012                  [Page 9]


Internet-Draft              mLDP Protections               November 2011


                               +------------+ Point of Local Repair/
                               |     R1     | Switchover Point
                               +------------+ (Upstream LSR)
                                  /       \
                                 /         \
                              10/           \20
                               /             \
                              /               \
                             /                 \
                       +----------+        +-----------+
        Protected Node |    R2    |        |     R3    |
                       +----------+        +-----------+
                         |       \         /        |
                         |        \       /         |
                         |         \     /          |
                       10|        10\   /20       20|
                         |           \ /            |
                         |            \             |
                         |           / \            |
                         |          /   \           |
                         |         /     \          |
                         |        /       \         |
                       +-----------+      +-----------+ Merge Point
                       |    R4     |      |    R5     | (Downstream LSR)
                       +-----------+      +-----------+



               mLDP Local Protection using P2MP LSP Example

                                 Figure 4

   In Figure 4 (P2MP Based mLDP Local Protection Example), the
   preferential path from R1 to R4/R5 is through R2, and the secondary
   path is through R3.  In this case, the mLDP LSP will be established
   according to the IGP preferential path as R1--R2--R4/R5.  This
   section will take the Protected Node as R2 for example, actually the
   Protected Node can be any Transit node of the mLDP LSP.

   As the Protected Node, R2 will announce its selected upstream node R1
   to all its downstream nodes, which are R4 and R5 in this example.  So
   that R4 and R5 can consider R1 as the root node of the backup mLDP
   LSP, and trigger the backup LSP signaling.  At the mean time, R4/R5
   will bind the backup ILM entry to the primary NHLFE(s), so that the
   traffic receiving from backup mLDP LSP can be merged locally to the
   primary LSP.

   The primary LSP and backup LSP are differentiated by the signaling



Zhao & Chen               Expires May 26, 2012                 [Page 10]


Internet-Draft              mLDP Protections               November 2011


   procedure, so normally PLR can only feed traffic only on the primary
   path.  When the link between R1 and R2 fails, or R2 node fails, R1
   will switch the traffic to the preset backup path quickly.

   In this scenario, if R2 is protected by two P2P LSPs as R1--R3--R4
   and R1--R3--R5, the traffic will be duplicated on R1, and R3 will
   receive two streams.  If R2 is protected by mLDP LSP instead, R3 will
   only receive one stream, and the packet duplication will be done on
   R3.

5.1.   Signaling Procedures for P2MP Based Local Protection

   When the Protected Node (R2) determines its upstream LSR (R1), it
   will notify to all its downstream nodes immediately.  If there are
   other LSR(s) becoming its downstream node(s) later, it will do the
   announcement for the new downstream node(s).

   When the Merge Point (R4/R5) receive the notification, they
   individually determine the primary and secondary paths according to
   the IGP-FRR results.  Then they will send out label mapping messages
   including an LDP MP Status TLV that carries a FRR Status Code to
   indicate the primary path and secondary path.  The backup path is
   uniquely identified by root address, opaque value, PLR Node address,
   and Protected Node address.

   When the transit nodes of the secondary LSP receive the FRR label
   mapping message, they can easily consider it as a new mLDP LSP
   establishment, and follow the existing protocol procedures.  The only
   modification for these nodes is dealing with the FRR FEC, which is
   identified by root address, opaque value, PLR address, and Protected
   Node address.

   When the Point of Local Repair (R1) receive the FRR label mapping
   message, it will generate the backup forwarding entry for the
   specific LSP, which is identified by the root address and opaque
   value in the message, and bind and backup forwarding state to the
   specific primary entry, which is indicated by the Protected Node
   address in the message.  Note that there might be more than one
   backup forwarding entries for a specific protected node.

   To avoid the backup LSP going through the Protected Node, additional
   path selection rule(s) can be applied, such as not-via policy.  This
   part is under study, and will be added in the future.

   When failure is detected by PLR, it will switch the traffic to the
   secondary path.  At the mean time, MP will locally merge the traffic
   back to the primary LSP.




Zhao & Chen               Expires May 26, 2012                 [Page 11]


Internet-Draft              mLDP Protections               November 2011


   When Merge Point(s) see the next hop to Root changed, it/they will
   advertise the new mapping, and the traffic will re-converge to the
   new primary path.

5.2.  Protocol extensions for P2MP Based Local Protection

   A new type of LDP MP Status Value Element is introduced, for
   notifying upstream LSR.  It is encoded as follows:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |mLDP FRR Type=3|      Length                   |   Reserved    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                    PLR Node Address                           ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               P2MP Based mLDP Local Protection Status Code1

                                 Figure 5

   Besides, another new type of LDP MP Status Value Element is
   introduced, for setting up secondary mLDP LSP.  It is encoded as
   follows:

         0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |mLDP FRR Type=4|      Length                   | Status code   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                    PLR Node Address                           ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       ~                 Protected Node Address                        ~
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               P2MP Based mLDP Local Protection Status Code2

                                 Figure 6













Zhao & Chen               Expires May 26, 2012                 [Page 12]


Internet-Draft              mLDP Protections               November 2011


   mLDP FRR Type:  Type 4 (to be assigned by IANA)

   Length:  If the Address Family is IPv4, the Address Length MUST be 4;
   if the Address Family is IPv6, the Address Length MUST be 16.

   Status code:  1 = Primary path for traffic forwarding
                 2 = Secondary path for traffic forwarding

   PLR Node Address:  The host address of the PLR Node.

   Protected Node Address:  The host address of the Protected Node.


          P2MP Based mLDP Local Protection Status Code Parameters

                                 Figure 7


6.  mLDP End-to-End Protection using LDP/mLDP Multiple Topology

   [I-D.ietf-mpls-ldp-multi-topology] also provides the mechanism to
   setup disjointed LSPs within different topologies.  So that
   applications can use these redundant LSPs for end-to-end protection.




























Zhao & Chen               Expires May 26, 2012                 [Page 13]


Internet-Draft              mLDP Protections               November 2011


                             +------------+ Point of Local Repair/
                             |    Root    | Switchover Point
                             +------------+
                                /       *
                               /         *
                              /           *
                             /             *
                            /               *
                           /                 *
                   +----------+            +-----------+
                   |    R1    |            |     R2    |
                   +----------+            +-----------+
                       |   \                   *  *
                       |    \                 *   *
                       |     \               *    *
                       |      \             *     *
                       |       - - - * * * *      *
                       |           *  \           *
                       |          *    \          *
                       |         *      \         *
                       |        *        \        *
                       |       *          \       *
                     +-----------+      +-----------+
                     |  Leaf 1   |      |  Leaf 2   |
                     +-----------+      +-----------+


                    mLDP End-to-end Protection Example

                                 Figure 8

   In Figure 8 (mLDP End-to-end Protection Example), there are two
   separated topologies from Root node to Leaf 1 and Leaf 2.  For the
   same root address and opaque value, the Leaf node can trigger mLDP
   LSPs in each topology.  Root node can setup 1:1 or 1+1 end-to-end
   protection, using these two mLDP LSPs.















Zhao & Chen               Expires May 26, 2012                 [Page 14]


Internet-Draft              mLDP Protections               November 2011


                          +------------+ Point of Local Repair/
                          |    Root    | Switchover Point
                          +------------+
                                |
                                |
                          +------------+
                          |    R1      | the upstream node shared by R2 and R3
                          +------------+
                             /       *
                            /         *
                           /           *
                          /             *
                         /               *
                        /                 *
                +----------+            +-----------+
                |    R2    |            |     R3    |
                +----------+            +-----------+
                    |   \                   *  *
                    |    \                 *   *
                    |     \               *    *
                    |      \             *     *
                    |       - - - * * * *      *
                    |           *  \           *
                    |          *    \          *
                    |         *      \         *
                    |        *        \        *
                    |       *          \       *
                  +-----------+      +-----------+
                  |  Leaf 1   |      |  Leaf 2   |
                  +-----------+      +-----------+


           mLDP End-to-end Protection with Shared Upstream Node

                                 Figure 9

   In Figure 9 (mLDP End-to-end Protection with Shared Upstream Node
   Example), there are two separated topologies from Root node to Leaf 1
   and Leaf 2 except the link between R1 and Root node.  For the same
   root address and opaque value, the Leaf node can trigger mLDP LSPs in
   each topology.  Root node can setup 1:1 or 1+1 end-to-end protection,
   using these two mLDP LSPs.  The differece in this example comparing
   to the last example where the priamry and backup topology are
   totatlly disjoint, if there is a link failure between the Root and R1
   or node R1 fails, there is no protection available.






Zhao & Chen               Expires May 26, 2012                 [Page 15]


Internet-Draft              mLDP Protections               November 2011


6.1.  Signaling Procedures for MT Based End-to-end Protection

   Using the signaling procedure provied by [I-D.ietf-mpls-ldp-multi-
   topology], Leaf 1 and Leaf 2 are able to trigger mLDP LSPs in
   different topologies, sending label mapping messages with same root
   address, same opaque value, different MT-ID and different label.
   When the Root node receives the label mapping messages from different
   topologies, it will set up two mLDP LSPs for application as end-to-
   end protection.  Failure detection for the primary mLDP LSP is
   outside the scope of this document.  Either Root node or Leaf node
   can be the Failure Detector.

6.2.  Protocol extensions for MT Based End-to-end Protection

   The protocol extensions required to build mLDP LSPs in different
   topologies are defined in [I-D.ietf-mpls-ldp-multi-topology].


7.  IANA Considerations

   This memo includes the following requests to IANA:

   o  mLDP P2P Encapsulation type for LDP MP Status Value Element.

   o  mLDP FRR types for LDP MP Status Value Element.


8.  Manageability Considerations

   [Editors Note - This section requires further discussion]

8.1.  Control of Function and Policy

8.2.  Information and Data Models

8.3.  Liveness Detection and Monitoring

8.4.  Verifying Correct Operation

8.5.  Requirements on Other Protocols and Functional Component

8.6.  Impact on Network Operation

8.7.  Policy Control







Zhao & Chen               Expires May 26, 2012                 [Page 16]


Internet-Draft              mLDP Protections               November 2011


9.  Security Considerations

   The same security considerations apply as for the base LDP
   specification, as described in [RFC5036].  The protocol extensions
   specified in this document do not provide any authorization mechanism
   for controlling the set of LSRs that may attempt to join a mLDP
   protection session.  If such authorization is desirable, additional
   mechanisms, outside the scope of this document, are needed.

   Note that authorization policies should be implemented and/or
   configure at all the nodes involved .


10.  Acknowledgements

   We would like to thank authors of draft-ietf-mpls-mp-ldp-reqs and the
   authors of draft-ietf-mpls-ldp-multi-topology from which some text of
   this document has been inspired.  We also would like to thank Robin
   Li, Tao Zhou and Lujun Wan for their comments and suggestions to the
   draft.


11.  References

11.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
              Label Switching Architecture", RFC 3031, January 2001.

   [RFC5036]  Andersson, L., Minei, I., and B. Thomas, "LDP
              Specification", RFC 5036, October 2007.

   [RFC5561]  Thomas, B., Raza, K., Aggarwal, S., Aggarwal, R., and JL.
              Le Roux, "LDP Capabilities", RFC 5561, July 2009.

   [RFC6348]  Le Roux, JL. and T. Morin, "Requirements for Point-to-
              Multipoint Extensions to the Label Distribution Protocol",
              RFC 6348, September 2011.

   [RFC6388]  Wijnands, IJ., Minei, I., Kompella, K., and B. Thomas,
              "Label Distribution Protocol Extensions for Point-to-
              Multipoint and Multipoint-to-Multipoint Label Switched
              Paths", RFC 6388, November 2011.

   [I-D.ietf-mpls-ldp-multi-topology]



Zhao & Chen               Expires May 26, 2012                 [Page 17]


Internet-Draft              mLDP Protections               November 2011


              Zhao, Q., Fang, L., Zhou, C., Li, L., So, N., and R.
              Torvi, "LDP Extensions for Multi Topology Routing",
              draft-ietf-mpls-ldp-multi-topology-02 (work in progress),
              November 2011.

11.2.  Informative References

   [RFC3468]  Andersson, L. and G. Swallow, "The Multiprotocol Label
              Switching (MPLS) Working Group decision on MPLS signaling
              protocols", RFC 3468, February 2003.


Authors' Addresses

   Quintin Zhao
   Huawei Technology
   125 Nagog Technology Park
   Acton, MA  01719
   US

   Email: quintin.zhao@huawei.com


   Emily Chen
   Huawei Technology
   2330 Central Expressway
   Santa Clara, CA  95050
   US

   Email: emily.chenying@huawei.com





















Zhao & Chen               Expires May 26, 2012                 [Page 18]