http-state Working Group A. Barth TOC

Internet-Draft U.C. Berkeley
Expires: February 16, 2010 August 15, 2009

HTTP State Management Mechanism
draft-abarth-cookie-01

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. This document may contain material
from IETF Documents or IETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the
copyright in some of this material may not have granted the IETF Trust
the right to allow modifications of such material outside the IETF
Standards Process. Without obtaining an adequate license from the
person(s) controlling the copyright in such materials, this document
may not be modified outside the IETF Standards Process, and derivative
works of it may not be created outside the IETF Standards Process,
except to format it for publication as an RFC or to translate it into
languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on February 16, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Abstract

This document defines the HTTP Cookie and Set-Cookie headers.
NOTE:

This document is currently a "straw-man" cookie proposal. Much of
the text herein is completely wrong. If you have suggestions for
improving the draft, please send email to http-state@ietf.org.
Suggestions with test cases are especially appreciated.

Table of Contents

Introduction

Terminology

State and Sessions

Overview

4.1. Examples

Server Conformance

5.1. General

5.2. Set-Cookie
5.2.1. Syntax

&

o

5.3. Semantics

5.3.1. Cookie Attributes
5.4. Cookie

5.4.1. Syntax

5.4.2. Semantics
5.5. Controlling Caching
Agent Conformance
6.1. Parsing the Set-Cookie Header
Parsing Cookie Dates
Storage Model
6.4. The Cookie Header
Caching Proxy Conformance
Examples
Implementation Considerations
9.1. Set-Cookie Content
9.2. Implementation Limits
9.2.1. Denial of Service Attacks
10. Privacy
10.1. User Agent Control
10.2. Protocol Design
11. Security Considerations
11.1. Clear Text
11.2. Cookie Spoofing
11.3. Unexpected Cookie Sharing
12. Other, Similar, Proposals

‘ (0]
c
(2]
D
=

[[

Appendix A. Acknowledgements
Appendix B. Tabled Items
8 Author's Address

1. Introduction TOC

This document defines the HTTP Cookie and Set-Cookie header.

2. Terminology TOC

The terms user agent, client, server, proxy, and origin server have the
same meaning as in the HTTP/1.0 specification.

Fully-qualified host name (FQHN) means either the fully-qualified
domain name (FQDN) of a host (i.e., a completely specified domain name
ending in a top-level domain such as .com or .uk), or the numeric
Internet Protocol (IP) address of a host. The fully qualified domain
name is preferred; use of numeric IP addresses is strongly discouraged.
[TODO: What does "strongly discouraged" mean?]

The terms request-host and request-URI refer to the values the client
would send to the server as, respectively, the host (but not port) and
abs_path portions of the absoluteURI (http_URL) of the HTTP request
line. Note that request-host must be a FQHN. Hosts names can be
specified either as an IP address or a FQHN string. Sometimes we
compare one host name with another. Host A's name domain-matches host
B's if

*both host names are IP addresses and their host name strings
match exactly; or

*both host names are FQDN strings and their host name strings
match exactly; or

*A is a FQDN string and has the form NB, where N is a non-empty
name string, B has the form .B, and B is a FQDN string. (So,
X.y.com domain-matches .y.com but not y.com.)

Note that domain-match is not a commutative operation: a.b.c.com
domain-matches .c.com, but not the reverse.

Because it was used in Netscape's original implementation of state
management, we will use the term cookie to refer to the state
information that passes between an origin server and user agent, and
that gets stored by the user agent.

3. State and Sessions TOC

This document describes a way to create stateful sessions with HTTP
requests and responses. HTTP servers respond to each client request
without relating that request to previous or subsequent requests; the
technique allows clients and servers that wish to exchange state
information to place HTTP requests and responses within a larger
context, which we term a "session". This context might be used to
create, for example, a "shopping cart", in which user selections can be
aggregated before purchase, or a magazine browsing system, in which a
user's previous reading affects which offerings are presented.

There are, of course, many different potential contexts and thus many
different potential types of session. The designers' paradigm for
sessions created by the exchange of cookies has these key attributes:

1. Each session has a beginning and an end.
2. Each session is relatively short-lived.

3. Either the user agent or the origin server may terminate a
session.

4. The session is implicit in the exchange of state information.

4. Overview TOC

We outline here a way for an origin server to send state information to
the user agent, and for the user agent to return the state information
to the origin server.

The two state management headers, Set-Cookie and Cookie, have common
syntactic properties involving attribute-value pairs. The following
grammar uses the notation, and tokens DIGIT (decimal digits) and token
(informally, a sequence of non-special, non-white space characters)
from the HTTP/1.1 specification [RFC 2068] to describe their syntax.

4.1. Examples TOC

T0C

5. Server Conformance

5.1. General TOC

The origin server initiates a session, if it so desires. (Note that
"session" here does not refer to a persistent network connection but to
a logical session created from HTTP requests and responses. The
presence or absence of a persistent connection should have no effect on
the use of cookie-derived sessions). To initiate a session, the origin
server returns an extra response header to the client, Set-Cookie. (The
details follow later.)

A user agent returns a Cookie request header (see below) to the origin
server if it chooses to continue a session. The origin server may
ignore it or use it to determine the current state of the session. It
may send the client a Set-Cookie response header with the same or
different information, or it may send no Set-Cookie header at all. The
origin server effectively ends a session by sending the client a Set-
Cookie header with Max-Age=0. [TODO: Need to say something about
Expires here.]

Servers may return a Set-Cookie response headers with any response.
User agents should send Cookie request headers, subject to other rules
detailed below, with every request.

An origin server may include multiple Set-Cookie headers in a response.
Note that an intervening gateway MUST NOT fold multiple Set-Cookie
headers into a single header. [TODO: Investigate how UAs cope with
folded headers.]

5.2. Set-Cookie TOC

5.2.1. Syntax T0C

Informally, the Set-Cookie response header comprises the token Set-
Cookie:, followed by a comma-separated list of one or more cookies.
Each cookie begins with a name-value-pair, followed by zero or more
semi-colon-separated attribute-value pairs. The NAME=VALUE attribute-
value pair must come first in each cookie.

set-cookie-header
name-value-pairs

"Set-Cookie:" name-value-pairs
name-value-pair *(";" name-value-pair)

name-value-pair = name ["=" value] ; optional value
name = token
value = token

[TODO: Investigate what token actually means.]

Attributes names are case-insensitive. White space is permitted between
tokens. Note that although the above syntax description shows value as
optional, some attributes require values.

The cookie-value is opaque to the user agent and MAY be anything the
origin server chooses to send, possibly in a server-selected printable
ASCII encoding. "Opaque" implies that the content is of interest and
relevance only to the origin server. The content may, in fact, be
readable by anyone who examines the Set-Cookie header.

NOTE: The syntax above allows whitespace between the attribute and the
= sign. Servers wishing to interoperate with some legacy user agents
might wish to elide this extra white space to maximize compatibility.

5.3. Semantics TOC

When the user agent receives a Set-Cookie header, the user agent stores
the cookie in its cookie store. When the user agent makes another HTTP
request to the origin server, the user agent will return the cookie in
the Cookie header.

The server can override the default handling of cookies by specifying a
number of cookie attributes. User agents ignore unrecognized cookie
attributes.

5.3.1. Cookie Attributes TOC

This section describes the semantics of a number of cookie attributes.

5.3.1.1. Max-Age TOC
Syntax A sequence of ASCII numerals.

Semantics The value of the Max-Age attribute represents the maximum
lifetime of the cookie, measured in seconds from the moment the

user agent receives the cookie. If the server does not supply an
Expires or a Max-Age attribute, the lifetime of the cookie is
limited to the current session (as defined by the user agent).

5.3.1.2. EXpires TOC

Syntax An RFC 1123 date [cite]. (User agents use a very forgiving
date parers; see Section [TODO]).

Semantics The value of the Expires attribute represents the maximum
lifetime of the cookie, represented as the point in time at which
the cookie expires. If the server does not supply an Expires or a
Max-Age attribute, the lifetime of the cookie is limited to the
current session (as defined by the user agent).

5.3.1.3. Domain TOC

[TODO: Test Domain.] The Domain attribute specifies the domain for
which the cookie is valid. The leading dot isn't required. If there is
no Domain attribute, the default is to return the cookie only to the
origin server. [TODO: You can only set cookies for related domains.]

5.3.1.4. Path T0C

[TODO: Test path.] The Path attribute specifies the subset of URLs to
which this cookie applies.

5.3.1.5. Secure T0C
Syntax The empty string.

Semantics The user agent SHOULD protect the confidentiality of
cookies with the Secure attribute.

5.3.1.6. Httponly TOC
Syntax The empty string.

Semantics The user agent SHOULD protect confidentiality of cookies
with the HttpOnly attribute by including HttpOnly cookies only
when generating cookie strings for use in HTTP requests.

5.4. Cookie TOC

5.4.1. Syntax TOC

The user agent returns stored cookies to the origin server in the
cookie header. The Cookie header shares a common syntax with the Set-
Cookie header, but the semantics of the header differ dramatically.

cookie-header = "Cookie:" name-value-pairs
name-value-pairs = name-value-pair *(";" name-value-pair)
name-value-pair = name "=" value

name = token

value = token

NOTE: If the server supplies a Set-Cookie header that does not conform
to the grammar in Section TODO, the user agent might not supply a
Cookie header that conforms to the grammar in this Section.

5.4.2. Semantics TOC
Each name-value-pair represents a cookie stored by the user agent. The

cookie name is returned in as the name and the cookie value is returned
as the value.

TOC

5.5. Controlling Caching

[TODO: Should we go into this much detail here? This seems redundant
with the HTTP specs.]

An origin server must be cognizant of the effect of possible caching of
both the returned resource and the Set-Cookie header. Caching "public"
documents is desirable. For example, if the origin server wants to use
a public document such as a "front door" page as a sentinel to indicate
the beginning of a session for which a Set-Cookie response header must
be generated, the page should be stored in caches "pre-expired" so that
the origin server will see further requests. "Private documents", for
example those that contain information strictly private to a session,
should not be cached in shared caches.

If the cookie is intended for use by a single user, the Set-Cookie
header should not be cached. A Set-Cookie header that is intended to be
shared by multiple users may be cached.

The origin server should send the following additional HTTP/1.1
response headers, depending on circumstances: [TODO: Is this good
advice?]

*To suppress caching of the Set-Cookie header: Cache-control: no-
cache="set-cookie".

and one of the following:

*To suppress caching of a private document in shared caches:
Cache-Control: private.

*To allow caching of a document and require that it be validated
before returning it to the client: Cache-Control: must-
revalidate.

*To allow caching of a document, but to require that proxy caches
(not user agent caches) validate it before returning it to the
client: Cache-Control: proxy-revalidate.

*To allow caching of a document and request that it be validated
before returning it to the client (by "pre-expiring" it): Cache-
Control: max-age=0. Not all caches will revalidate the document
in every case.

HTTP/1.1 servers must send Expires: old-date (where old-date is a date
long in the past) on responses containing Set-Cookie response headers
unless they know for certain (by out of band means) that there are no
downsteam HTTP/1.0 proxies. HTTP/1.1 servers may send other Cache-
Control directives that permit caching by HTTP/1.1 proxies in addition
to the Expires: old-date directive; the Cache-Control directive will
override the Expires: old-date for HTTP/1.1 proxies.

6. User Agent Conformance TOC

Not all origin servers conform to the behavior specified in the
previous section. To ensure interoperability, user agents MUST process
cookies in a manner that is "black-box" indistinguishable from the
requirements in this section.

6.1. Parsing the Set-Cookie Header TOC

Let an LWS character be either a U+20 (SPACE) or a U+09 (TAB)
character.

A user agent MUST use the following algorithm to parse the Set-Cookie
header:

1. [TODO: Deal with ', ' characters.]
2. If the header contains a ';' character:

the name-value string is characters up to, but not
including, the first ';', and the unparsed-cookie-attributes
are the remainder of the header (including the ';' in
guestion).

Otherwise:
the name-value string is all the character contained in the
header, and the unparsed-cookie-attributes is the empty

string.

3. If the first non-LWS character of the name-value string is '='
remove it.

4

4, If the name-value string contains a '=' character:

the name string is the characters up to, but not including,

the first '=' character, and the value string is the
characters after the first '=' character
Otherwise:

the name string is empty, and the value string is the entire
name-value string.

5. Remove any leading or trailing space from the name string.

6. Remove any leading or trailing space from the value string.

7. The cookie-name is the name string.
8. The cookie-value is the value string.

The user agent MUST use the following algorithm to parse the unparsed-
attributes:

1. [TODO: Figure out how to parse cookie attributes.]

[TODO: Can parsing a cookie ever fail?]

[TODO: Convert Max-Age to a date during parsing.]

When the user agent finishes parsing the Set-Cookie header, the user
agent *receives a cookie* from the origin server with name cookie-name,
value cookie-value, and attributes cookie-attributes.

6.2. Parsing Cookie Dates TOC

Basically, cookie dates are a mess for historical reasons.
To be compatible with legacy servers, however, user agents should
accept dates formated according to this grammar:

cookie-date = rfcl1123-1like-date / mystery-date
rfc1123-like-date = weekday "," SP rfc1123-like-dmy SP time SP "GMT"
weekday = "Monday" / "Mon" / "Tuesday" / "Tue" /
rfcl1123-1ike-dmy = day dmy-div month dmy-div year

dmy-div =sSp/ "-"

day = 2DIGIT / *1SP DIGIT

month = "Jan" / "Feb" /

year = 2DIGIT / 4DIGIT

time = 2DIGIT ":" 2DIGIT ":" 2DIGIT

mystery-date = *CHAR ; see below

[TODO: More information about mystery-date.]

6.3. Storage Model TOC

When the user agent receives a cookie, the user agent SHOULD record the
cookie in its cookie store as follows.

A user agent MAY ignore received cookies in their entirety if the user
agent is configured to block receiving cookie for a particular
response. For example, the user agent might wish to block receiving
cookies from "third-party" responses.

The user agent stores the following fields about each cookie:
*name (a sequence of bhytes)
*value (a sequence of bytes)
*expiry (a date)

*domain (a cookie-domain)
*path (a cookie-path)
*creation (a date)
*last-access (a date)
*persistent (a Boolean)
*host-only (a Boolean)
*secure-only (a Boolean)
*http-only (a Boolean)

When the user agent receives a cookie, the user agent MUST follow the
following algorithm:

1. Create a new cookie based on the parsed Set-Cookie header:

1. Create a new cookie with the following default field
values:

*name = the cookie-name
*value = the cookie-value
*expiry = the latest representable date

*domain = the request-host

*path = the path of the request URL that generated the
Set-Cookie response, up to, but not including, the
right-most / [TODO: Test! This seems wrong for paths
that are just a single slash]

the date and time the cookie was received

*last-access

*last-access = the date and time the cookie was received

*persistent = false

*host-only = true
*secure-only = false
*http-only = false

2. Update the default field values according to the cookie-
attributes:

expiry If the cookie-attributes contains at least one
Expires or a Max-Age attribute, store the value of
the [TODO: first] such attribute in the expiry
field. Store the value true in the persistent field.

domain If the cookie-attributes contains at least one
Domain attribute, store the value of the [TODO:
first] such attribute in the domain field. Store the
value false in the host-only field. [TODO: Reject
cookies for unrelated domains.] [TODO: If the URL's
host is an IP address, let Domain to be an IP
address if it matches the URL's host exactly, but
set the host-only flag.]

path If the cookie-attributes contains at least one
Path attribute, store the value of the [TODO: first]
such attribute in the path field.

secure-only If the cookie-attributes contains at least
one Secure attribute, store the value true in the
secure-only field.

http-only If the cookie-attributes contains at least
one HttpOnly attribute, store the value true in the
http-only field.

2. Remove from the cookie store all cookies that have the share
the same name, domain, path, and host-only fields as the newly
created cookie. [TODO: Valiate this list!] [TODO: There's some
funny business around http-only here.]

3. Insert the newly created cookie into the cookie store.

The user agent MUST evict a cookie from the cookie store if either of
the following conditions are met:

*A cookie exists in the cookie store with an expiry date in the
past.

*More than 50 cookies exist in the cookie store with the same
domain field.

The user agent MAY evict cookies from the cookie store if the cookie
store exceeds some maximum storage bound (such as 3000 cookies).
When the user agent evicts cookies from the cookie store, the user
agent MUST evict cookies in the following priority order:

1. A cookie with an expiry date in the past.

2. A cookie that shares a domain field with more than 50 other
cookies in the cookie store.

3. All other cookies.

If two cookies have the same removal priority, the user agent MUST
evict the cookie with the least recent last-access date first.

When the user agent exits, the user agent MUST remove from the cookie
store all cookies with the persistent field set to false.

6.4. The Cookie Header TOC

When the user agent generates an HTTP request for a particular URI, the
user agent SHOULD attach exactly one HTTP named Cookie if the cookie-
string (defined below) for that URI is non-empty.

A user agent MAY elide the Cookie header in its entirety if the user
agent is configured to block sending cookie for a particular request.
For example, the user agent might wish to block sending cookies during
"third-party" requests.

When generating a cookie-string from a URI with a "secure" scheme, the
user agent MUST set the SECURE flag to true. Otherwise, the user agent
MUST set the SECURE flag to false.

NOTE: The notion of an "secure" scheme is not defined by this
document. Typically, user agents consider a scheme secure if the
scheme refers to a protocol that makes use of transport-layer
security, such as TLS. For example, most user agents consider
"https" to be a secure scheme.

When generating a cookie-string for use in an HTTP request, the user
agent MUST set the HTTP flag to true. Otherwise, the user agent MUST
set the HTTP flag to false.

The user agent MUST use the following algorithm to compute the cookie-
string from a cookie store and from a URI:

1. Let cookie-list be the set of cookies from the cookie store
that meet the following requirements:

*The cookie's domain field must domain-match the URI's host.
[TODO: Spec me]

7.

*The cookie's path field must path-match the URI's path.
[TODO: Spec me]

*If the cookie's host-only flag is set, the cookie's domain
field must denote exactly the same FQDN as the URI's host.
[TODO: Internet Explorer does not implement this requirement
but most other major implementations do.]

*If the cookie's secure-only field is true, then the SECURE
flag must be true.

*If the cookie's http-only field is true, then the HTTP flag
must be true.

NOTE: The Cookie header will not contain any expired cookies
because cookies past their expiry date are removed from the
cookie store immediately.

Sort the cookie-1list in the following order:

*Cookies with longer path fields are listed before cookies
with shorter path field.

*Among cookies that have equal length path fields, cookies
with earlier creation dates are listed before cookies with

later creation dates.

Update the last-access field of each cookie in the cookie-1list
to the current date.

Serialize the cookie-list into a cookie-string by processing
each cookie in the cookie-list in order:

1. Output the cookie's name field.
2. Output the character U+3D ("=")
3. Output the cookie's value field.

4, If there is an unprocessed cookie in the cookie-list,
output the characters U+3B and U+20 ("; ")

Caching Proxy Conformance TOC

One reason for separating state information from both a URL and
document content is to facilitate the scaling that caching permits. To
support cookies, a caching proxy must obey these rules already in the

HTTP specification [TODO: If they're already in the HTTP specification,
aren't they redundant here?]:

*Honor requests from the cache, if possible, based on cache
validity rules.

*Pass along a Cookie request header in any request that the proxy
must make of another server.

*Return the response to the client. Include any Set-Cookie
response header.

*Cache the received response subject to the control of the usual
headers, such as Expires, Cache-Control: no-cache, and Cache-
Control: private.

*Cache the Set-Cookie subject to the control of the usual header,
Cache-Control: no-cache="set-cookie". (The Set-Cookie header
should usually not be cached.)

Proxies must not introduce Set-Cookie (Cookie) headers of their own in
proxy responses (requests).

8. Examples TOC

[TODO: Write sensible examples.]

9. Implementation Considerations TOC

Here we speculate on likely or desirable details for an origin server
that implements state management.

9.1. Set-Cookie Content TOC

An origin server's content should probably be divided into disjoint
application areas, some of which require the use of state information.
The application areas can be distinguished by their request URLs. The
Set-Cookie header can incorporate information about the application
areas by setting the Path attribute for each one.

The session information can obviously be clear or encoded text that
describes state. However, if it grows too large, it can become
unwieldy. Therefore, an implementor might choose for the session

information to be a key to a server-side resource. [TODO: Describe
briefly how to generate a decent session key.]

[TODO: We could recommend that servers encrypt and mac their cookie
data.]

[TODO: Mention issues that arise from having multiple concurrent
sessions.]

9.2. Implementation Limits TOC

Practical user agent implementations have limits on the number and size
of cookies that they can store. In general, user agents' cookie support
should have no fixed limits. [TODO: Why not?] They should strive to
store as many frequently-used cookies as possible. Furthermore,
general-use user agents should provide each of the following minimum
capabilities individually, although not necessarily simultaneously:
[TODO: Where do these numbers come from?]

*at least 4096 bytes per cookie (as measured by the size of the
characters that comprise the cookie non-terminal in the syntax
description of the Set-Cookie header)

User agents created for specific purposes or for limited-capacity
devices should provide at least 50 cookies of 4096 bytes, to ensure
that the user can interact with a session-based origin server.

The information in a Set-Cookie response header must be retained in its
entirety. If for some reason there is inadequate space to store the
cookie, it must be discarded, not truncated.

Applications should use as few and as small cookies as possible, and
they should cope gracefully with the loss of a cookie. [TODO: Could
mention latency issues that arise from having tons of cookies.]

9.2.1. Denial of Service Attacks TOC

User agents may choose to set an upper bound on the number of cookies
to be stored from a given host or domain name or on the size of the
cookie information. Otherwise, a malicious server could attempt to
flood a user agent with many cookies, or large cookies, on successive
responses, which would force out cookies the user agent had received
from other servers. However, the minima specified above should still be
supported. [TODO: These minima still let an attacker exhaust the entire
cookie store. There's not much we can do about it though.]

10. Privacy TOC

10.1. User Agent Control TOC

An origin server could create a Set-Cookie header to track the path of
a user through the server. Users may object to this behavior as an
intrusive accumulation of information, even if their identity is not
evident. (Identity might become evident if a user subsequently fills
out a form that contains identifying information.) This state
management specification therefore requires that a user agent give the
user control over such a possible intrusion, although the interface
through which the user is given this control is left unspecified.
However, the control mechanisms provided shall at least allow the user

*to completely disable the sending and saving of cookies,
*to determine whether a stateful session is in progress, and

*to control the saving of a cookie on the basis of the cookie's
Domain attribute.

Such control could be provided by, for example, mechanisms

*to notify the user when the user agent is about to send a cookie
to the origin server, offering the option not to begin a session,

*to display a visual indication that a stateful session is in
progress,

*to let the user decide which cookies, if any, should be saved
when the user concludes a window or user agent session, or

*to let the user examine the contents of a cookie at any time.

A user agent usually begins execution with no remembered state
information. It should be possible to configure a user agent never to
send Cookie headers, in which case it can never sustain state with an
origin server. (The user agent would then behave like one that is
unaware of how to handle Set-Cookie response headers.)

When the user agent terminates execution, it should let the user
discard all state information. Alternatively, the user agent may ask
the user whether state information should be retained. If the user
chooses to retain state information, it would be restored the next time
the user agent runs.

10.2. Protocol Design TOC

The restrictions on the value of the Domain attribute are meant to
reduce the ways that cookies can "leak" to the "wrong" site. The intent
is to restrict cookies to one, or a closely related set of hosts.
Therefore a request-host is limited as to what values it can set for
Domain.

11. Security Considerations TOC

11.1. Clear Text TOC

The information in the Set-Cookie and Cookie headers is transmitted in
the clear. Three consequences are:

1. Any sensitive information that is conveyed in in the headers is
exposed to an easedropper.

2. A malicious intermediary could alter the headers as they travel
in either direction, with unpredictable results.

3. A malicious client could alter the Cookie header before
transmission, with unpredictable results.

These facts imply that information of a personal and/or financial
nature should be sent over a secure channel. For less sensitive
information, or when the content of the header is a database key, an
origin server should be vigilant to prevent a bad Cookie value from
causing failures.

11.2. Cookie Spoofing TOC

[TODO: Mention integrity issue where a sibling domain can inject
cookies.]

[TODO: Mention integrity issue where a HTTP can inject cookies into
HTTPS.]

11.3. Unexpected Cookie Sharing TOC

A user agent should make every attempt to prevent the sharing of
session information between hosts that are in different domains.
Embedded or inlined objects may cause particularly severe privacy
problems if they can be used to share cookies between disparate hosts.
For example, a malicious server could embed cookie information for host
a.com in a URI for host b.com. User agent implementors are strongly
encouraged to prevent this sort of exchange whenever possible. [TODO:
How are they supposed to do this? This section makes little sense.]

12. Other, Similar, Proposals TOC

[TODO: Describe relation to the Netscape Cookie Spec, RFC 2109, RFC
2629, and cookie-v2.]

Appendix A. Acknowledgements TOC

This document borrows heavily from RFC 2109. [TODO: Figure out the
proper way to credit the authors of RFC 2109.]

Appendix B. Tabled Items TOC
Tabled items:

*Public suffix.

Author's Address
TOC

Adam Barth
University of California, Berkeley
Email: abarth@eecs.berkeley.edu
URI: http://www.adambarth.com/

mailto:abarth@eecs.berkeley.edu
http://www.adambarth.com/

	HTTP State Management Mechanismdraft-abarth-cookie-01
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	2. Terminology
	3. State and Sessions
	4. Overview
	4.1. Examples
	5. Server Conformance
	5.1. General
	5.2. Set-Cookie
	5.2.1. Syntax
	5.3. Semantics
	5.3.1. Cookie Attributes
	5.3.1.1. Max-Age
	5.3.1.2. Expires
	5.3.1.3. Domain
	5.3.1.4. Path
	5.3.1.5. Secure
	5.3.1.6. HttpOnly
	5.4. Cookie
	5.4.1. Syntax
	5.4.2. Semantics
	5.5. Controlling Caching
	6. User Agent Conformance
	6.1. Parsing the Set-Cookie Header
	6.2. Parsing Cookie Dates
	6.3. Storage Model
	6.4. The Cookie Header
	7. Caching Proxy Conformance
	8. Examples
	9. Implementation Considerations
	9.1. Set-Cookie Content
	9.2. Implementation Limits
	9.2.1. Denial of Service Attacks
	10. Privacy
	10.1. User Agent Control
	10.2. Protocol Design
	11. Security Considerations
	11.1. Clear Text
	11.2. Cookie Spoofing
	11.3. Unexpected Cookie Sharing
	12. Other, Similar, Proposals
	Appendix A. Acknowledgements
	Appendix B. Tabled Items
	Author's Address

