CCAMP Working Group H. Zheng
Internet-Draft A. Guo
Intended status: Standards Track I. Busi
Expires: January 3, 2019 Huawei Technologies
Y. Xu
CAICT
Y. Zhao
China Mobile
X. Liu
Volta Networks
G. Fioccola
Telecom Italia
July 2, 2018
A YANG Data Model for Transport Network Client Signals
draft-zheng-ccamp-client-signal-yang-00
Abstract
A transport network is a server-layer network to provide connectivity
services to its client. The topology and tunnel information in the
transport layer has already been defined by Traffic-engineered models
and OTN models, however, the access to the network has not been
described. These information is useful to both client and provider.
This draft describe how the client signals are carried over transport
network and defined corresponding YANG data model which is required
during configuration procedure. More specifically, several client
signal (of transport network) models including ETH, STM-n, FC and so
on, are defined in this draft.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 3, 2019.
Zheng, et al. Expires January 3, 2019 [Page 1]
Internet-Draft Transport Client Signals YANG Model July 2018
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminology and Notations . . . . . . . . . . . . . . . . . . 3
3. Transport Network Client Signal Overview . . . . . . . . . . 4
4. YANG Model for Transport Network Client Signal . . . . . . . 4
4.1. YANG Tree for Ethernet Service . . . . . . . . . . . . . 4
4.2. YANG Tree for other Transport Network Client Signal Model 7
5. YANG Code for Transport Network Client Signal . . . . . . . . 7
5.1. The ETH Service YANG Code . . . . . . . . . . . . . . . . 7
5.2. YANG Code for ETH transport type . . . . . . . . . . . . 19
5.3. Other Transport Network client signal YANG Code . . . . . 26
6. Considerations and Open Issue . . . . . . . . . . . . . . . . 30
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 30
8. Manageability Considerations . . . . . . . . . . . . . . . . 30
9. Security Considerations . . . . . . . . . . . . . . . . . . . 30
10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 31
11. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 31
12. References . . . . . . . . . . . . . . . . . . . . . . . . . 31
12.1. Normative References . . . . . . . . . . . . . . . . . . 31
12.2. Informative References . . . . . . . . . . . . . . . . . 32
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 33
1. Introduction
A transport network is a server-layer network designed to provide
connectivity services for a client-layer network to carry the client
traffic transparently across the server-layer network resources.
Currently there has been topology and tunnel model defined for
transport network, such as [I-D.ietf-ccamp-otn-topo-yang] and
[I-D.ietf-ccamp-otn-tunnel-model], which has described the network
model between PEs. However, there is a missing piece for the mapping
Zheng, et al. Expires January 3, 2019 [Page 2]
Internet-Draft Transport Client Signals YANG Model July 2018
between the PE and the CE, which is expected to be solved in this
document.
This document defines a data model of all transport network client
signals, using YANG language defined in [RFC7950]. The model can be
used by applications exposing to a transport controller via a REST
interface. Furthermore, it can be used by an application for the
following purposes (but not limited to):
o To request/update an end-to-end service by driving a new tunnel to
be set up to support this service;
o To request/update an end-to-end service by using an existing
tunnel;
o To receive notification with regard to the information change of
the given service;
The YANG model defined in this document is independent of control
plane protocols and captures topology related information.
Furthermore, it is not a stand-alone model, but augmenting from the
TE topology YANG model defined in [I-D.ietf-teas-yang-te-topo].
2. Terminology and Notations
A simplified graphical representation of the data model is used in
this document. The meaning of the symbols in the YANG data tree
presented later in this document is defined in
[I-D.ietf-netmod-yang-tree-diagrams]. They are provided below for
reference.
o Brackets "[" and "]" enclose list keys.
o Abbreviations before data node names: "rw" means configuration
(read-write) and "ro" state data (read-only).
o Symbols after data node names: "?" means an optional node, "!"
means a presence container, and "*" denotes a list and leaf-list.
o Parentheses enclose choice and case nodes, and case nodes are also
marked with a colon (":").
o Ellipsis ("...") stands for contents of subtrees that are not
shown.
Zheng, et al. Expires January 3, 2019 [Page 3]
Internet-Draft Transport Client Signals YANG Model July 2018
3. Transport Network Client Signal Overview
The transport network is usually a server-layer network designed to
provide connectivity services for a client-layer network to carry the
client traffic opaquely across the server-layer network resources. A
transport network may be constructed from equipments utilizing any of
a number of different transport technologies such as the evolving
optical transport infrastructure (SONET/SDH and OTN) or packet
transport as epitomized by the MPLS Transport Profile (MPLS-TP).
In the example of OTN as the transport network, a full list of G-PID
was summarized in [RFC7139], which can be divided into a few
categories. The G-PID signals can be categorized into transparent
and non-transparent. Examples of transparent signals may include
Ethernet, ODU, STM-n and so on. In this approach the OTN devices do
not is not aware of the client signal type, and this information is
only necessary among the controllers. Once OTN tunnel is set up,
there is no switching requested on the client layer, and therefore
only signal mapping is needed, without a client tunnel set up. The
other category would be non-transparent, such as Carrier Ethernet and
MPLS-TP, with a switching request on the client layer. Once the OTN
tunnel is set up, a corresponding tunnel in the client layer has to
be set up to carry services. The models in this draft are applicable
for both of the two above categories.
It is also worth noting that some client signal can be carried over
multiple types of transport networks. For example, the Ethernet
services can be carried over either OTN or Ethernet TE tunnels (over
optical or microwave networks). The model specified in this document
allows the support from networks with different technologies.
4. YANG Model for Transport Network Client Signal
4.1. YANG Tree for Ethernet Service
module: ietf-eth-tran-service
+--rw etht-svc
+--rw globals
| +--rw etht-svc-bandwidth-profiles* [bandwidth-profile-name]
| +--rw bandwidth-profile-name string
| +--rw bandwidth-profile-type? etht-types:bandwidth-profile-type
| +--rw CIR? uint64
| +--rw CBS? uint64
| +--rw EIR? uint64
| +--rw EBS? uint64
| +--rw color-aware? boolean
| +--rw coupling-flag? boolean
Zheng, et al. Expires January 3, 2019 [Page 4]
Internet-Draft Transport Client Signals YANG Model July 2018
+--rw etht-svc-instances* [etht-svc-name]
+--rw etht-svc-name string
+--rw etht-svc-descr? string
+--rw etht-svc-type? etht-types:service-type
+--rw access-provider-id? te-types:te-global-id
+--rw access-client-id? te-types:te-global-id
+--rw access-topology-id? te-types:te-topology-id
+--rw etht-svc-access-ports* [access-port-id]
| +--rw access-port-id uint16
| +--rw access-node-id? te-types:te-node-id
| +--rw access-ltp-id? te-types:te-tp-id
| +--rw service-classification-type? identityref
| +--rw (service-classification)?
| | +--:(port-classification)
| | +--:(vlan-classification)
| | +--rw outer-tag!
| | | +--rw tag-type? etht-types:eth-tag-classify
| | | +--rw (individual-bundling-vlan)?
| | | +--:(individual-vlan)
| | | | +--rw vlan-value? etht-types:vlanid
| | | +--:(vlan-bundling)
| | | +--rw vlan-range? etht-types:vid-range-type
| | +--rw second-tag!
| | +--rw tag-type? etht-types:eth-tag-classify
| | +--rw (individual-bundling-vlan)?
| | +--:(individual-vlan)
| | | +--rw vlan-value? etht-types:vlanid
| | +--:(vlan-bundling)
| | +--rw vlan-range? etht-types:vid-range-type
| +--rw split-horizon-group? string
| +--rw (direction)?
| | +--:(symmetrical)
| | | +--rw ingress-egress-bandwidth-profile-name? string
| | +--:(asymmetrical)
| | +--rw ingress-bandwidth-profile-name? string
| | +--rw egress-bandwidth-profile-name? string
| +--rw vlan-operations
| +--rw (direction)?
| +--:(symmetrical)
| | +--rw symmetrical-operation
| | +--rw pop-tags? uint8
| | +--rw push-tags
| | +--rw outer-tag!
| | | +--rw tag-type? etht-types:eth-tag-type
| | | +--rw vlan-value? etht-types:vlanid
| | +--rw second-tag!
| | +--rw tag-type? etht-types:eth-tag-type
| | +--rw vlan-value? etht-types:vlanid
Zheng, et al. Expires January 3, 2019 [Page 5]
Internet-Draft Transport Client Signals YANG Model July 2018
| +--:(asymmetrical)
| +--rw asymmetrical-operation
| +--rw ingress
| | +--rw pop-tags? uint8
| | +--rw push-tags
| | +--rw outer-tag!
| | | +--rw tag-type? etht-types:eth-tag-type
| | | +--rw vlan-value? etht-types:vlanid
| | +--rw second-tag!
| | +--rw tag-type? etht-types:eth-tag-type
| | +--rw vlan-value? etht-types:vlanid
| +--rw egress
| +--rw pop-tags? uint8
| +--rw push-tags
| +--rw outer-tag!
| | +--rw tag-type? etht-types:eth-tag-type
| | +--rw vlan-value? etht-types:vlanid
| +--rw second-tag!
| +--rw tag-type? etht-types:eth-tag-type
| +--rw vlan-value? etht-types:vlanid
+--rw etht-svc-tunnels* [tunnel-name]
| +--rw tunnel-name string
| +--rw (svc-multiplexing-tag)?
| | +--:(other)
| | +--:(none)
| | +--:(vlan-tag)
| | +--:(pw)
| +--rw src-split-horizon-group? string
| +--rw dst-split-horizon-group? string
+--rw pm-config
| +--rw pm-enable? boolean
| +--rw sending-rate-high? uint64
| +--rw sending-rate-low? uint64
| +--rw receiving-rate-high? uint64
| +--rw receiving-rate-low? uint64
+--rw admin-status? identityref
+--ro state
+--ro operational-state? identityref
+--ro provisioning-state? identityref
+--ro creation-time? yang:date-and-time
+--ro last-updated-time? yang:date-and-time
+--ro sending-rate-too-high? uint32
+--ro sending-rate-too-low? uint32
+--ro receiving-rate-too-high? uint32
+--ro receiving-rate-too-low? uint32
Zheng, et al. Expires January 3, 2019 [Page 6]
Internet-Draft Transport Client Signals YANG Model July 2018
4.2. YANG Tree for other Transport Network Client Signal Model
module: ietf-trans-client-service
+--rw client-svc
+--rw client-svc-instances* [client-svc-name]
+--rw client-svc-name string
+--rw client-svc-descr? string
+--rw access-provider-id? te-types:te-global-id
+--rw access-client-id? te-types:te-global-id
+--rw access-topology-id? te-types:te-topology-id
+--rw admin-status? identityref
+--rw src-access-ports
| +--rw access-node-id? te-types:te-node-id
| +--rw access-ltp-id? te-types:te-tp-id
| +--rw client-signal? identityref
+--rw dst-access-ports
| +--rw access-node-id? te-types:te-node-id
| +--rw access-ltp-id? te-types:te-tp-id
| +--rw client-signal? identityref
+--rw svc-tunnels* [tunnel-name]
| +--rw tunnel-name string
+--ro operational-state? identityref
+--ro provisioning-state? identityref
5. YANG Code for Transport Network Client Signal
5.1. The ETH Service YANG Code
<CODE BEGINS> file "ietf-eth-tran-service@2018-03-01.yang"
module ietf-eth-tran-service {
namespace "urn:ietf:params:xml:ns:yang:ietf-eth-tran-service";
prefix "ethtsvc";
import ietf-yang-types {
prefix "yang";
}
import ietf-te-types {
prefix "te-types";
}
Zheng, et al. Expires January 3, 2019 [Page 7]
Internet-Draft Transport Client Signals YANG Model July 2018
import ietf-eth-tran-types {
prefix "etht-types";
}
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"
WG List: <mailto:ccamp@ietf.org>
ID-draft editor:
Haomian Zheng (zhenghaomian@huawei.com);
Italo Busi (italo.busi@huawei.com);
Aihua Guo (aihuaguo@huawei.com);
Yunbin Xu (xuyunbin@ritt.cn);
Yang Zhao (zhaoyangyjy@chinamobile.com);
Xufeng Liu (Xufeng_Liu@jabil.com);
Giuseppe Fioccola (giuseppe.fioccola@telecomitalia.it);
";
description
"This module defines a YANG data model for describing
the Ethernet transport services.";
revision 2018-03-01 {
description
"Initial revision";
reference
"draft-zheng-ccamp-client-signal-yang";
}
/*
Groupings
*/
grouping vlan-classification {
description
"A grouping which represents classification on an 802.1Q VLAN tag.";
leaf tag-type {
type etht-types:eth-tag-classify;
description
"The tag type used for VLAN classification.";
}
choice individual-bundling-vlan {
description
"VLAN based classification can be individual
or bundling.";
Zheng, et al. Expires January 3, 2019 [Page 8]
Internet-Draft Transport Client Signals YANG Model July 2018
case individual-vlan {
leaf vlan-value {
type etht-types:vlanid;
description
"VLAN ID value.";
}
}
case vlan-bundling {
leaf vlan-range {
type etht-types:vid-range-type;
description
"List of VLAN ID values.";
}
}
}
}
grouping vlan-write {
description
"A grouping which represents push/pop operations
of an 802.1Q VLAN tag.";
leaf tag-type {
type etht-types:eth-tag-type;
description
"The VLAN tag type to push/swap.";
}
leaf vlan-value {
type etht-types:vlanid;
description
"The VLAN ID value to push/swap.";
}
}
grouping vlan-operations {
description
"A grouping which represents VLAN operations.";
leaf pop-tags {
type uint8 {
range "1..2";
}
description
"The number of VLAN tags to pop (or swap if used in
conjunction with push-tags)";
}
container push-tags {
Zheng, et al. Expires January 3, 2019 [Page 9]
Internet-Draft Transport Client Signals YANG Model July 2018
description
"The VLAN tags to push (or swap if used in
conjunction with pop-tags)";
container outer-tag {
presence
"Indicates existence of the outermost VLAN tag to
push/swap";
description
"The outermost VLAN tag to push/swap.";
uses vlan-write;
}
container second-tag {
must
'../outer-tag/tag-type = "s-vlan-tag-type" and ' +
'tag-type = "c-vlan-tag-type"'
{
error-message
"
When pushing/swapping two tags, the outermost tag must
be specified and of S-VLAN type and the second
outermost tag must be of C-VLAN tag type.
";
description
"
For IEEE 802.1Q interoperability, when pushing/swapping
two tags, it is required that the outermost tag exists
and is an S-VLAN, and the second outermost tag is a
C-VLAN.
";
}
presence
"Indicates existence of a second outermost VLAN tag to
push/swap";
description
"The second outermost VLAN tag to push/swap.";
uses vlan-write;
}
}
}
grouping bandwidth-profiles {
Zheng, et al. Expires January 3, 2019 [Page 10]
Internet-Draft Transport Client Signals YANG Model July 2018
description
"A grouping which represent bandwidth profile configuration.";
choice direction {
description
"Whether the bandwidth profiles are symmetrical or
asymmetrical";
case symmetrical {
description
"The same bandwidth profile is used to describe the ingress
and the egress bandwidth profile.";
leaf ingress-egress-bandwidth-profile-name {
type "string";
description
"Name of the bandwidth profile.";
}
}
case asymmetrical {
description
"Ingress and egress bandwidth profiles can be specified.";
leaf ingress-bandwidth-profile-name {
type "string";
description
"Name of the bandwidth profile used in
the ingress direction.";
}
leaf egress-bandwidth-profile-name {
type "string";
description
"Name of the bandwidth profile used in
the egress direction.";
}
}
}
}
grouping etht-svc-access-parameters {
description
"ETH transport services access parameters";
leaf access-node-id {
type te-types:te-node-id;
description
"The identifier of the access node in
the ETH transport topology.";
}
leaf access-ltp-id {
Zheng, et al. Expires January 3, 2019 [Page 11]
Internet-Draft Transport Client Signals YANG Model July 2018
type te-types:te-tp-id;
description
"The TE link termination point identifier, used
together with access-node-id to identify the
access LTP.";
}
leaf service-classification-type {
type identityref {
base etht-types:service-classification-type;
}
description
"Service classification type.";
}
choice service-classification {
description
"Access classification can be port-based or
VLAN based.";
case port-classification {
/* no additional information */
}
case vlan-classification {
container outer-tag {
presence "The outermost VLAN tag exists";
description
"Classifies traffic using the outermost VLAN tag.";
uses vlan-classification;
}
container second-tag {
must
'../outer-tag/tag-type = "classify-s-vlan" and ' +
'tag-type = "classify-c-vlan"'
{
error-message
"
When matching two tags, the outermost tag must be
specified and of S-VLAN type and the second
outermost tag must be of C-VLAN tag type.
";
description
"
For IEEE 802.1Q interoperability, when matching two
tags, it is required that the outermost tag exists
and is an S-VLAN, and the second outermost tag is a
Zheng, et al. Expires January 3, 2019 [Page 12]
Internet-Draft Transport Client Signals YANG Model July 2018
C-VLAN.
";
}
presence "The second outermost VLAN tag exists";
description
"Classifies traffic using the second outermost VLAN tag.";
uses vlan-classification;
}
}
}
/*
Open issue: can we constraints it to be used only with mp services?
*/
leaf split-horizon-group {
type string;
description "Identify a split horizon group";
}
uses bandwidth-profiles;
container vlan-operations {
description
"include parameters for vlan-operation";
choice direction {
description
"Whether the VLAN operations are symmetrical or
asymmetrical";
case symmetrical {
container symmetrical-operation {
uses vlan-operations;
description
"Symmetrical operations.
Expressed in the ingress direction, but
the reverse operation is applied to egress traffic";
}
}
case asymmetrical {
container asymmetrical-operation {
description "Asymmetrical operations";
container ingress {
uses vlan-operations;
description "Ingress operations";
}
container egress {
uses vlan-operations;
Zheng, et al. Expires January 3, 2019 [Page 13]
Internet-Draft Transport Client Signals YANG Model July 2018
description "Egress operations";
}
}
}
}
}
}
grouping etht-svc-tunnel-parameters {
description
"ETH transport services tunnel parameters";
leaf tunnel-name {
type string;
description
"TE service tunnel instance name.";
}
choice svc-multiplexing-tag {
description
"Service multiplexing is optional and flexible.";
case other {
/*
placeholder to support proprietary multiplexing
(for further discussion)
*/
}
case none {
/* no additional information is needed */
}
case vlan-tag {
/*
No additional information is needed
The C-Tag or S-Tag used for service mulitplexing is defined
by the VLAN classification and operations configured in the
etht-svc-access-parameters grouping
*/
}
case pw {
/* to be completed (for further discussion) */
}
}
/*
Open issue: can we constraints it to be used only with mp services?
Zheng, et al. Expires January 3, 2019 [Page 14]
Internet-Draft Transport Client Signals YANG Model July 2018
*/
leaf src-split-horizon-group {
type string;
description "Identify a split horizon group at the Tunnel source TTP";
}
leaf dst-split-horizon-group {
type string;
description "Identify a split horizon group at the Tunnel destination TTP";
}
}
grouping te-topology-identifier {
description
"An identifier to uniquely identify the TE topology.";
leaf access-provider-id {
type te-types:te-global-id;
description
"An identifier to uniquely identify a provider.";
}
leaf access-client-id {
type te-types:te-global-id;
description
"An identifier to uniquely identify a client.";
}
leaf access-topology-id {
type te-types:te-topology-id;
description
"Identifies the topology the
service access ports belong to.";
}
}
grouping etht-svc-pm-threshold_config {
description
"Configuraiton parameters for Ethernet service PM thresholds.";
leaf sending-rate-high {
type uint64;
description
"High threshold of packet sending rate in kbps.";
}
leaf sending-rate-low {
type uint64;
description
"Low threshold of packet sending rate in kbps.";
}
leaf receiving-rate-high {
type uint64;
Zheng, et al. Expires January 3, 2019 [Page 15]
Internet-Draft Transport Client Signals YANG Model July 2018
description
"High threshold of packet receiving rate in kbps.";
}
leaf receiving-rate-low {
type uint64;
description
"Low threshold of packet receiving rate in kbps.";
}
}
grouping etht-svc-pm-stats {
description
"Ethernet service PM statistics.";
leaf sending-rate-too-high {
type uint32;
description
"Counter that indicates the number of times the sending rate is above the high threshold";
}
leaf sending-rate-too-low {
type uint32;
description
"Counter that indicates the number of times the sending rate is below the low threshold";
}
leaf receiving-rate-too-high {
type uint32;
description
"Counter that indicates the number of times the receiving rate is above the high threshold";
}
leaf receiving-rate-too-low {
type uint32;
description
"Counter that indicates the number of times the receiving rate is below the low threshold";
}
}
grouping etht-svc-instance_config {
description
"Configuraiton parameters for Ethernet services.";
leaf etht-svc-name {
type string;
description
"Name of the p2p ETH transport service.";
}
leaf etht-svc-descr {
type string;
Zheng, et al. Expires January 3, 2019 [Page 16]
Internet-Draft Transport Client Signals YANG Model July 2018
description
"Description of the ETH transport service.";
}
leaf etht-svc-type {
type etht-types:service-type;
description
"Type of Ethernet service (p2p, mp2mp or rmp).";
/* Add default as p2p */
}
uses te-topology-identifier;
list etht-svc-access-ports {
key access-port-id;
min-elements "1";
/*
Open Issue:
Is it possible to limit the max-elements only for p2p services?
max-elements "2";
*/
description
"List of the ETH trasport services access port instances.";
leaf access-port-id {
type uint16;
description
"ID of the service access port instance";
}
uses etht-svc-access-parameters;
}
list etht-svc-tunnels {
key tunnel-name;
description
"List of the TE Tunnels supporting the ETH
transport service.";
uses etht-svc-tunnel-parameters;
}
container pm-config {
description
"ETH service performance monitoring";
leaf pm-enable {
type boolean;
description
"Boolean value indicating whether PM is enabled.";
Zheng, et al. Expires January 3, 2019 [Page 17]
Internet-Draft Transport Client Signals YANG Model July 2018
}
uses etht-svc-pm-threshold_config;
}
leaf admin-status {
type identityref {
base te-types:tunnel-state-type;
}
default te-types:tunnel-state-up;
description "ETH service administrative state.";
}
}
grouping etht-svc-instance_state {
description
"State parameters for Ethernet services.";
leaf operational-state {
type identityref {
base te-types:tunnel-state-type;
}
default te-types:tunnel-state-up;
description "ETH service operational state.";
}
leaf provisioning-state {
type identityref {
base te-types:lsp-state-type;
}
description "ETH service provisioning state.";
}
leaf creation-time {
type yang:date-and-time;
description
"Time of ETH service creation.";
}
leaf last-updated-time {
type yang:date-and-time;
description
"Time of ETH service last update.";
}
uses etht-svc-pm-stats;
}
/*
Data nodes
*/
container etht-svc {
description
Zheng, et al. Expires January 3, 2019 [Page 18]
Internet-Draft Transport Client Signals YANG Model July 2018
"ETH transport services.";
container globals {
description
"ETH profile information.";
list etht-svc-bandwidth-profiles {
key bandwidth-profile-name;
description
"List of bandwidth profile templates used by
Ethernet services.";
uses etht-types:etht-bandwidth-profiles;
}
}
list etht-svc-instances {
key etht-svc-name;
description
"The list of p2p ETH transport service instances";
uses etht-svc-instance_config;
container state {
config false;
description
"Ethernet Service states.";
uses etht-svc-instance_state;
}
}
}
}
<CODE ENDS>
5.2. YANG Code for ETH transport type
<CODE BEGINS> file "ietf-eth-tran-types@2018-07-02.yang"
module ietf-eth-tran-types {
namespace "urn:ietf:params:xml:ns:yang:ietf-eth-tran-types";
prefix "etht-types";
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"
Zheng, et al. Expires January 3, 2019 [Page 19]
Internet-Draft Transport Client Signals YANG Model July 2018
WG List: <mailto:ccamp@ietf.org>
ID-draft editor:
Haomian Zheng (zhenghaomian@huawei.com);
Italo Busi (italo.busi@huawei.com);
Aihua Guo (aihuaguo@huawei.com);
Yunbin Xu (xuyunbin@ritt.cn);
Yang Zhao (zhaoyangyjy@chinamobile.com);
Xufeng Liu (Xufeng_Liu@jabil.com);
Giuseppe Fioccola (giuseppe.fioccola@telecomitalia.it);
";
description
"This module defines the ETH transport types.";
revision 2018-05-24 {
description
"Initial revision";
reference
"draft-zheng-ccamp-client-signal-yang";
}
/*
* Identities
*/
identity eth-vlan-tag-type {
description
"ETH VLAN tag type.";
}
identity c-vlan-tag-type {
base eth-vlan-tag-type;
description
"802.1Q Customer VLAN";
}
identity s-vlan-tag-type {
base eth-vlan-tag-type;
description
"802.1Q Service VLAN (QinQ)";
}
identity service-classification-type {
description
"Service classification.";
}
Zheng, et al. Expires January 3, 2019 [Page 20]
Internet-Draft Transport Client Signals YANG Model July 2018
identity port-classification {
base service-classification-type;
description
"Port classification.";
}
identity vlan-classification {
base service-classification-type;
description
"VLAN classification.";
}
identity eth-vlan-tag-classify {
description
"VLAN tag classification.";
}
identity classify-c-vlan {
base eth-vlan-tag-classify;
description
"Classify 802.1Q Customer VLAN tag.
Only C-tag type is accepted";
}
identity classify-s-vlan {
base eth-vlan-tag-classify;
description
"Classify 802.1Q Service VLAN (QinQ) tag.
Only S-tag type is accepted";
}
identity classify-s-or-c-vlan {
base eth-vlan-tag-classify;
description
"Classify S-VLAN or C-VLAN tag-classify.
Either tag is accepted";
}
identity bandwidth-profile-type {
description
"Bandwidth Profile Types";
}
identity mef-10-bwp {
base bandwidth-profile-type;
description
"MEF 10 Bandwidth Profile";
}
Zheng, et al. Expires January 3, 2019 [Page 21]
Internet-Draft Transport Client Signals YANG Model July 2018
identity rfc-2697-bwp {
base bandwidth-profile-type;
description
"RFC 2697 Bandwidth Profile";
}
identity rfc-2698-bwp {
base bandwidth-profile-type;
description
"RFC 2698 Bandwidth Profile";
}
identity rfc-4115-bwp {
base bandwidth-profile-type;
description
"RFC 4115 Bandwidth Profile";
}
identity service-type {
description
"Type of Ethernet service.";
}
identity p2p-svc {
base service-type;
description
"Ethernet point-to-point service (EPL, EVPL).";
}
identity rmp-svc {
base service-type;
description
"Ethernet rooted-multitpoint service (E-TREE, EP-TREE).";
}
identity mp2mp-svc {
base service-type;
description
"Ethernet multipoint-to-multitpoint service (E-LAN, EP-LAN).";
}
/*
* Type Definitions
*/
typedef eth-tag-type {
type identityref {
base eth-vlan-tag-type;
Zheng, et al. Expires January 3, 2019 [Page 22]
Internet-Draft Transport Client Signals YANG Model July 2018
}
description
"Identifies a specific ETH VLAN tag type.";
}
typedef eth-tag-classify {
type identityref {
base eth-vlan-tag-classify;
}
description
"Identifies a specific VLAN tag classification.";
}
typedef vlanid {
type uint16 {
range "1..4094";
}
description
"The 12-bit VLAN-ID used in the VLAN Tag header.";
}
typedef vid-range-type {
type string {
pattern "([1-9][0-9]{0,3}(-[1-9][0-9]{0,3})?" +
"(,[1-9][0-9]{0,3}(-[1-9][0-9]{0,3})?)*)";
}
description
"A list of VLAN Ids, or non overlapping VLAN ranges, in
ascending order, between 1 and 4094.
This type is used to match an ordered list of VLAN Ids, or
contiguous ranges of VLAN Ids. Valid VLAN Ids must be in the
range 1 to 4094, and included in the list in non overlapping
ascending order.
For example: 1,10-100,50,500-1000";
}
typedef bandwidth-profile-type {
type identityref {
base bandwidth-profile-type;
}
description
"Identifies a specific Bandwidth Profile type.";
}
typedef service-type {
type identityref {
Zheng, et al. Expires January 3, 2019 [Page 23]
Internet-Draft Transport Client Signals YANG Model July 2018
base service-type;
}
description
"Identifies the type of Ethernet service.";
}
/*
* Grouping Definitions
*/
grouping etht-bandwidth-profiles {
description
"Bandwidth profile configuration paramters.";
leaf bandwidth-profile-name {
type string;
description
"Name of the bandwidth profile.";
}
leaf bandwidth-profile-type {
type etht-types:bandwidth-profile-type;
description
"The type of bandwidth profile.";
}
leaf CIR {
type uint64;
description
"Committed Information Rate in Kbps";
}
leaf CBS {
type uint64;
description
"Committed Burst Size in in KBytes";
}
leaf EIR {
type uint64;
/*
* Open Issue: need to indicate that EIR is not supported by RFC 2697
* must
* '../bw-profile-type = "mef-10-bwp" or ' +
* '../bw-profile-type = "rfc-2698-bwp" or ' +
* '../bw-profile-type = "rfc-4115-bwp"'
*
* must
* '../bw-profile-type != "rfc-2697-bwp"'
*/
description
"Excess Information Rate in Kbps
Zheng, et al. Expires January 3, 2019 [Page 24]
Internet-Draft Transport Client Signals YANG Model July 2018
In case of RFC 2698, PIR = CIR + EIR";
}
leaf EBS {
type uint64;
description
"Excess Burst Size in KBytes.
In case of RFC 2698, PBS = CBS + EBS";
}
leaf color-aware {
type boolean;
description
"Indicates weather the color-mode is color-aware or color-blind.";
}
leaf coupling-flag {
type boolean;
/*
* Open issue: need to indicate that Coupling Flag is defined only for MEF 10
*
* must
* '../bw-profile-type = "mef-10-bwp"'
*/
description
"Coupling Flag.";
}
}
grouping eth-bandwidth {
leaf eth-bandwidth {
type uint64 {
range "0..10000000000";
}
units "Kbps";
description
"Available bandwith value expressed in kilobits per second";
}
}
grouping eth-label-restriction {
container eth-label-restriction {
leaf tag-type {
type etht-types:eth-tag-type;
description "VLAN tag type.";
}
leaf priority {
type uint8;
description "priority.";
}
}
Zheng, et al. Expires January 3, 2019 [Page 25]
Internet-Draft Transport Client Signals YANG Model July 2018
}
grouping eth-label {
leaf vlanid {
type etht-types:vlanid;
description
"VLAN tag id.";
}
}
}
<CODE ENDS>
5.3. Other Transport Network client signal YANG Code
<CODE BEGINS> file "ietf-trans-client-service@2018-02-09.yang"
module ietf-trans-client-service {
/* TODO: FIXME */
//yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-trans-client-service";
prefix "clntsvc";
import ietf-te-types {
prefix "te-types";
}
import ietf-otn-types {
prefix "otn-types";
}
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"
ID-draft editor:
Aihua Guo (aihuaguo@huawei.com);
Haomian Zheng (zhenghaomian@huawei.com);
Italo Busi (italo.busi@huawei.com);
Yunbin Xu (xuyunbin@ritt.cn);
Yang Zhao (zhaoyangyjy@chinamobile.com);
Xufeng Liu (Xufeng_Liu@jabil.com);
Giuseppe Fioccola (giuseppe.fioccola@telecomitalia.it);
";
Zheng, et al. Expires January 3, 2019 [Page 26]
Internet-Draft Transport Client Signals YANG Model July 2018
description
"This module defines a YANG data model for describing
simple transport client services.";
revision 2018-02-09 {
description
"Initial version";
reference
"ADD REFERENCE HERE";
}
/*
* Groupings
*/
grouping client-svc-access-parameters {
description
"Transport client services access parameters";
leaf access-node-id {
type te-types:te-node-id;
description
"The identifier of the access node in the underlying
transport topology.";
}
leaf access-ltp-id {
type te-types:te-tp-id;
description
"The TE link termination point identifier, used together with
access-node-id to identify the access LTP.";
}
leaf client-signal {
type identityref {
base otn-types:client-signal;
}
description
"Identifiies the client signal type associated with this port";
}
}
grouping client-svc-tunnel-parameters {
description
"Transport client services tunnel parameters";
leaf tunnel-name {
type string;
description
Zheng, et al. Expires January 3, 2019 [Page 27]
Internet-Draft Transport Client Signals YANG Model July 2018
"TE service tunnel instance name.";
}
}
grouping te-topology-identifier {
description
"description";
leaf access-provider-id {
type te-types:te-global-id;
description
"An identifier to uniquely identify a provider.";
}
leaf access-client-id {
type te-types:te-global-id;
description
"An identifier to uniquely identify a client.";
}
leaf access-topology-id {
type te-types:te-topology-id;
description
"Identifies the topology the service access ports belong to.";
}
}
grouping client-svc-instance_config {
description
"Configuraiton parameters for client services.";
leaf client-svc-name {
type string;
description
"Name of the p2p transport client service.";
}
leaf client-svc-descr {
type string;
description
"Description of the transport client service.";
}
uses te-topology-identifier;
leaf admin-status {
type identityref {
base te-types:tunnel-state-type;
}
Zheng, et al. Expires January 3, 2019 [Page 28]
Internet-Draft Transport Client Signals YANG Model July 2018
default te-types:tunnel-state-up;
description "Client service administrative state.";
}
container src-access-ports {
description
"Source access port of a client service.";
uses client-svc-access-parameters;
}
container dst-access-ports {
description
"Destination access port of a client service.";
uses client-svc-access-parameters;
}
list svc-tunnels {
key tunnel-name;
description
"List of the TE Tunnels supporting the client service.";
uses client-svc-tunnel-parameters;
}
}
grouping client-svc-instance_state {
description
"State parameters for client services.";
leaf operational-state {
type identityref {
base te-types:tunnel-state-type;
}
config false;
description "Client service operational state.";
}
leaf provisioning-state {
type identityref {
base te-types:lsp-state-type;
}
config false;
description "Client service provisioning state.";
}
}
/*
* Data nodes
*/
container client-svc {
Zheng, et al. Expires January 3, 2019 [Page 29]
Internet-Draft Transport Client Signals YANG Model July 2018
description
"Transport client services.";
list client-svc-instances {
key client-svc-name;
description
"The list of p2p transport client service instances";
uses client-svc-instance_config;
uses client-svc-instance_state;
}
}
}
<CODE ENDS>
6. Considerations and Open Issue
Editor Notes: This section is used to note temporary discussion/
conclusion that to be fixed in the future version, and will be
removed before publication. We currently categorize all the client
signal types into transparent and non-transparent, with separate
models. There was consensus that no common model is needed for these
two categories.
7. IANA Considerations
TBD.
8. Manageability Considerations
TBD.
9. Security Considerations
The data following the model defined in this document is exchanged
via, for example, the interface between an orchestrator and a
transport network controller. The security concerns mentioned in
[I-D.ietf-teas-yang-te-topo] for using ietf-te-topology.yang model
also applies to this document.
The YANG module defined in this document can be accessed via the
RESTCONF protocol defined in [RFC8040], or maybe via the NETCONF
protocol [RFC6241].
There are a number of data nodes defined in the YANG module which are
writable/creatable/deletable (i.e., config true, which is the
Zheng, et al. Expires January 3, 2019 [Page 30]
Internet-Draft Transport Client Signals YANG Model July 2018
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., POST) to these
data nodes without proper protection can have a negative effect on
network operations.
10. Acknowledgements
We would like to thank Igor Bryskin and Daniel King for their
comments and discussions.
11. Contributors
Yanlei Zheng
China Unicom
Email: zhengyl@dimpt.com
Zhe Liu
Huawei Technologies,
Email: liuzhe123@huawei.com
Zheyu Fan
Huawei Technologies,
Email: fanzheyu2@huawei.com
Sergio Belotti
Nokia,
Email: sergio.belotti@nokia.com
Yingxi Yao
Shanghai Bell,
yingxi.yao@nokia-sbell.com
12. References
12.1. Normative References
[I-D.ietf-ccamp-otn-topo-yang]
zhenghaomian@huawei.com, z., Guo, A., Busi, I., Sharma,
A., Liu, X., Belotti, S., Xu, Y., Wang, L., and O. Dios,
"A YANG Data Model for Optical Transport Network
Topology", draft-ietf-ccamp-otn-topo-yang-03 (work in
progress), June 2018.
[I-D.ietf-ccamp-otn-tunnel-model]
zhenghaomian@huawei.com, z., Guo, A., Busi, I., Sharma,
A., Rao, R., Belotti, S., Lopezalvarez, V., Li, Y., and Y.
Xu, "OTN Tunnel YANG Model", draft-ietf-ccamp-otn-tunnel-
model-02 (work in progress), June 2018.
Zheng, et al. Expires January 3, 2019 [Page 31]
Internet-Draft Transport Client Signals YANG Model July 2018
[I-D.ietf-teas-yang-te-topo]
Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Dios, "YANG Data Model for Traffic Engineering (TE)
Topologies", draft-ietf-teas-yang-te-topo-18 (work in
progress), June 2018.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC7139] Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D.,
and K. Pithewan, "GMPLS Signaling Extensions for Control
of Evolving G.709 Optical Transport Networks", RFC 7139,
DOI 10.17487/RFC7139, March 2014,
<https://www.rfc-editor.org/info/rfc7139>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
12.2. Informative References
[I-D.ietf-netmod-yang-tree-diagrams]
Bjorklund, M. and L. Berger, "YANG Tree Diagrams", draft-
ietf-netmod-yang-tree-diagrams-06 (work in progress),
February 2018.
[I-D.zhang-teas-transport-service-model]
Zhang, X. and J. Ryoo, "A Service YANG Model for
Connection-oriented Transport Networks", draft-zhang-teas-
transport-service-model-01 (work in progress), October
2016.
[RFC7062] Zhang, F., Ed., Li, D., Li, H., Belotti, S., and D.
Ceccarelli, "Framework for GMPLS and PCE Control of G.709
Optical Transport Networks", RFC 7062,
DOI 10.17487/RFC7062, November 2013,
<https://www.rfc-editor.org/info/rfc7062>.
Zheng, et al. Expires January 3, 2019 [Page 32]
Internet-Draft Transport Client Signals YANG Model July 2018
Authors' Addresses
Haomian Zheng
Huawei Technologies
F3 R&D Center, Huawei Industrial Base, Bantian, Longgang District
Shenzhen, Guangdong 518129
P.R.China
Email: zhenghaomian@huawei.com
Aihua Guo
Huawei Technologies
Email: aihuaguo@huawei.com
Italo Busi
Huawei Technologies
Email: Italo.Busi@huawei.com
Yunbin Xu
CAICT
Email: xuyunbin@ritt.cn
Yang Zhao
China Mobile
Email: zhaoyangyjy@chinamobile.com
Xufeng Liu
Volta Networks
Email: xufeng.liu.ietf@gmail.com
Giuseppe Fioccola
Telecom Italia
Email: giuseppe.fioccola@telecomitalia.it
Zheng, et al. Expires January 3, 2019 [Page 33]