
Internet Engineering Task Force A. Malhotra
Internet-Draft S. Goldberg
Intended status: Standards Track Boston University
Expires: April 28, 2017 October 25, 2016

Message Authentication Codes for the Network Time Protocol
draft-aanchal4-ntp-mac-02

Abstract

 The Network Time Protocol (NTP) RFC 5905 [RFC5905] uses a message
 authentication code (MAC) to cryptographically authenticate its UDP
 packets. Currently, NTP packets are authenticated by appending a
 128-bit key to the NTP data, and hashing the result with MD5 to
 obtain a 128-bit tag. However, as discussed in [BCK] and [RFC6151],
 this is not a secure MAC. As such, this draft considers different
 secure MAC algorithms for use with NTP, evaluates their performance,
 and recommends the use of CMAC-AES [RFC4493]. We also suggest
 deprecating the use of MD5 as defined in [RFC5905] for authenticating
 NTP packets.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 28, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Malhotra & Goldberg Expires April 28, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc4493
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MACs for NTP October 2016

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 2

2. MAC Algorithms . 3
3. Requirements . 3
3.1. Performance Requirements 3
3.2. Security Requirements 4

4. Performance Results . 4
5. Other Hardware Platforms 5
6. Security Considerations 6
6.1. Why is GMAC not suitable for NTP? 7

7. Use HMAC or CMAC instead 9
8. GMAC-SIV - Another Potential MAC Candidate 9
9. Recommendations . 10
10. Acknowledgements . 10
11. References . 10
11.1. Normative References 10
11.2. Informative References 11

 Authors' Addresses . 12

1. Introduction

 NTP uses a message authentication code (MAC) to authenticate its
 packets. Currently, NTP packets are authenticated by appending a
 128-bit key to the NTP data, and hashing the result with MD5 to
 obtain a 128-bit tag. However, as discussed in [BCK] and [RFC6151],
 this not a secure MAC. As such, this draft considers different
 secure MAC algorithms for use with NTP, evaluates their performance,
 and recommends the use of CMAC-AES [RFC4493]. We also suggest
 deprecating the use of MD5, as defined in [RFC5905], for
 authenticating NTP packets.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc4493
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Malhotra & Goldberg Expires April 28, 2017 [Page 2]

Internet-Draft MACs for NTP October 2016

2. MAC Algorithms

 We consider five diverse MAC algorithms, which encompass hash-based
 HMAC-MD5 and HMAC-SHA224 [RFC2104], block cipher-based CMAC-AES
 [RFC4493], and universal hashing-based Galois MAC (GMAC) [RFC4543]
 and Poly1305(ChaCha20) as in section 2.6 of [RFC7539]. For
 completeness we also benchmark the legacy MD5(key||message) from
 [RFC5905].

 +--------------------+----------------------+-----------------------+
 | Algorithm | Input Key Length | Output Tag Length |
 | | (Bytes) | (Bytes) |
 +--------------------+----------------------+-----------------------+
legacy MD5	16	16
HMAC-MD5	16	16
HMAC-SHA224	16	16
CMAC(AES)	16	16
GMAC(AES)	16	16
Poly1305(ChaCha20)	32	16
 +--------------------+----------------------+-----------------------+

 The choice of algorithms evaluated here is motivated, in part, by
 standardization and availablity of their open source implementations.
 All algorithms we consider, other than the plain MD5, are
 standardized. Four out of five algorithms are at least available in
 the OpenSSL library, while Poly1305(ChaCha20) is implemented in
 LibreSSL (a fork of OpenSSL) and also in BoringSSL (Google's
 implementation of OpenSSL).

 The output tag length for HMAC-SHA224 is 28 bytes, but we truncate it
 to 16 bytes as in section 4 of [RFC7630] to fit into the NTP packet.
 As noted in section 6 of [RFC2104] it is safe to truncate the output
 of MACs as long as the truncated length is greater than 80-bits and
 not less than half the length of the hash output.

3. Requirements

3.1. Performance Requirements

 In order to accurately compute the time, NTP ideally requires MAC
 algorithms to have a constant computational latency. However, this
 is generally not possible, since latency depends on the CPU load,
 temperature, and other uncontrollable factors. Instead, a MAC
 algorithm that requires fewer clock cycles for computation is
 prefered over one that requires more clock cycles, as this directly
 translates to a reduction in jitter (i.e., the variance of the
 latency for computing the MAC).

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4493
https://datatracker.ietf.org/doc/html/rfc4543
https://datatracker.ietf.org/doc/html/rfc7539#section-2.6
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc7630#section-4
https://datatracker.ietf.org/doc/html/rfc2104#section-6

Malhotra & Goldberg Expires April 28, 2017 [Page 3]

Internet-Draft MACs for NTP October 2016

 Throughput is another important consideration. NTP servers may have
 to deal with thousands of client requests per second. A study [NIST]
 on the usage analysis of NIST's NTP stratum 1 servers shows that
 these servers cater to 28,000 requests/second on an average, per
 server.

 Most of the Internet is served by stratum 2 and stratum 3 servers,
 some of which are a part of voluntary NTP pool. These machines may
 be running old hardware. Generally, while benchmarking MAC
 algorithms, several optimization techniques on custom specialized
 hardware are used to get the best results. However, for the reason
 stated above we choose to benchmark performance on a range of
 software and hardware platforms with and without optimizations.

3.2. Security Requirements

 There are several more constraints specific to NTP that need to be
 taken into account.

 1. NTP servers are stateless, i.e. they do not keep per client
 state.

 2. Per [RFC5905], NTP uses a pre-shared symmetric key. This makes
 key management difficult because there is no in-band mechanism
 for distributing keys. As such, to simplify key management, some
 deployments use the same pre-shared key at many servers
 (typically at the same stratum). In other words, the same key is
 used for several client/server associations.

 3. [RFC5905] also has no in-band mechanism to refresh keys.

4. Performance Results

 The NTP header is 48 bytes long. We therefore consider the latency
 and throughput for several secure MAC algorithms when computed over
 48-byte messages.

 We customize the in-built speed utility of OpenSSL-1.0.2g (03 May
 2016) version to compute the latency and throughput for each MAC as
 shown in the tables below. OpenSSL, however, does not implement
 stream-cipher ChaCha20-based Poly1305 MAC algorithm. To speed test
 this MAC, we use LibreSSL 2.3.1, a fork of OpenSSL implementation.
 OpenSSL and LibreSSL are the most widely used cryptographic libraries
 and are used by the current NTP implementations.

 Since the introduction of New Instruction (NI) set for hardware
 support in Intel chips, certain MACs like CMAC and GMAC have
 performance advantage on such machines. Based on this, we perform

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Malhotra & Goldberg Expires April 28, 2017 [Page 4]

Internet-Draft MACs for NTP October 2016

 two different benchmarks: one with AES-NI enabled and the other with
 it disabled. Benchmarks were taken on an x86_64, Intel(R) Xeon(R)
 CPU E5-2676 v3 @ 2.40GHz with one core CPU.

 This table shows throughput in terms of number of 48-byte NTP payload
 processed per second.

 +--------------------+-------------+-----------------+
 | Algorithm | with AES-NI | without AES-NI |
 +--------------------+-------------+-----------------+
 | legacy MD5 | 3118K | 3165K |
 | HMAC-MD5 | 2742K | 2749K |
 | HMAC-SHA224 | 1265K | 1267K |
 | CMAC(AES) | 7567K | 4388K |
 | GMAC(AES) | 16612K | 4627K |
 | Poly1305(ChaCha20) | 2598K | 2398K |
 +--------------------+-------------+-----------------+

 This table shows latency in terms of number of CPU cycles per byte
 (cpb) when processing a 48-byte NTP payload.

 +--------------------+-------------+-----------------+
 | Algorithm | with AES-NI | without AES-NI |
 +--------------------+-------------+-----------------+
 | legacy MD5 | 16.0 | 15.7 |
 | HMAC-MD5 | 18.2 | 18.1 |
 | HMAC-SHA224 | 39.4 | 39.0 |
 | CMAC(AES) | 6.6 | 11.3 |
 | GMAC(AES) | 3.0 | 10.8 |
 | Poly1305(ChaCha20) | 14.4 | 15.0 |
 +--------------------+-------------+-----------------+

5. Other Hardware Platforms

 We also perform tests on the following ARM CPU cores and
 PowerPC(PPC)core with OpenSSL 1.0.2h released May 2016. These cores
 are most commonly used in consumer products and Industrial Control
 Systems (ICS) components. We select these cores to cover the ARM
 architecture versions 5/6 to 8. The results vary depending on the
 availability of CPU specific optimizations. For example the used
 Cortex-A9 and Cortex-A53 CPU have a NEON unit and OpenSSL can utilize
 it to accelerate AES.

 1. Freescale/Apple PPC74xx 1.5GHz

 2. NXP i.MX6 1GHz (dual core) ARM Cortex-A9

 3. Broadcom BCM2837 1.2GHz (quad core) ARM Cortex-A53

Malhotra & Goldberg Expires April 28, 2017 [Page 5]

Internet-Draft MACs for NTP October 2016

 4. Marvell 88F6281 1.2GHz 88FR131 (ARMv5te compliant)

 The table below shows throughput in terms of number of 48-byte NTP
 payload processed per second.

 +--------------------+---------+------------+-------------+---------+
 | Algorithm | PPC74xx | ARM | ARM Cortex | Marvell |
 | | | Cortex-A9 | A-53 | |
 +--------------------+---------+------------+-------------+---------+
legacy MD5	600K	543K	748K	383k
HMAC-MD5	463K	415K	864K	438k
HMAC-SHA224	276K	245K	357K	150k
CMAC(AES)	576K	412K	614K	246k
GMAC(AES)	681K	1362K	2193K	453k
Poly1305(ChaCha20)	335K	379K	580K	273k
 +--------------------+---------+------------+-------------+---------+

 The table below shows latency in terms of number of CPU cycles per
 byte (cpb) when processing a 48-byte NTP payload.

 +--------------------+---------+------------+-------------+---------+
 | Algorithm | PPC74xx | ARM | ARM Cortex | Marvell |
 | | | Cortex-A9 | A-53 | |
 +--------------------+---------+------------+-------------+---------+
legacy MD5	52.1	38.4	33.4	65.3
HMAC-MD5	67.4	50.3	29.0	57.1
HMAC-SHA224	113.3	85.2	70.1	166.5
CMAC(AES)	54.2	50.5	40.7	101.2
GMAC(AES)	50.0	15.3	11.4	55.1
Poly1305(ChaCha20)	93.1	55.0	43.1	91.7
 +--------------------+---------+------------+-------------+---------+

6. Security Considerations

 The MD5 (key||message) "message authentication code" specified in
 [RFC5905] is vulnerable to length extension attacks, and uses the
 insecure MD5 hash function, and therefore MUST be deprecated.

 Therefore, we consider hash-based MACs (HMAC-MD5, HMAC-SHA224), and
 cipher-based MACs (CMAC-AES, Poly1305 (ChaCha20)). The upper bound
 on the security level provided by any MAC against brute-force attacks
 is min (key-length, tag-length). The security of these MACs can be
 worse but not better than this bound. All MAC algorithms we consider
 have comparable key-lengths and output tag-lengths. So the advantage
 of an adversary that wishes to forge a MAC is lower-bounded by
 1/2^{128}.

https://datatracker.ietf.org/doc/html/rfc5905

Malhotra & Goldberg Expires April 28, 2017 [Page 6]

Internet-Draft MACs for NTP October 2016

 Assume that an adversary can obtain a valid MAC for q distinct
 messages. Then the table below describes the advantage of an
 adversary that wishes to forge a MAC in terms of number of queries
 (q) it launches.

 +--------------------------+-------------------------------+
 | Algorithm | Advantage |
 +--------------------------+-------------------------------+
 | HMAC-MD5 [MB] | q^2/2^{128} |
 | HMAC-SHA224 [BCK] | q^2/2^{224} |
 | CMAC(AES)[IK] | q^2/2^{128} |
 | GMAC(AES) [IOM] | q^2/2^{128} |
 | Poly1305(ChaCha20) [DJB] | {e^{{q^2}/{2^{129}}}}/2^{103} |
 +--------------------------+-------------------------------+

 Poly1305 can easily handle up to q=2^{64} but security degrades
 pretty rapidly after that.

 However, the bounds in the table above are somewhat optimistic, for
 the following reasons.

 1. GMAC has an initialization vector (IV) that [RFC4106] allows to
 be 1 <= len(IV) <= 2^{64}-1. Per [RFC4106], implementations are
 optimized to handle a 12-octet IV. With a 12-octet IV, the total
 number of message invocations is bound to 2^{48}. Moreover, if
 the IV is reused even once (for the same secret authentication
 key and different input messages), then [Joux] shows that the
 secret authetication key can easily be recovered by the
 adversary. Notice that this attack is even stronger than a
 message forgery because it recovers the authentication key. This
 is known as nonce-reuse vulnerability.

 2. The other three algorithms evaluated here do not suffer from
 nonce reuse vulnerabilities where an adversary can recover the
 authentication key if the nonce is reused just once.

 3. The table above suggests that for CMAC, the total number of
 invocations of the MAC is limited to 2^{64}. However, [NIST-CMAC]
 recommends, to be on the safe side, that the total number of
 invocations of the block cipher algorithm during the lifetime of
 the key is limited to 2^{48}.

6.1. Why is GMAC not suitable for NTP?

 [Joux] showed that for GMAC-AES, if the IV is repeated just once,
 then the authentication key can be fully recovered. None of the
 other algorithms evaluated here have this vulnerability. Thus, for

https://datatracker.ietf.org/doc/html/rfc4106
https://datatracker.ietf.org/doc/html/rfc4106

Malhotra & Goldberg Expires April 28, 2017 [Page 7]

Internet-Draft MACs for NTP October 2016

 GMAC-AES to be secure, we need to make sure that IV is never
 repeated.

 [NIST-GMAC] recommends constructing the 12-byte IV used in GMAC by
 concatenating a fixed 4-byte salt value concatenate with a variable
 8-byte nonce i.e. IV = (salt|| nonce). Here salt is an implicit
 value established when a session is established, remains fixed for
 all exchanges in a session (i.e. for all invocations that use the
 same authenication key) between the sender and the receiver.
 Meanwhile, the nonce is freshly generated for each authenticated
 message.

 Because NTP servers do not keep per-client state, the nonce can not
 be a sequential value. Instead, this nonce must be randomly
 generated 8-bytes value chosen freshly for each authenticated
 message. According to birthday bound, the nonce value will be
 repeated, with high probability, after 2^{32} messages sent in a
 given association. This leads to a repeated IV value and to [Joux]'s
 attack. Thus, to prevent repeated nonces, we would need to require
 the authentication key to be refreshed for the association after
 2^{32} messages.

 On one hand, 2^{32} is a lot of queries for an honest client,
 assuming that the client queries once per minute (which is NTP's
 minimum polling interval [RFC5905]). On the other hand, a man-in-
 the-middle (MiTM) can quickly and easily exhaust this number by
 replaying old authenticated queries to the NTP server.

 The main problem here is that NTP lacks an explict in-band key
 refresh mechanism that can be invoked automatically (without operator
 intervention). And a key refresh mechanism is unlikely to be adopted
 as it would allow denial-of-service (DoS) attacks. The state less
 nature makes NTP resilient against DoS attacks.

 Even if there was a method by which key-refresh could be performed,
 there is an additional problem. An NTP server does not keep per-
 client state. Therefore, it cannot keep track of the number of
 messages it sent in a given association. One idea is to have the
 client keep this state, and then send an authenicated request for a
 key refresh. However, a man-in-the-middle could replay old
 authenticated queries to the NTP server, and then intercept the
 server's' response before they reach the legitimate client. In this
 case, the client would never know when to ask for a key refresh.

 Alternatively, the server could maintain a global counter (since it
 can't afford to keep per client counter). And after 2^{32} messages,
 it can refresh the keys with all its clients. However, a man-in-the-

https://datatracker.ietf.org/doc/html/rfc5905

Malhotra & Goldberg Expires April 28, 2017 [Page 8]

Internet-Draft MACs for NTP October 2016

 middle could exhaust this number quickly and the server will have to
 refresh keys with all the clients very frequently.

 Thus, we conclude that a scheme that requires refreshing the key
 after 2^{32} client queries is not a good idea at all.

 Even in the absence of a man-in-the-middle, there is also the problem
 of multiple servers using the same authentication key. The salt
 could be used to distinguish IVs across different client/server
 associations that use the same authenication key. However, this
 brings us back to the original key management problem. One way to
 deal with this is to choose the 4-byte salt at random. However, this
 gives rise to a birthday bound of 2^{16} = 65,000 unique IVs. If we
 consider 20,000 stratum 3 clients synchronizing to three stratum 2
 servers each, all of which are in the same organization and share the
 same symmetric key, we get very close to the birthday bound. This is
 another disadvantage of using GMAC with NTP.

7. Use HMAC or CMAC instead

 1. CMAC seems to be the next best choice. Leaving out GMAC, it has
 the best performance with and without hardware support. It is
 not vulnerable to nonce misuse issues.

 2. HMACs are inherently slower because of their structure and also
 in some cases because of lack of built-in hardware support.

 3. On the other hand, it is much easier to get the right
 implementation for HMAC compared to CMAC.

8. GMAC-SIV - Another Potential MAC Candidate

 GMAC-SIV is another possible MAC candidate, which claims to be nonce-
 misuse resistant [SIV]. There is an IETF Internet draft for the
 standardization of GCM-SIV AEAD mode.

 In terms of security, GCM-SIV (AEAD) achieves usual notion of nonce-
 based security of an authenticated encryption mode as long as a
 unique nonce is used per authentication key per message. If,
 however, the nonce is reused authenticity is still retained (unlike
 in GMAC).

 But there is not many implementations for GCM-SIV available except
 for the one from the authors. We customized this code for
 authentication only mode GMAC-SIV and run it on an x86_64, Intel(R)
 Xeon(R) CPU E5-2676 v3 @ 2.40GHz with one core CPU with AES-NI
 enabled. GMAC-SIV takes ~5.9 CPU cycles/byte to generate a tag of
 length 16 bytes on a 48-byte NTP payload. The performance efficiency

Malhotra & Goldberg Expires April 28, 2017 [Page 9]

Internet-Draft MACs for NTP October 2016

 is far less than GMAC, but is slightly better than CMAC. CMAC, on
 the other hand is a standardized mode of operation and has several
 open source implementations.

9. Recommendations

 From the tables we clearly see that GMAC(AES) has the best latency
 and throughput performance in both hardware and software
 implementations. It is freely available, and there is a flexibilty
 of changing the underlying block-cipher. However there are several
 security problems surrounding the use of this mode, as highlighted
 above, so it is not recommended.

 CMAC, on the other hand, is the next best choice in terms of
 performance and security. So we recommend the use of CMAC (AES).

10. Acknowledgements

 The authors wish to acknowledge useful discussions with Leen
 Alshenibr, Daniel Franke, Ethan Heilman, Kenny Paterson, Leonid
 Reyzin, Harlan Stenn, Mayank Varia.

11. References

11.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <http://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4106] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
 (GCM) in IPsec Encapsulating Security Payload (ESP)",

RFC 4106, DOI 10.17487/RFC4106, June 2005,
 <http://www.rfc-editor.org/info/rfc4106>.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <http://www.rfc-editor.org/info/rfc4493>.

https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4106
http://www.rfc-editor.org/info/rfc4106
https://datatracker.ietf.org/doc/html/rfc4493
http://www.rfc-editor.org/info/rfc4493

Malhotra & Goldberg Expires April 28, 2017 [Page 10]

Internet-Draft MACs for NTP October 2016

 [RFC4543] McGrew, D. and J. Viega, "The Use of Galois Message
 Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
 DOI 10.17487/RFC4543, May 2006,
 <http://www.rfc-editor.org/info/rfc4543>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011,
 <http://www.rfc-editor.org/info/rfc6151>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <http://www.rfc-editor.org/info/rfc7539>.

 [RFC7630] Merkle, J., Ed. and M. Lochter, "HMAC-SHA-2 Authentication
 Protocols in the User-based Security Model (USM) for
 SNMPv3", RFC 7630, DOI 10.17487/RFC7630, October 2015,
 <http://www.rfc-editor.org/info/rfc7630>.

11.2. Informative References

 [BCK] Bellare, M., Canetti, R., and H. Krawczyk, "Keyed Hash
 Functions and Message Authentication", in Proceedings of
 Crypto'96, 1996.

 [DJB] Bernstein, D., "The Poly1305-AES message-authentication
 code", in Fast Software Encryption, 2005.

 [GK] Gueron, S. and V. Krasnov, "The fragility of AES-GCM
 authentication algorithm", in Proceedings of 11th
 International Conference on Information Technology: New
 Generations 2014, 2014.

 [IK] Iwata, T. and K. Kurosawa, "Keyed Hash Functions and
 Message Authentication", in Progress in Cryptology-
 INDOCRYPT 2003, 2003.

 [IOM] Iwata, T., Ohashi, K., and K. Minematsu, "Breaking and
 Repairing GCM Security Proofs", in Proceedings of CRYPTO
 2012, 2012.

https://datatracker.ietf.org/doc/html/rfc4543
http://www.rfc-editor.org/info/rfc4543
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6151
http://www.rfc-editor.org/info/rfc6151
https://datatracker.ietf.org/doc/html/rfc7539
http://www.rfc-editor.org/info/rfc7539
https://datatracker.ietf.org/doc/html/rfc7630
http://www.rfc-editor.org/info/rfc7630

Malhotra & Goldberg Expires April 28, 2017 [Page 11]

Internet-Draft MACs for NTP October 2016

 [Joux] Joux, A., "Authentication Failures in NIST version of
 GCM",
 <http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

comments/800-38_Series-Drafts/GCM/Joux_comments.pdf>.

 [MB] Bellare, M., "New Proofs for NMAC and HMAC:Security
 without Collision-Resistance", in Proceedings of
 Crypto'96, 1996.

 [NIST] Sherman, J. and J. Levine, "Usage Analysis of the NIST
 Internet Time Service", in Journal of Research of the
 National Institute of Standards and Technology, 2016.

 [NIST-CMAC]
 Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: The CMAC Mode for Authentication", in NIST
 Special Publication 800-38B, 2005.

 [NIST-GMAC]
 Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC", in NIST
 Special Publication 800-38D, 2007.

 [SIV] Gueron, S., Langley, A., and Y. Lindell,
 "https://tools.ietf.org/html/draft-gueron-gcmsiv-00",
 in Work in Progress, 2016.

Authors' Addresses

 Aanchal Malhotra
 Boston University
 111 Cummington St
 Boston, MA 02215
 US

 Email: aanchal4@bu.edu

 Sharon Goldberg
 Boston University
 111 Cummington St
 Boston, MA 02215
 US

 Email: goldbe@cs.bu.edu

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf

Malhotra & Goldberg Expires April 28, 2017 [Page 12]

